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Abstract: We describe how a midwave infrared photonic integrated circuit (PIC) that combines
lasers, detectors, passive waveguides, and other optical elements may be constructed on the native
GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building
blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive
sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact
architectures are described, some of which incorporate both the sensing waveguide and detector into
a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser
configuration that optimizes stability by minimizing parasitic feedback from external optical elements,
and which can potentially operate with lower drive power than any mid-IR laser now available.
While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of
the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP,
and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become
possible to mass-produce hundreds of individual PICs on the same chip which, when singulated,
will realize chemical sensing by an extremely compact and inexpensive package.

Keywords: interband cascade laser; photonic integrated circuit; chemical sensing; midwave infrared

1. Introduction

Recent years have seen an accelerating development of optical technologies operat-
ing in the midwave infrared (mid-IR). This has been driven partly by the opportunities
for sensitive spectroscopic detection of trace chemicals [1], since in gas form the narrow
mid-IR absorption lines that can positively identify a given chemical are 2–3 orders of
magnitude stronger than those in the near IR. Applications include monitoring green-
house gases [1], industrial process control [2], combustion diagnostics [3], clinical breath
analysis [4], and isotope differentiation [5]. However, the long-term market for mid-IR
chemical sensing products will depend in large part on such practical factors as cost, power
budget, and system footprint. While other sensing techniques, such as gas chromatography
and monitoring variations in the properties of metal oxide semiconductors or polymers,
may also be employed [6], laser spectroscopy combines the advantages of selectivity,
sensitivity, stability, longevity, and range in the case of remote sensing [5].

It follows that rather than using bulky and costly discrete optical elements interacting
across free space, the ideal spectroscopic sensing system will occupy a single semicon-
ductor chip that is inexpensive to produce in mass quantities [5]. This will require the
incorporation of at least one mid-IR source, optical sensing path, and detector, along with
interconnections linking them, into a single photonic integrated circuit (PIC). However,
the progress so far toward this objective has been incremental. While mid-IR lasers and
detectors have been combined [7–9], and sensing waveguides have been integrated with

Sensors 2021, 21, 599. https://doi.org/10.3390/s21020599 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21020599
https://doi.org/10.3390/s21020599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020599
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/599?type=check_update&version=1


Sensors 2021, 21, 599 2 of 19

detectors [10,11], we are aware of only one report to date of all three fundamental compo-
nents being integrated on the same mid-IR PIC. This was a QCL and QCD integrated on the
same chip with a suspended membrane waveguide patterned with subwavelength slots,
which was designed for sensing that had not yet been demonstrated [12]. Although still
immature, more complete sensing PICs operating in the near IR have been reported [13].

In this work, we lay out a comprehensive and practical framework for combining
all the optical elements required to integrate a high-performance mid-IR chemical sensor
on a PIC [14]. The platform is an interband cascade laser (ICL) structure [15–18] residing
on its native GaSb substrate. The ICL combines a relatively long upper-level lifetime,
characteristic of semiconductor interband transitions, with the voltage-efficient cascading
scheme originally introduced for the quantum cascade laser (QCL, which employs inter-
subband transitions to produce light) [19]. Both electrons and holes are present in each
stage of the ICL’s cascaded active region, even though the contacts inject and remove
only electrons. The ICL has become the leading coherent optical source for many mid-IR
applications between 3 and 6 µm [18]. It operates with drive power as low as 29 mW [20]
and wallplug efficiency as high as 18% [21] for continuous wave (cw) operation at room
temperature. However, it is less mature than the QCL, and a wealth of complex physics
responsible for various aspects of the ICL operation have yet to be fully unraveled.

In the following sections, we describe how building blocks, corresponding to the
individual optical components, can be used to construct a variety of highly compact chem-
ical sensing architectures [14] that are suitable for fabrication in a standard cleanroom.
Each combines one or more ICLs with interband cascade detectors (ICDs), passive waveg-
uides, and/or other active and passive elements. We also describe an edge-emitting laser
configuration that optimizes stability by minimizing parasitic external optical feedback,
besides having the potential to operate with lower drive power than any mid-IR laser now
available. Most of the configurations described below have not been described previously
in the open literature.

While integration on the native III-V chip will be assumed in most of what follows,
many of the same configurations may also be advantageous when integration is on a silicon
chip. The University of California Santa Barbara (UCSB), NRL, and University of Wis-
consin recently reported the first successful integration of mid-IR QCLs on silicon [22,23].
Those PICs were formed by heterogeneously bonding active III-V wafer materials to a
silicon-nitride-on-insulator (SONOI) chip that was pre-patterned with passive waveguides
and DFB gratings. Laser ridges were then processed from the back. However, the perfor-
mance thus far has been limited by an inefficient transfer of laser power from the hybrid
III-V/silicon waveguide of the gain region to a passive silicon-based waveguide that can
couple the laser beam to other optical elements on the PIC. UCSB and NRL subsequently
reported the integration of ICLs on silicon using an analogous heterogeneous bonding
approach [24], although inefficient coupling between the hybrid and silicon-based waveg-
uides again limited the output power. An alternative approach to the integration of mid-IR
sources on silicon has been to grow InP-based QCLs directly onto silicon substrates [25,26].

2. Building Blocks: The Laser, Detector, and Passive Waveguides, Plus Other Active
and Passive Optical Components

We will assume the starting material to be the epitaxial layers corresponding to an
ICL grown on GaSb, which are illustrated schematically in Figure 1a. Here the active
gain stages are surrounded by lightly doped n-type GaSb separate confinement layers
(SCLs), which are in turn surrounded by InAs-AlSb superlattice (SL) optical cladding layers.
The GaSb substrate and buffer layer are n+-doped to allow for bottom contacting to the
substrate, and the epitaxial layers are capped by an n+-InAs top contacting layer. While a
standard off-the-shelf ICL structure may be suitable, it is preferable to modify the design
slightly by making the bottom SCL somewhat thicker and the top SCL somewhat thinner
(or eliminating it altogether), as will be discussed below. We also note that analogous QCL
structures may be employed in most of the configurations discussed below, with n−-InGaAs
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substituted for the GaSb SCLs, InP for the InAs-AlSb SL cladding layers, and n+-InGaAs
for the top contacting layer.
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for the bottom cladding layer, 500–900 nm for the bottom SCLs, 200–400 nm for 5–10 active gain stages, 100–300 nm for the
top separate confinement layer (SCL), 1.2–2 µm for the top cladding layer, and 20 nm for the top contact layer.

Figure 1b schematically illustrates a narrow ridge waveguide structure processed from
the epitaxial material shown in Figure 1a. The etch that defines the ridge generally proceeds
to below the active stages, to prevent the severe lateral current spreading that would
otherwise occur in either an ICL [27] or QCL [28]. A dielectric, such as SiN, is deposited on
the ridge sidewalls, followed by metallization to provide a top electrical contact. The bottom
contact is usually made to the n+-GaSb substrate, although it is also possible to fabricate
two top contacts [24]. A substantial fraction of the optical mode in a conventional ICL
resides in the top and bottom n−-GaSb SCLs, which exhibit low loss and high refractive
index. All of the active ridges, as well as the passive waveguides discussed below, should
be ≈ 4–15 µm wide to assure lasing and propagation in a single lateral mode.

The ridge illustrated in Figure 1b can provide gain when a forward bias is applied,
and lasing if the ridge is incorporated into a cavity. However, the same narrow ridge
can function as an interband cascade light emitting device (ICLED) if no cavity provides
feedback and the emitter operates at a forward bias that corresponds to net propagation
loss. At higher biases that induce net gain (optical gain minus internal loss), it will function
as an interband cascade amplified spontaneous emitter (ICASE), so long as the feedback
remains insufficient to induce lasing.

It has also been demonstrated that, under zero or reverse bias, the layering structure
of Figure 1a, and therefore the narrow ridge waveguide of Figure 1b, can operate as an
interband cascade detector [29]. In an ICL operating under forward bias, the electron
injector with chirped quantum well thicknesses transfers electrons from the semimetallic
interface that separates the electron and hole injectors to the active electron quantum wells,
where they recombine with holes in the active hole quantum well [20]. In an ICD, on the
other hand, electrons photoexcited in the active quantum wells of a given stage produce
photocurrent in the opposite direction, by flowing downhill through the electron injector
toward the semimetallic interface, where they recombine with photoexcited holes from the
next stage. Thus, whereas a single electron injected electrically into an N-stage ICL can emit
N photons, an ICD must absorb N photons to transfer a single electron across all the stages
to provide a photocurrent. ICDs displayed high detectivity at room temperature [29–31].

U. Oklahoma recently reported an ICL and ICD integrated on the same native GaSb
chip [8], although separated by an air gap rather than a passive waveguide as will be
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required for versatile integration on a PIC. Other groups have also demonstrated ICLs
and ICDs processed from the same wafer material, although not coupled on the same
chip [32,33]. The ICD’s cut-off wavelength is always roughly equal to the ICL emission
wavelength, since both are determined by the bandgap of the active quantum wells.
This contrasts the less ideal alignment for a QCD processed in parallel with a QCL. In that
case, an “extraction” sub-band lies about one optical phonon energy (h̄ωo) below the lower
lasing level to provide rapid depopulation following a stimulated emission event. At zero
bias, most electrons populate the extraction sub-band, so the QCD’s absorption peak occurs
closer to h̄ω + h̄ωo than to the lasing energy h̄ω. Nonetheless, specially designed QCLs
residing on the same native InP chip [8] with QCDs have produced up to 1 W of cw
emission at 15 ◦C [34].

A chemical sensing PIC will also need low-loss passive waveguides, to connect the
other components and in some approaches to provide evanescent coupling to an ambient
sample gas or liquid that may or may not contain an analyte of interest. Figure 2a,b
illustrate two passive waveguide structures that may be processed from the ICL material
of Figure 1a. They are realized by etching away the heavily doped top contacting layer,
top cladding layer, top SCL, and active gain stages, with the etch stopping near the top of
the bottom SCL. Whereas typically the top and bottom SCL thicknesses in a conventional
ICL are equal, in this case the structure should be redesigned such that the bottom SCL is
thicker and the top SCL thinner, as shown in Figure 1a, or absent altogether. In exchange
for a modest reduction in optical confinement in the active gain stages, this will thicken
the high-index core of the passive waveguide, and better align the active and passive
waveguide modes along the vertical axis. For example, if a conventional ICL structure
emitting at 3.4 µm, with seven stages and SCL thicknesses of 700 nm on both top and
bottom, is redesigned, such that the top SCL is thinned to 450 nm while the bottom SCL
is thickened to 950 nm, the optical confinement factor in the active region decreases from
15.7% to 10.2%. However, in exchange, 80% of the fundamental mode then lies below the
active core, a large fraction of which should couple to the passive waveguide following
removal of the active core to form a passive waveguide. An interface between active and
passive waveguides will be illustrated below.

In Figure 2a, the bottom SCL is etched away entirely outside the ridge, with the etch
stopping near the top of the superlattice bottom cladding layer. Alternatively, Figure 2b
shows the etch outside the ridge, stopping within the bottom SCL. In both cases, the beam
propagates in the ridge waveguide formed by the bottom n−-GaSb SCL as its core and the
bottom InAs-AlSb SL as its bottom clad. The top and sides of the ridge may be encapsulated
in a dielectric or left exposed for evanescent coupling to ambient.
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Figure 2. Schematic cross sections of passive waveguides processed from the ICL epitaxial structure of Figure 1a. The ridge
is formed by etching away the top contacting layer, top clad layer, top SCL, and the active stages, to leave the bottom SCL
that serves as the waveguide core and the bottom InAs-AlSb SL that forms the bottom clad. Outside the narrow ridge,
either the bottom SCL is fully etched away, with the etch stopping near the top of the bottom cladding layer (a), or the etch
stops within the bottom SCL (b). If the tops and sides of these passive waveguides are left exposed, as shown in the figures,
propagating light will evanescently couple to an ambient sample gas or liquid. A typical overlap of the optical mode profile
with the ambient gas will be illustrated below.
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The optical loss in these passive waveguides should be low when the contributions by
scattering and the other optional treatments described below are minimized. Therefore,
a relatively long sensing waveguide that maximizes net coupling to the sample gas may be
feasible (>>1 cm−1). The path geometry may be straight, or follow a meandering pattern,
as shown in some of the figures below. Or it may be configured as a ring (see below) or
other resonator configuration, to extend the effective path length and also provide spectral
selectivity imposed by the resonance.

Nonetheless, the modal overlap with ambient is relatively weak because the upper-
most GaSb layer of the waveguides shown in Figure 2a,b has a high refractive index, while
the top cladding layer is the air containing the analyte. For this reason, it may beneficial
to pattern a slot waveguide, sub-wavelength grating, or other nanoscale structure that
increases the coupling of the beam to ambient, employ a hollow-core waveguide that
provides propagation through free space, or coat the top and sides of the waveguide with
a chemical sorbent that selectively concentrates a given class of chemicals. Those options
will be discussed briefly in Section 6 below, although a detailed analysis falls outside the
main scope of this work.

The lasers, detectors, and passive waveguides described above can also be integrated
into more complex PICs that incorporate other optical components for enhanced capability.
For example, an arrayed waveguide grating (AWG) can spectrally combine the beams from
an array of distributed feedback (DFB) [35,36] or distributed Bragg reflector (DBR) lasers,
with slightly different grating pitches, into a single output for use elsewhere on or off the
chip. Or spectroscopy can be performed by using an AWG to separate a single broadband
input into spectral components that are detected individually [37].

We must also consider how to couple the different types of waveguides for optimal
beam transfer from one active or passive optical component to another. For example,
one end of a laser cavity employing the narrow ridge waveguide illustrated in Figure 1b
may be defined by simple butt coupling to a passive waveguide (Figure 2). Reflection
for feedback is then provided by the differing mode profiles, as well as the different
modal indices of the two waveguides. Of course, this approach provides relatively little
opportunity for tuning the reflectivity of the output mirror. It is also worth noting that,
since the active waveguide shown in Figure 1a is taller than the passive waveguides of
Figure 2, the centroid of its mode profile along the vertical axis is higher than in the passive
waveguides. Therefore, to minimize transmission into the ambient above the passive
waveguide, the upper portion of the active waveguide at the interface should be coated
with a dielectric and gold for high reflection (HR). This is illustrated below. It may also be
desirable to taper the passive waveguide to a width somewhat narrower than the active
laser waveguide since a ridge narrow enough to preclude lasing in higher-order lateral
modes may nonetheless allow for propagation in multiple modes when no gain is present.

In principle, the laser output coupling is more controllable if a distributed Bragg reflec-
tor (DBR) is instead processed at the interface between the active and passive waveguides
(and possibly at the other end of the cavity to define the back mirror as well) [38]. When a
III-V laser is bonded to silicon to form the PIC, it is relatively straightforward to pre-pattern
a DBR grating into the silicon before the active gain material is bonded and processed [23].
However, for ICL-based PICs residing on the native GaSb substrate, the DBR must be
etched into the ICL wafer material, as illustrated in Figure 3. For a DBR, defining one
end of the laser cavity (or detector absorber region) that couples to a passive waveguide,
it is preferable to etch the grating into the passive waveguide (at left in the figure), rather
than into the full layered structure (at right). Given the spatial resolution and sidewall
angle that can be achieved routinely for a given grating period when GaSb-based laser
structures are processed with reactive ion etching, the processing yield is likely to be higher
if a third-order rather than first-order grating is employed. For the example of an ICL
emitting at 3.5 µm, the period for a third-order grating with 50% duty cycle is roughly
1.5 µm. The reflectivity can then be tuned to a desired value by varying the grating length
and/or etch depth. For maximum reflection by a mirror that is not intended for output,
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our simulations indicate that a grating length of at least 100 µm is preferred, which, with an
etch depth of 280 nm, would produce ≈ 90% reflectivity. The corresponding parameters
for a first-order grating are a 500 nm period and 120 nm etch depth.
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Figure 3. Schematic of a third-order distributed Bragg reflector (DBR) mirror that defines one end of
an ICL cavity. If the DBR is designed for outcoupling the laser light, the mirror couples into a passive
waveguide positioned farther to the left in the figure.

The waveguide for an in-plane ICD may also be bound on both ends by DBRs, or on
one side by a DBR and on the other by a cleaved or etched HR-coated facet, to form an
in-plane resonant cavity detector [39,40]. By taking advantage of multiple in-plane passes
through the absorber, a shorter ICD waveguide that generates lower dark current can
maintain high quantum efficiency for enhanced specific detectivity D*.

3. Sensing within the Laser Cavity

Some or all of the active and passive optical elements described above can be combined
in a number of ways to form an on-chip chemical sensor. One of the simplest is to imbed
an active or passive sensing waveguide within the laser cavity.

We begin with the simple baseline configuration, illustrated in Figure 4a, which is
formed by placing HR-coated cleaved facets at both ends of a narrow ridge, although one
or both ends of the cavity may just as well be bound by an etched facet or high-reflectivity
DBR. Since there is no opportunity for feedback from an external optical element to
influence the laser operation, its stability should be limited only by the drive electronics
and environmental temperature fluctuations (typically taking place on a relatively long-
time scale). Ordinary vibrations should have little effect, since all of the fixed internal
lengths will vibrate in unison. Very low drive power is also possible in principle, as will be
discussed further below.
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Of course, a laser having no interaction at all with anything outside its own cavity
cannot perform a useful function. However, we can provide interaction without introducing
any external optical feedback by configuring the ridge geometry to impose finite overlap
of the propagating optical mode with ambient. One conceptually simple approach is
to modify the ridge waveguide profile from Figure 1b such that part of the top SCL is
exposed, as illustrated schematically in Figure 5. Spectral selectivity may also be imposed
by patterning a DFB grating into the partially-exposed ridge.
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An alternative possibility is to open one or more notches in the top of some portion
of the active gain waveguide, as shown schematically in Figure 6, such that the prop-
agating mode evanescently couples to ambient. Each notch should be narrow enough
(<200–300 µm) to allow for current spreading and self-pumping to inject carriers into its
active stages.
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A third possibility is to longitudinally divide the cavity into active and sensing sections,
as shown schematically in Figure 4b. The active waveguide section includes the full ICL
structure containing the active gain stages, as in Figure 1b, whereas the sensing section
comprises a passive waveguide with exposed top and side surfaces, such as those in
Figure 2. The sensing section may be relatively long, (e.g., >1 cm) to enhance the chemical
detection sensitivity, since the passive waveguide loss should be low and absorption by the
sample gas is weak in most cases. The passive sensing waveguide may be straight, leading
directly to a mirror that defines one end of the cavity, or it may follow a long meandering
path (with bend radius large enough to result in little additional loss), as shown in Figure 4b.

Assuming that the amplitude and spectral characteristics of the beam propagating
in the cavity are modified by the presence and concentration of a chemical species of
interest in the ambient sample gas, we still need a means for quantifying the effect. While a
detector can be incorporated, as will be discussed below, it is not required. Instead, we can
monitor the compliance voltage in the laser’s I–V characteristics when a constant current is
injected [41]. When the cavity loss increases, due to absorption by the sample gas, the lasing
threshold increases and the radiative recombination rate decreases at a given current
injection level above threshold. Therefore, a higher voltage must be applied to maintain
the same current. Phillips et al. observed a 0.15 V increase in the compliance voltage for
a QCL emitting near 7.7 µm when the laser wavelength swept across an absorption line
of water vapor [41]. In that experiment, the sample gas resided in an external portion of
the laser cavity (which coupled to a grating for tuning the lasing wavelength), rather than
coupling evanescently to the beam propagating in a waveguide. Without an external cavity,
the wavelength of the laser illustrated in Figure 4b can be tuned across the absorption
resonance by current or temperature, and the dependence of compliance voltage on current,
then compared to that observed when the chemical species of interest is not present in the
ambient sample gas. Multiple DFB or DBR lasers on the same chip, which all incorporate
sensing waveguides, can provide a reference by tuning to different wavelengths.

A further alternative is to monitor the absorption resulting from evanescent coupling
to the sample gas by incorporating an additional interband cascade detector waveguide
section into the ICL cavity, since the same ridge waveguide is suitable for both. For the
example shown schematically in Figure 4c, the ICD is placed on one side of the active
gain section and the passive sensing waveguide on the other. However, the detector
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may also be placed inside the laser cavity when evanescent coupling to the sample gas
occurs within the active gain section; for example, using the partially-exposed waveguides
shown in Figures 5 and 6, rather than in a separate sensing waveguide. The ICD and
ICL sections must naturally be contacted individually, with a gap in between to prevent
crosstalk. The detector section must be short enough that its absorption of lasing photons
does not dramatically degrade the laser performance. However, high sensitivity should be
achievable with a very short detector because the in-plane absorption is quite strong.

4. Integrated ICL with Enhanced Stability

Trace chemicals can be detected by measuring the differential absorption induced by a
constituent of the sample gas, against the background when the species of interest is absent.
It follows that the minimum detectable absorption depends critically on the stability of the
laser, since any jitter or other fluctuation will easily wash out a small differential signal.

A major cause of instability is feedback from a secondary optical cavity that forms
due to reflection from one or more surfaces encountered outside the intended primary
cavity [42–45]. For example, reflection may occur at an external optic or other surface
encountered after the beam leaves the output facet of an edge-emitting laser. One study
found that as little as −30 dB feedback could broaden the spectrum and degrade the
relative intensity noise (RIN) of an edge-emitting DFB laser [46]. Furthermore, inevitable
mechanical and thermal vibrations cause the secondary cavity length to vary, thereby
inducing temporal “jitter” of the magnitude and spectral characteristics of the parasitic
modes. A conventional edge-emitting diode laser with cleaved output facet that is either
AR coated (reflectivity R ≤ 2%) or uncoated (typically R ≈ 25–40%) [21] is especially
susceptible to unwanted feedback, since a significant fraction of the light returned to the
facet following external reflection is transmitted back into the cavity, and even a modest
amount of feedback can degrade the laser stability. While an optical isolator can minimize
the external feedback, they are too bulky (as well as expensive and wavelength-specific)
for incorporation into an ultra-compact chemical sensing system.

An advantage of PIC-based sensors that place the sensing waveguide entirely within
the laser cavity is the potential to minimize nearly all parasitic feedback by more effectively
isolating the laser cavity on the chip. Given an ultra-low-noise electrical driver, the lasers
illustrated in Figure 4a–c should be extremely stable because virtually all feedback from
external optical elements is eliminated. While external light can, in principle, be injected
into the laser cavity via ridge processing imperfections or even interactions with the analyte,
those sources should be entirely negligible compared to the nearly inevitable feedback,
due to external reflection of light emitted at a facet back into the cavity in the absence of
an optical isolator. On the other hand, the more general flexibility of this laser design for
incorporation into a PIC, intended for a function extending beyond intracavity chemical
sensing, is severely limited by the absence of an output beam.

In practice, we can trade output power from the on-chip laser against stability by
adjusting the fraction of light coupled out during each pass through the laser cavity.
For example, when relatively little power is needed, we can increase the reflectivity of
the output facet, say, to ≈ 90%. Low mirror loss provides the further advantage of lower
threshold current and drive power, especially if the cavity length is also shortened as
will be discussed further. In principle, the most straightforward approach to increasing
the reflectivity at a facet, while still allowing output, is to deposit a multi-layer Bragg
dielectric coating. However, such coatings are typically expensive and challenging to
process, especially at longer wavelengths, where each layer becomes proportionally thicker.
Alternatively, the reflectivity of a DBR end mirror that couples to a passive waveguide can
be adjusted for optimal trade-off between laser stability and output power.

A more flexible way to tune the laser output per pass through the cavity is to evanes-
cently out-couple the light laterally, to a second (passive) waveguide that runs parallel to
the active gain waveguide over some section of the cavity [14]. Figure 7 illustrates that
once a desired fraction of the beam has coupled into the passive waveguide, it can bend
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away from the primary waveguide and proceed either toward a facet for emission from
the chip (as shown in the figure), or elsewhere on the chip for functionality within the PIC.
In the former case, the facet at which light is emitted may be AR coated, and the passive
waveguide may intersect at an angle to further minimize the potential for reflection back
into the laser cavity. Alternatively, the output waveguide may retain the full laser structure
with top contact, which is then forward biased for amplification of the output signal.
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Figure 7. (a) Schematic showing light extraction from a laser cavity via evanescent coupling to a passive waveguide that runs
parallel to a section of the active gain waveguide; (b) detailed cross-section of the two waveguides at the HR-coated facet.

The space between the two coupled waveguides should be filled with a low-loss
dielectric, such as SiN, and the top of the passive waveguide’s coupling section covered
by a dielectric to minimize optical loss due to modal overlap with the laser’s top contact
metal. The coupling strength between the active and output waveguides may be tuned
broadly by varying their separation distance (e.g., ≈ 0.3 to 2 µm), the etch depth in the
region separating them, and/or the length over which they run in parallel. Simulations for
an ICL emitting at λ = 3.5 µm indicate that if both waveguides are 5 µm wide, are separated
by 500 nm, and the coupling length is 19 µm with no etch of the region separating them,
≈ 27% of the light transfers per pass from the active to the passive waveguide [14].

Lateral out-coupling can provide light for the PIC or external emission from a laser
whose cavity is terminated on both ends by cleaved HR-coated facets, as shown in
Figure 7. Alternatively, the cavity can curve, as shown in Figure 8, such that a single
HR-coated cleaved facet provides both end mirrors.
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We emphasize that the threshold drive power for a laser with any of the cavity designs,
shown in Figures 7 and 8 (or Figure 4), can be extremely small, even lower than the record
mid-IR value of 29 mW already reported for an ICL [20]. With minimal mirror loss, because
the cavity is defined by two HR-coated facets, Lcav can be shortened beyond the usual
limit of ≈ 0.5 mm. While the minimum practical length that a thinned GaSb-based device
structure can be cleaved with high yield using conventional methods is also ≈ 0.5 mm
(potentially shorter if at least one end mirror is an etched facet or DBR), the configuration
in Figure 8 makes a shorter length straightforward, with an ultimate limit imposed by
bending loss. If the active gain length is reduced only modestly to 0.3 mm, along with a
ridge width of 4 µm, current density (slightly above threshold) 250 A/cm2, and threshold
voltage 3 V, with a power budget of <10 mW per laser, is quite realistic [14]. Such low drive
power can easily be supplied by a small solar cell. A further advantage of the very short
cavity is that with greater spacing between the longitudinal optical modes, emission in a
single mode may become possible without any need to pattern a DFB grating.

Terminating both ends of the laser cavity at the same HR-coated facet may be especially
beneficial in PICs that integrate multiple lasers, which are mounted epitaxial-side-down for
maximum heat dissipation, on the same chip with multiple passive sensing waveguides
that must be exposed to ambient. Figure 9 illustrates that it can be straightforward to design
the PIC such that the lasers are grouped at one end for flip-chip bonding to a thermal
submount, while the sensing waveguides are grouped at the other end that hangs over
the edge of the submount for exposure to ambient. We also note, however, that an ICL’s
threshold input power density is low enough that it can generally operate cw at room
temperature even when mounted epi-up, only with lower maximum output power than
for epi-down mounting.
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5. Integration of the Optical Components on a Sensing PIC

Once the laser output has coupled to a passive waveguide, which may have an
air top cladding, as in Figure 4a,b for evanescent coupling to an ambient sample gas,
absorption spectroscopy can be implemented to sense the presence of analyte molecules.
The other end of the passive waveguide can then couple to an ICD that resides on the same
chip, as illustrated in Figure 10. The optimal waveguide length that maximizes detection
sensitivity depends on such factors as absorption strength by the analyte, parasitic loss in
the passive waveguide, and of course laser stability. Note also that, instead of using current
or temperature to scan the laser’s emission wavelength across an analyte absorption feature,
the same PIC may integrate multiple sensors operating at both fingerprint absorption
feature and reference wavelengths.
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Figure 10. (a) Schematic of an ICL with lateral out-coupling, extended passive sensing waveguide, and interband cascade
detector integrated on the same III-V chip; (b) detail of the passive waveguide leading to the ICD.

Instead of a simple passive waveguide that may follow a straight or meandering path,
the sensing waveguide may also take the form of a high-Q resonator (with exposed top
surface) that allows many passes of the beam. Figure 11 illustrates that a single ICL may
emit into a passive bus waveguide that couples to a series of ring resonators [40]. Each ring
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in the series selectively extracts its own comb of resonance wavelengths from the bus,
to determine the spectral dependence of the absorption. Each ring in turn couples to an
ICD that quantifies the signal. Coupling to the resonators may be increased by shaping the
rings as racetracks rather than circles.
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We have found that for ICLs processed on the native GaSb substrate, the bending loss
may be too large to maintain high Q if the ring diameter is substantially less than 100 µm.
This diameter corresponds to a free spectral range (FSR) between resonances of ≈ 2.5 cm−1,
meaning that one ring at a time could select a narrow emission line from a temperature- or
current-tuned DFB laser, but could not select a single narrow range of wavelengths from
a broadband source such as an ICLED. Since the bending loss from sidewall scattering
would be lower for a PIC processed on silicon rather than GaSb, a silicon ring could have a
smaller diameter and larger FSR.

Alternatively, a passive waveguide section within a laser cavity, e.g., defined on both
ends by HR-coated cleaved facets as in Figure 4b, may couple to a single ring (or two rings
with slightly different diameters), which in turn couples evanescently to a separate passive
waveguide that leads to an ICD. While the laser may employ a DFB or DBR grating to
induce lasing in a single mode, in which case the ring resonance must be tuned to coincide
with the laser wavelength, this is generally unnecessary because, with proper design,
the double ring resonance will select a single longitudinal lasing mode [47]. The ring’s
resonance wavelength can then be tuned with local temperature.

Recent reports of ICL frequency combs [32,33,48] have demonstrated their potential
for sensitive chemical detection. While the physics of ICL combs is not yet well understood,
and in many cases the comb linewidth is not sufficiently narrow for practical applica-
tions [49,50], we expect these issues to be resolved by research aimed at systematically
minimizing the group velocity dispersion and optimizing the device structure for comb
operation. Dual-comb spectroscopy offers a combination of high spectral resolution over
a broad spectral bandwidth with very short acquisition time on the order of millisec-
onds [33,51]. A fast detector observes the multi-heterodyne beating of two combs with
slightly different teeth spacings (determined by the cavity lengths), from which the IR
laser spectrum is mapped into the RF frequency domain where it is more easily measured.
The cavities of passively mode-locked ICL combs are subdivided into individually con-
tacted gain and saturable absorber (SA) sections, which are separated by a non-contacted
gap. This represents a straightforward modification of the cavity geometries illustrated in
Figures 7 and 8.

Figure 12a illustrates that a fully-integrated on-chip dual-comb spectrometer can be
realized by integrating two ICL frequency combs (in which the spacing may be adjusted
by tuning the pump current in the gain section as well as reverse bias on the SA section)
on the same PIC with an extended passive sensing waveguide and an ICD with GHz
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cut-off frequency. The beam from one comb interrogates the sample gas before detection
by the high-speed ICD. The other comb provides the local oscillator (LO) reference beam,
which proceeds directly to the ICD via a passive waveguide so short that, even without
encapsulation, the sample gas has negligible effect on its power input to the detector.
An RF spectrum analyzer then receives the combined signals. In order to resolve the RF
heterodyne beating, it is fortunate that ICDs with active areas small enough to minimize
capacitance have displayed 3-dB bandwidths >> 1 GHz [31,33]. Because each stage of
the ICD is thin enough to make the transit time quite short, a reduction in the RC time
constant is sufficient for this purpose. Of course, laser stability also plays a critical role in
the detection sensitivity [33].

Figure 12b illustrates that the two inputs to the ICD may evanescently couple laterally
from opposite ends, although both inputs may alternatively combine at a Y-Junction,
which is then inputted to the ICD. The passive waveguide sections running parallel to
the ICD should be long enough for high QE and terminated in a manner that minimizes
unwanted reflections back into the lasers. Because the lasers in the figure have both
end mirrors terminating at the same HR-coated facet, both can occupy the same end
of the chip as the ICD while the passive sensing waveguide resides at the other end.
Therefore, both frequency comb ICLs can be mounted epitaxial side down while the
sensing waveguide hangs over the edge of the mount to allow evanescent coupling of its
top surface to the ambient sample gas (as in Figure 9). It is also worth noting that this
cannot be accomplished using DBRs to terminate the cavities at the output ends of the two
lasers, since the comb bandwidth would then be limited to the DBR stopband.
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Figure 12. (a) On-chip dual-comb spectrometer, in which both facets of both frequency comb ICLs terminate at the same
HR-coated facet. Lateral output from the first comb couples to an extended passive sensing waveguide before input to the
ICD, while output from the local oscillator comb transfers directly to the same ICD; (b) detail showing both inputs coupling
evanescently to opposite ends of the ICD.

The on-chip dual-comb spectrometer may also incorporate a DFB ICL seed laser,
emitting at a single frequency near the center of the comb gain spectrum, to lock the
frequencies of the two low-noise combs. For example, it could reside between the two
combs illustrated in Figure 12, with both ends of its curved cavity also terminating at the
HR-coated facet.

6. Practical Considerations

In general, an ICL incorporated into a PIC should perform quite similarly to stand-
alone devices (e.g., see [18]) that are configured and processed similarly. Our simulations
indicate that, even when the layer design is modified to make the bottom SCL thicker and
the top SCL thinner, to promote efficient out-coupling to a passive waveguide, the effect on
laser performance is relatively modest. For most of the configurations discussed above,
an HR-coated facet defines at least one end of the cavity as in a conventional ICL. If butt-
coupling to a passive waveguide defines the other end and no additional elements are
integrated into the cavity, the mirror loss and laser operation are quite analogous to those of
standard ICLs with output mirrors defined by uncoated or AR-coated facets. If both ends
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are defined by HR-coated facets, as in Figure 8, the threshold current density and drive
power are likely to be lower due to the lower mirror loss. ICLs with a sensing waveguide
incorporated into the cavity will experience a trade-off between lower sensitivity when the
sensing section is short, against higher loss and lower laser efficiency when it is lengthened.
Similarly, the designs that couple light laterally to an output waveguide must trade greater
isolation from potential external feedback when the out-coupling per pass is weak, against
higher laser efficiency when it is stronger.

It was mentioned above that the mode overlap, for coupling the beam propagating
in a passive sensing waveguide to an ambient sample gas, is relatively weak. Therefore,
it may be advantageous to structure the waveguide so as to provide more coupling than
the simple top hats of Figure 2. For example, a slot with sub-wavelength dimensions along
the lateral (stronger TE coupling) [52] or vertical (stronger TM coupling) [53] waveguide
axis can substantially enhance the modal overlap. A related approach is to pattern a
subwavelength-scale grating along the longitudinal axis [54,55], which, besides enhancing
the coupling, also slows the light propagation at frequencies near the band edge of the
1D photonic crystal. Of course, such structures can be challenging to process in III-V
materials (a potential advantage of Si PICs), even at the longer mid-IR dimensions, and the
additional loss due to scattering by sidewall nonuniformities may potentially outweigh
the theoretical advantages [56]. Plasmonic nanostructures and photonic crystals can also
enhance the coupling to ambient [57,58], with surface plasmon modes in a heavily doped
semiconductor [59] possibly providing lower mid-IR absorption loss than a plasmonic
structure patterned into a deposited metal. A photonic crystal silicon waveguide was
recently reported to yield the sub-parts-per-million detection of ethanol at λ = 3.47 µm,
although in that demonstration the ICL source and InSb detector resided off-chip [60].

It may also be possible to enhance the detection sensitivity by coating the top and
sides of the waveguide with a sorbent that selectively interacts with and concentrates
a given class of chemicals, which diffuse into the sorbent layer. This can increase the
molecular concentration, and hence the detection sensitivity to a given chemical by orders
of magnitude [61–63].

A further alternative is to incorporate a free space sensing area into the PIC, which
provides full modal overlap with the sample gas. This approach has the obvious disadvan-
tage of weak coupling into the detector due to diffraction following free space propagation
over any appreciable path length. A possible solution is to incorporate a hollow-core
waveguide that provides flow of the sample gas [64]. While single-mode propagation
may be challenging to realize in practice, the hollow waveguide should nonetheless trap
and direct the beam over some extended distance before losses substantially dissipate its
intensity.

Note that the PIC can spectroscopically probe a narrow analyte fingerprint absorption
line in multiple ways. These include tuning the wavelength of a single-mode laser source
(most commonly by current or temperature, although a broader range may be attainable
with a sampled grating [65] or related configuration), tuning the resonance of a resonator
sensing waveguide, such as a ring (by temperature), tuning the wavelength of an in-
plane resonant cavity detector (by temperature), separating the spectral components of a
broadband signal (e.g., using an AWG), integrating multiple sensors operating at different
absorption and reference wavelengths on the same chip, or dual-comb spectroscopy with
multi-heterodyne detection. The latter may ultimately offer the most attractive combination
of broad spectral bandwidth, short acquisition time, and low drive power consumption.
Note also that, when more than one of these methods provides a narrow or comb-like
spectral response (e.g., a single mode laser combined with a ring resonator sensor and/or
resonant cavity detector), the multiple resonance wavelengths must be matched by careful
design and calibration, or independent tuning (probably with temperature) of the different
components.

We emphasize again that, while ICL-based PICs integrated on the native III-V substrate
were assumed as the default in most of the preceding discussions and analyses, all of
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the same architectures may also be applied to QCLs for the coverage of spectral bands
extending far beyond the mid-IR (i.e., LWIR out to THz). A primary difference, however,
is that thermal management becomes much more critical. QCLs require much more
input power just to reach threshold, whereas even an epitaxial-side-up mounted ICL can
often operate in cw mode. Additionally, whereas integration on silicon rather than the
native GaSb or InP substrate requires additional processing steps, it can offer more mature
processing of gratings and high-resolution nanoscale structures, along with the potential to
combine sensors operating in multiple spectral bands on the same chip [22–24].

7. Conclusions

The preceding sections have presented a framework for constructing ICL-based PICs
on the native GaSb substrate. Following the redistribution of the separate confinement
layer thicknesses to make the bottom SCL thicker, the same MBE-grown wafer material
becomes suitable for integrating interband cascade lasers, interband cascade detectors,
and connecting passive waveguides on the same chip. For chemical sensing, the tops and
sides of the passive waveguides can be exposed to ambient to provide evanescent coupling
to a sample gas.

Some configurations incorporate the sensing waveguide into the laser, which allows
both ends of the cavity to be defined by HR-coated facets for low mirror loss and isolation
from external feedback. Absorption by the analyte can then be detected by monitoring the
laser’s compliance voltage, or by incorporating an ICD into the same cavity.

We also described a laser configuration that extracts light by lateral evanescently
coupling to a passive waveguide. This again allows both ends of the laser cavity to be
defined by HR-coated facets and provides the incremental adjustment of the coupling
efficiency per pass. Stronger coupling gives higher output power and wall-plug efficiency,
whereas weaker coupling provides optimal laser stability when relatively modest power
is required for sensing. It is well known that fluctuations associated with external optical
feedback can be a major source of instability in conventional edge-emitting semiconductor
lasers. A further advantage of the lateral power extraction is that both ends of the laser
cavity can be terminated at the same HR-coated facet. This adds considerable flexibility to
the PIC layout, which can, e.g., group one or more lasers at one end of the chip, which may
be mounted epitaxial-side-down, while one or more sensing waveguides are exposed to
ambient at the other end. Laser cavities with lateral extraction and termination on both
ends by HR-coated facets may also operate at lower drive powers than has been possible
up to now, since a very short cavity would no longer induce excessive mirror loss.

We finally discussed configurations that integrate a laterally-out-coupled ICL, passive
sensing waveguide, and ICD on the same PIC. The ICD’s sensitivity specific detectivity D*
may be enhanced by incorporating it into a resonant cavity defined by DBRs. A particularly
promising prospect is dual-comb spectroscopy on an ultra-compact chip, with broad and
rapid spectral coverage, combined with low drive power.

Assuming that mature designs and high-yield processing procedures can be devel-
oped, chemical detection PICs will be suitable for mass-producing hundreds of devices
on the same chip in a standard cleanroom. Reference [66] reviews the relatively advanced
status of InP-based photonic integrated circuits operating at shorter wavelengths in the near
IR, which can now combine numerous optical elements on a chip. Although GaSb-based
PICs and GaSb-based device fabrication, in general, are much less mature [67], the simplest
on-chip sensing configurations described above do not require methods especially more
challenging than those already used routinely to process shortwave-IR and mid-IR lasers
and detectors on GaSb. After patterning a large number of PICs on a die, individual sen-
sors can be singulated to form a package that is both extremely compact and inexpensive.
Lasers, detectors, and passive waveguides can also be integrated into more complex PICs
that incorporate other components for enhanced capabilities, such as the multi-heterodyne
detection of an off-chip signal [68]. While the relevant fabrication protocols have yet to be
developed, they appear quite feasible as an extension of current capabilities.
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Since interband cascade photovoltaic devices have been demonstrated, there is even
the potential for integrating a solar cell power source on the same PIC with the light source,
passive sensing waveguide, and ICD, to provide an even more complete stand-alone
chemical detection package. While such a power source is unlikely to provide enough
current to reach the ICL lasing threshold, it may at least be sufficient to drive a broadband
ICLED.
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