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ABSTRACT: Free-energy calculations based on atomistic Hamil-
tonians and sampling are key to a first-principles understanding of
biomolecular processes, material properties, and macromolecular
chemistry. Here, we generalize the free-energy perturbation method
and derive nonlinear Hamiltonian transformation sequences yielding
free-energy estimates with minimal mean squared error with respect
to the exact values. Our variational approach applies to finite sampling
and holds for any finite number of intermediate states. We show that
our sequences are also optimal for the Bennett acceptance ratio
(BAR) method, thereby generalizing BAR to small sampling sizes and non-Gaussian error distributions.

1. INTRODUCTION

Free-energy calculations provide essential insights into
numerous physical and biochemical systems. Examples range
from predicting binding processes of biomolecules for drug
design1−3 to determining thermodynamic properties of
crystalline materials.4,5 For large and complex systems with
slow relaxation rates and typically 105 to 107 particles, only
limited accuracy is achieved,6 despite substantial methodo-
logical progress7−10 and immense computational effort. In
addition to force field inaccuracies, insufficient sampling is the
main bottleneck.11 Within a generalized framework connecting
two of the most established methods, free-energy perturbation
(FEP)12 and the Bennett acceptance ratio method (BAR),13

with the latter generally considered the more accurate one,14

we here will develop and evaluate a variational approach for
optimal sampling that minimizes the error due to limited
sampling.
Given the Hamiltonians H1(x) and HN(x) of two states 1

and N, where x ∈ 3M denotes the position of allM particles of
the simulation system, the free-energy difference ΔG1,N
between these states is given by the Zwanzig formula12
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where ⟨⟩1 denotes an ensemble average defined by H1(x),
which is approximated by averaging over a finite sample of size
n obtained from atomistic simulations or Monte Carlo
sampling. For ease of notation, all energies are expressed in
units of kBT.
Alchemical transformations substantially reduce errors in the

free-energy estimates15,16 by introducing N − 2 intermediate
states s and accumulating small free-energy differences between
all adjacent states s and s + 1,
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Using the Zwanzig formula between s and s + 1, this
technique is referred to as FEP. The same approach is also
employed in other fields, for example in the context of
Bayesian statistics, where the plausibility of two different
models is compared by calculating their marginal likelihood
ratio.17,18

The most common interpolation scheme for the inter-
mediate states is along a path variable λ.

H H Hx x x( ) (1 ) ( , ) ( , ), 0, 1s s s s N s s1λ λ λ λ λ= − + ∈ [ ]
(3)

Figure 1(a) shows, as a simple example, a linear
interpolation between two one-dimensional Hamiltonians
H1(x) and HN=9(x). In the case of soft-core potentials,19−21 a
nonlinear dependence of the end states H1(x, λ) and HN(x, λ)
on λ is introduced under the requirement that H1(x, λ =
0) =H1(x) and HN(x, λ = 1) = HN(x). In this context, finding
better sequences of Hamiltonians by optimizing the distribu-
tion of λ points for a given form of a sequence or pathway has
been attempted.22

Even though there is some freedom in the construction of
these transformation sequences, eq 3 describes only a very
small subset of all possible sequences of intermediate states
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and, in this sense, is not the most general. Specifically, the
terms containing the information and parameters of the two
different end states are always combined in an additive manner,
and for example, any definition of intermediate Hamiltonians
Hs(x) that would involve cross terms of the form f(H1(x, λ) ·
HN(x, λ)) would not be possible with the definition of eq 3.
Therefore, a number of alternative approaches that modify

eq 3 have been developed. For example, an empirical potential
has been proposed in the enveloping distribution sampling
(EDS) method23,24 that interpolates between the configuration
space densities (rather than the Hamiltonians) of two or
several end states and is, as we will find, remarkably close to
the optimal solution for a single intermediate state.
Furthermore, a continuous path between two such end

states, which optimizes the variance for thermodynamic
integration (TI),25 i.e., the minimum variance path (MVP),
was first derived by Blondel,26 and later through a different
formalism by Pham and Shirts,27 based on the results from the
statistical sciences by Gelman and Meng.17

Here, we will generalize this interpolation scheme for FEP
and BAR. Specifically, we ask which sequence H2(x)...
HN−1(x), among all possible sequences of higher order
functions {Hs[H1(x), HN(x)]} that map two functions onto
functions Hs (with s = 2, ..., N − 1), yields on average the
smallest mean squared error (MSE)

G G GMSE( ) ( )n n( ) ( ) 2Δ = [ Δ − Δ ] (4)

of the free-energy estimate ΔG(n) obtained through finite
sampling with n sample points with respect to the exact free-
energy difference ΔG. Figure 1(b) and (c) show such a general
interpolation sequence, which we refer to as the variationally
derived intermediates (VI) method.
Our approach differs from previous approaches in that here

we optimize the full MSE. Because the MSE can be
decomposed into the sum of variance, [([ΔG(n)] −
ΔG(n))2], and squared bias, ([ΔG−ΔG(n)])2, analyzing and
optimizing these two terms separately has been attemp-
ted.14,27−29 For the MVP in the context of TI, continuous
sampling along the path variable λ is assumed; for practical
applications, however, discrete integration is preferred, which
implies an additional bias that is difficult to assess and,
therefore, not included within the optimization. As we will find,
optimizing the sum of both variance and bias yields a
conceptually improved result.

2. THEORY
2.1. Optimal Mean Squared Error Sequence of

Intermediates for Free-Energy Perturbation. To solve
the above variational problem and to find the optimal sequence
of Hs, we consider the FEP scheme displayed in Figure 2(a) as

one of several possible implementations of eq 2 using eq 1. In
this particular variant, which is symmetric with respect to the
exchange of the two end states to avoid hysteresis effects,
sample points are solely drawn from the odd-numbered
sampling states, indicated by the solid lines in Figures 1 and 2.
The even-numbered states serve as virtual target states (dashed
lines), similar to, for example, the overlap sampling method.30

From the sum of the individual perturbation steps, the average
MSE of this scheme is
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As in Figure 2, the arrows point from sampling to target states.
Assuming for each sample state s a set of n independent

sample points {xi}, drawn from p e Zx( ) /s
H

s
x( )s= − , with

partition function Zs, the terms arising from expanding eq 5
will be considered one by one.

Figure 1. Sequences of intermediates between a harmonic potential
H x bx( )1

1
2

2= + and a quartic potential H9(x) = (x − x0)
4 + c (thick

lines), where b and c have been determined such that Z1 = Z9 = 1, i.e.,
ΔG1,9 = 0. Sampling states are described by odd-numbered
Hamiltonians (solid lines) and virtual target states by even-numbered
ones (dashed lines). (a) A linear interpolation between H1(x) and
H9(x). For better visualization, the intermediates are vertically offset
to align the minima. (b) Intermediate Hamiltonians and (c) resulting
configuration space densities of VI. The yellow area highlights the
configuration space density overlap K between states 1 and 9. Figure 2. Two schemes of free-energy calculation. Yellow dots

represent sample sets in the respective potential; arrows indicate the
evaluation of differences ΔH(x) between adjacent Hamiltonians.
Free-energy differences are either determined by (a) FEP or by (b)
BAR with multiple steps. Both schemes give identical results at the
stated conditions.
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Because the exact free-energy difference is a constant,

G GN N1, 1,[Δ ] = Δ (7)

For the linear term, the average over all sample realizations
reads
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and for the quadratic term
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Similar expressions are obtained for ΔGs+2→s+1
(n) . The exact

free-energy differences are

G p x xln e ( ) ds s
H H

s
x x

, 1
( ( ) ( ))s s1∫Δ = −+

− −+
(10)

For shifted Hamiltonians Hs′(x) = Hs(x) − Cs and Hs+1′ (x) =
Hs+1(x) − Cs+1, eq 1 yields

G G C Cs s
n

s s
n

s s( 1)
( )

1
( )

1Δ = Δ − +′→ + ′ → + + (11)

which also holds for the exact value ΔG1′,N′. The offsets on the
right-hand side of eq 11 cancel out when calculating the MSE
of eq 5. By choosing Cs and Cs+1 such that the term in the
logarithm of eqs 8 and 9 is close to one, and thus all ΔGs′→(s+1)′

(n)

values are small with respect to kBT = 1, the first order
expansion of the logarithm allows the integrals to be factorized.
Therefore
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n H H
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For the shifted Hamiltonians, the same expansion can be
applied to the exact free-energy difference of eq 10. Therefore,
eq 12 reduces to

G Gs s
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, 1[Δ ] = Δ′→ + ′ ′ ′+ (13)

The configuration space densities of the shifted and the
initial Hamiltonians are identical; in other words

p px
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Note that the underlying assumption that the same offsets Cs
and Cs+1 can be used to enable the series expansion of the exact
and estimated free-energy differences. This assumption, as we
will later find, holds for the vast majority of cases but may
break down in the case of very few sample points and very low-

configuration space density overlap between the two
neighboring states.
For the cross terms in eq 6, note that the estimated free-

energy differences of the individual steps are based on
uncorrelated sample sets. Therefore
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for (s′ → t′) ≠ (u′ → v′). Expanding eq 9 yields
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Using eq 15, all expressions from the cross terms only
depend on exact free-energy differences. By summarizing these
terms by fs′, eq 16 can be written as
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Inserting eqs 13 and 17 into eq 5 gives the following:
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where gs′ again denotes an expression that only depends on
exact free-energy differences and thus is dropped for the
optimization below.

3. RESULTS AND DISCUSSION
3.1. Optimal Sequence. With these expressions, the

variational problem can be solved analytically. For the odd-
numbered states s, the variation of the MSE(ΔG1,N

(n)) from eq
18 is

( )H
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which yields

H x( )
1
2

ln(e e )s
H C H Cx x2( ( ) ) 2( ( ) )s s s s1 1 1 1= − +− − − −− − + +

(20)

where Zs = ∫ e−Hs(x) dx is the (finite) partition sum and ν is a
Lagrange multiplier.
Similarly, for the even-numbered states

H x( ) ln(e e )s
H C H Cx x( ) ( )s s s s1 1 1 1= +− −− − + + (21)

An additive term Cs in eqs 20 and 21 was omitted, as it
cancels in ΔGs−1→s

(n) − ΔGs+1→s
(n) . The result is a set of equations

for all states s for which each Hamiltonian Hs(x) depends only
on the two adjacent states. The initial requirement for small
ΔGs′→(s+1)′

(n) is fulfilled by setting Cs = −ln Zs because, in this
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case, all Zs′ are 1. Rearranging the terms for odd-numbered s
gives

r re e eH H
s s

H
s s

x x x2 ( ) 2 ( )
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2 2 ( )
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2s s s1 1= · + ·− −
−

− −
+

−− + (22)

For the virtual target states (i.e., even-numbered s), rearranging
yields

r re e eH H
s s

H
s s

x x x( ) ( )
1,

( )
1,

s s s1 1= · + ·− +
− + (23)

with rs,t = Zs/Zt.
Equations 22 and 23 are the first main result of this article;

they define the sequence of Hamiltonians yielding the best
MSE for FEP free-energy calculations.
3.2. Generalization of BAR. The second main result is

that eq 21 serves to generalize the BAR formula. To see this,
consider eq 21 for N = 3, i.e., with one intermediate target
state. Applied to the two involved free-energy differences, the
Zwanzig formula yields

G G Gn n n
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1 2
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3 2
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ln e ) ln e )H H H Hx x x x( ) ( )
1
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Inserting eq 21 as the target state Hamiltonian H2(x) yields
the BAR formula
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with C = C3 − C1.
Notably, the above derivation yields the more general result

that eq 26 also provides the best MSE free-energy estimate for
finite and small n, even down to n = 1, given sufficient
configuration space density overlap between adjacent states,
which is fulfilled, for instance, in the limit of many
intermediates. In contrast, because the derivation by Bennett13

strictly holds only for infinite sampling, so far, n was required
to be large, and proper convergence had to be assumed.
Furthermore, in the original derivation,13 the error distribution
of the free-energy estimates had to be assumed to be Gaussian,
which in our above result is also not required. While it has
been known that BAR yields the lowest variance out of the
asymptotically unbiased estimators,31 the above derivation
shows that this also holds for the MSE at finite n and that BAR
is the best out of all estimators, including, in addition, the
asymptotically biased ones. In the context of the overlap
sampling method,15,16,30,32,33 it has been shown that a virtual
FEP intermediate can be defined that yields the weighting
function from Bennett’s derivation; the above results prove
that this intermediate is indeed optimal for the FEP scheme.
Note that, in the extreme case of small configuration space
density overlap and very few sample points, the average
deviation between the series expansions of the exact and the
estimated expressions of eq 12 can become too large, in which
case our approach may miss the absolute optimum, and
therefore, a better solution may exist. However, as we will see
later in the context of Figure 6, the VI result yields a better
MSE than all other approaches that we assessed, even for small
n at small configuration space density overlaps between the
end states.
The third main result is that the optimal intermediates for

FEP are also optimal for BAR. To see this, consider again eqs
22 and 23, which optimal FEP intermediates for any (odd)

number N − 2 of intermediate states. As was shown in the
derivation of eq 26, using the intermediate of eq 23 with FEP
between two sampling states is equivalent to using BAR
between these two. Applied recursively to many states, and as
illustrated in Figure 2, the Ñ = (N + 1)/2 sampling states from
any sequence of N FEP-optimal Hamiltonians {Hs(x)} are also
optimal for BAR with multiple states, where, so far, states have
mostly been used in the form described in eq 3. The governing
system of equations for BAR with multiple states is obtained by
replacing Hs−1(x) and Hs+1(x) in eq 22 with the expression of
eq 23, which for odd s yields

r re (e e ) (e e )H H
s s

H H
s s

Hx x x x x2 ( ) ( )
2,

( ) 2 ( )
2,

( ) 2s s s s s2 2= + + +−
−

−
+

−− +

(27)

Here, the sampling states are now coupled directly, and only
knowledge of the partition sum ratios between these is
required. Solving the system of equations of eq 27 for all
sampling states yields the intermediates with optimal MSE for
BAR. Conversely, for the setup of one sampling state between
two given target end states 1 and 3, eq 20 recovers the EDS
potential when using a factor of 2 in the exponent of ref 24. In
summary, both BAR and EDS are special cases of, or
approximations to, our more general variational VI result
that also requires fewer assumptions.
To solve eqs 22 and 23 for the optimal FEP intermediate

Hamiltonians Hs(x), or alternatively eq 27, to directly obtain
the optimal BAR intermediates, respectively, note that the
unknown free-energy differences ΔGs,t = −ln rs,t are part of the
equations that, therefore, have to be solved iteratively. With an
initial guess for all rs,t, the set of equations is solved in a point-
wise fashion for any given x. After sampling all odd-numbered
states, the rs,t values are updated iteratively such that the
sequence of intermediate states converges toward the
optimum. This iteration converges to the optimal result
because both the estimates as well as the linear approximation
of the series expansion in eq 12 converge simultaneously. For a
typical biomolecular many-body system, the additional
computational effort is small compared to computing H1(x)
and HN(x).
For the above illustrative example, Figure 1(b) and (c)

shows the optimized Hamiltonians and the configuration space
densities, respectively, of the converged sequence of inter-
mediate states. To this end, initial values of rs,t = 1 were used,
and eqs 22 and 23 were iterated until convergence, using
numerical integration over x and updating the rs,t value during
the process. Unlike the linear interpolations shown in Figure
1(a), the VI sequence leads to a probability density that
gradually decreases in the region of A and increases in the
region of B, while remaining almost constant at the point of
maximum configuration space overlap.

3.3. One-Dimensional Test Case. Figure 3(a) shows the
results of numerical simulations using the one-dimensional test
case shown in Figure 1. Different equilibrium constants x0 (42
different values) are used for HN(x), thereby varying the
configuration space overlaps between the end states, indicated
by the yellow area in Figure 1(b).

K p px x xmin( ( ), ( )) dN1∫=
−∞

∞

(28)

Sets of n = 100 uncorrelated sample points are drawn from
ps(x) through rejection sampling in each of the Ñ = 3 sampling
states. On the basis of these sets, BAR (solid lines) is used to
calculate the free-energy difference between the individual
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states and subsequently between the start and end state. As a
comparison, the dashed lines in Figure 1(a) show the results
using MBAR,31 where the differences in the Hamiltonians for
all states are considered for each sample point. The free-energy
estimate is compared to the exact free-energy difference. For
each K, the MSE, eq 5, is calculated by averaging over 600000
of such realizations.
VI (blue curve) yields the smallest MSD for all K, compared

to both the first linear interpolation variant (light green) using
a linearly spaced 2

1
2

λ = , such as in a typical free-energy

calculation, and even compared to the second variant (dark
green) using the empirically determined λ2 value that yields the
best MSE that can be achieved by linear interpolation. To
obtain the latter, we loop over the allowed range between zero
and one in steps of 0.01. To reliably calculate the MSD with
respect to the exact value, for each λ2, 150000 free-energy
estimates are calculated. Once the lowest MSE λ2 value is
determined, the corresponding MSD is calculated once again
using 600000 realizations. The procedure is repeated for each
value of K. We note that the λ2 value yielding the best MSE
varies for different K values and is inaccessible in practice for
high-dimensional systems.
The largest improvements of VI are seen for small

configuration space density overlaps that notoriously cause
the largest uncertainties. Also for MBAR,31 shown by the
dashed lines in Figure 3(a), VI gives the better MSE than the

linear intermediates. Figure 3(b) shows how the MSE of VI
improves with increasing numbers of states Ñ, keeping the
total number of sample points, and hence the total computa-
tional effort, constant. For this example, the MSE increases up
to Ñ = 5, beyond which no further improvement appears.
3.4. Approximated Sequence and Comparisons. In

the above VI scheme, eqs 22 and 23 connect all intermediates

and, therefore, cannot be solved efficiently in a straightforward
way for many-particle systems. To overcome this limitation, we
propose and assess two approximations that will yield
analytical expressions for Hs, which can be used even in
large-scale simulations. The first approximation is to switch to
a hierarchical solution for the VI scheme. In a first step, the
sampling state in the middle of the sequence, ĤÑ/2, is
determined as the optimal state between H1 and HÑ using eq
22. In the next step, ĤÑ/4 is determined as the optimal state
between H1 and ĤÑ/2, Ĥ3Ñ/4 between ĤÑ/2 and HÑ, and so on.
The hat above the Hamiltonian indicates the approximated
form.
The second approximation is that only the sampling states

are coupled using eq 22, and no virtual states are used.
Therefore, while still using BAR between two adjacent
sampling states, the states are optimized as if the Zwanzig
formula, i.e., eq 1, was used to calculate the free-energy
difference between them.
Using these two approximations, an analytical result for the

sequence of intermediate states is obtained

H x( )
1
2

ln (1 )e es s
H

s
H Cx x2 ( ) 2( ( ) )N1ζ ζ̂ = − [ − + ]− − −̃

(29)

where all Ĥs(x) are a function of only H1 and HÑ and
ζ≈ [0, 1], and only C = CN − C1 ≈ ΔG has to be determined
iteratively. Consequently, no other prior knowledge of the
differences between the individual states is required, and
therefore, the sampling simulations for each state can be run in
parallel without communication. Note that these two
approximations introduce a parameter ζs, which is not part
of the exact result, as shown in eqs 22 and 23, and here, it plays
a similar role as the λs parameter in eq 3 for linear
intermediates.
For the one-dimensional example in Figure 1(c), Figure 4

compares the configuration space densities p(x) of the
approximate intermediate Hamiltonians Ĥs(x) (dashed lines)
with those of the optimal Hs(x) (solid lines). As can be seen,
the overall shape is similar.
The approximated VI in eq 29 is similar but not identical to

the form of the MVP. The obvious difference to the

Figure 3. MSEs of free-energy calculations for different overlaps
between the end states, determined numerically for the model
Hamiltonians from Figure 1. For the solid lines, BAR is used between
adjacent sampling states; for the dashed lines, MBAR is used. (a)
Comparison between VI and two variants of linear intermediates: a
linearly spaced λ2 and an empirically optimized λ2 yielding the lowest
MSE. (b) Accuracies for different numbers of VI sampling states for a
given total sampling size.

Figure 4. Comparison between configuration space densities of the
approximated VI sequence, i.e., eq 29 (dashed lines), with that of the
optimal VI sequence (solid lines) for the one-dimensional example
shown in Figure 1(c). For better visualization, the three intermediate
sampling states, s = 3, 5, 7, are shown separately.
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approximated VI is the prefactor in the exponentials (2 and 1/
2). The deeper conceptual difference, as outlined in the
introduction, is that the approximated VI is an approximation
to the sequence that optimizes the MSE and thereby also
accounts for the biases. Furthermore, it is optimized for FEP
and BAR, explicitly considering discrete states with finite
sampling. In contrast, the MVP optimizes the variance for TI
in the large sample limit by assuming independent samples,
continuously drawn along the path variable λ.
Next, we compare both the optimal VI and the

approximated VI to the MVP. Figure 5 shows the results for

different numbers of intermediates states. The same model
system and procedure as the one used to obtain the results for
the comparison to the linear intermediates, shown in Figure 3
and described in section 3.3, is used. Again, for a fair
comparison, the overall number of sample points was kept
constant, i.e., the number of points per state is smaller for a
larger number of intermediates.
As can be seen, for all values of K, the optimal VI yields the

smallest MSEs at all numbers of intermediates. The
approximated VI, which is equivalent to the optimal VI at
ζ = 0.5 when sampling in only one intermediate state (Figure
5(a)), therefore also yields a smaller MSE than both the
midpoint MVP (λ = 0.5, purple) and the MVP with the best
lambda (light red). The latter was again determined
empirically by iterating over all possible lambda values in
steps of 0.01.

Conversely, for 20 states, shown in Figure 5(c), the
approximated VI yields a higher MSE, indicating that, for
increasing numbers of steps, the approximations have a larger
effect. Barring low values of K, similar MSEs are obtained for
both the optimal VI and MVP because for large numbers of
sampling states, FEP and TI become equivalent.
Interestingly, these MSEs are larger than for optimal VI with

5 states, shown in Figure 5(b), suggesting that there is an
optimal number of states. Here, the MVP performs better than
the approximated VI at equidistant spacing, whereas for the
best spacing the respective MSEs are similar. For five states,
the best spacing was obtained by adjusting the λ and ζ values
such that the best fit of the configuration space densities with
optimal VI was obtained, as shown in Figure 4. Through
further variation, we tested if an even better combination of
path variables could be found, which was not the case.
The fact that the approximated VI and the MVP converge to

the optimal solution in opposite cases indicates that they are
limiting cases to the general optimal VI result.
Figure 6 shows how the MSE depends on the number of

sample points. The same procedure as for Figure 5(b) with five

sampling states was used but now with only one equilibrium
distance between the minima of the harmonic and quartic
potential of x0 = 3 (i.e., K ≈ 0.02, see Figure 1). To avoid the
problem of the optimization of a path variable, we compare
only the optimal VI and the MVP with equidistant spacing,
which, in the case of Figure 5(b), yielded similar MSEs as the
MVP with the best spacing.
As can be seen in panel (a), a smaller MSE is achieved by VI

across a broad range of numbers of sample points. The ratio of
the MSEs of both methods, Figure 6(b), is essentially constant,
indicating an overall improvement of about 20−25%, which is
independent of the sample size.
As discussed previously, both the variance and the bias

contribute to the MSE. Surprisingly, we found that, for this
setup, the bias is almost negligible, with the squared bias
contributing less than 1% to the overall MSE for all n.
Therefore, VI also yields a better variance than, despite what

Figure 5. Comparison between the optimal VI, the approximated VI,
and the MVP (minimum variance path)26,27 at different numbers of
sampling states Ñ. (a) One intermediate sampling state. FEP is used
to determine the free-energy difference to the end states. In this case,
the optimal VI equals the midpoint of the approximated VI. (b) Five
sampling states. BAR is used to calculate the free-energy difference
between these 5 states. The overall number of sample points is kept
constant, i.e., the number of samples per state is lower for a higher
number of states. (c) Using 20 sampling states, otherwise the
underlying setup is identical to (b).

Figure 6. Comparison of the achieved accuracy by the minimum
variance path method (MVP) and VI for different numbers of sample
points per state using 5 states. (a) Obtained MSE for both methods
and (b) their respective ratios.
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the name suggests, the minimum variance path by Blondel26

and Pham and Shirts.27 The reason is again that the latter was
optimized under different assumptions and for a different
estimator. However, note that while we have derived the
sequence with the optimal MSE, the magnitude of the
improvement compared to, for example, linearly interpolated
intermediates is system dependent and, as we will see, actually
can be much larger for many-particle systems than for one-
dimensional ones.

4. ATOMISTIC TEST CASES

To compare the MSE of VI with that of established
intermediates, we have performed test simulations for two
atomistic many-particle simulation systems: a Lennard-Jones
gas and a solvated butanol molecule.
4.1. Lennard-Jones Gas. The free-energy difference

between an argon and a helium Lennard-Jones (LJ) gas with
M = 20 atoms was calculated. A reference free-energy
difference was determined by conducting a long simulation
with each method using 12 states with linearly spaced λs values
for both the linear intermediates and the approximated VI
sequence and with computation runs of 10 μs in each state. At
this length, the relative difference of the estimates between the
two methods is below 10−5 (ΔG = 0.23252kBT). Using this
reference value, the MSE with a distribution of 800 free-energy
differences, determined with only five intermediates depending
on the simulation time in each state, was calculated.
In each state, the atoms were placed at random positions

without overlap inside a cubic box. The atoms were assigned
velocities drawn from the Boltzmann distribution correspond-
ing to the temperature of T = 298 K. The simulations were
conducted in the NVT ensemble at T = 298 K in a cubic box
using periodic boundary conditions. The volume of the box
was set to (43.5 Å)3, corresponding to a pressure of about 10
bar. The atomic interaction at a distance r between the centers
of two atoms was described through a Lennard-Jones potential:

H r
r r
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(30)

with parameters σ = 3.405 Å, ϵ = 1.0446 kJ/mol and m = 39.95
u for argon and σ = 2.64 Å, ϵ = 0.0906 kJ/mol and m = 4 u for
helium.34

The leapfrog algorithm with a time step of 5 fs was used and
with velocity rescaling at every 20th time step. For both
sequences, the 800 free-energy simulations were carried out
with 1 ns equilibration time and 5 ns production runs in each
state. Five intermediate states, i.e., seven states in total, were
used. In absence of further knowledge, equal spacing of λs and
ζs, i.e, {0, 0.17, 0.33, 0.5, 0.67, 0.83, 1} was used. For the
approximated VI sequence (eq 29), C = 0 was used throughout
the whole simulation. The difference of the Hamiltonians
between adjacent states was recorded at every 200th step. Free-
energy differences were subsequently calculated using BAR.
Figure 7 shows the resulting MSEs. For short simulation

lengths, the MSE improves rapidly. For longer simulation
times, the improvement of VI becomes most pronounced. At
5 ns, VI (green) has a four times lower MSE than the
conventional linear intermediates (red). Conversely, the MSE
achieved by linear intermediates at 5 ns is already obtained at
0.56 ns by VI, which, at this level, thus requires almost 10
times less sampling.

4.2. Charge Decoupling of Butanol. For a last system
closer to biomolecular applications, the approximated VI
intermediates were implemented into GROMACS 2019. We
calculated the solvation free-energy difference between charged
and uncharged butanol (15 atoms) solvated in water (1800
atoms in total). The topology from the SolvationToolkit
package from Bannan et al.35 was used. As for the Lennard-
Jones gas, a reference value was obtained through extensive
simulations, which then was compared to the estimates of a
number of shorter simulations with fewer states. For the
reference value, we used 51 linear intermediates with
equidistant λ states (i.e., Δλ = 0.02) and production runs of
100 ns simulation time in each state, totalling 5.1 μs of
simulation time. Energy values were recorded at every 200th
step. Equilibration of 100 ps at constant volume and 200 ps at
constant pressure with the Parrinello−Rahman barostat36 was
conducted prior to the production runs.
A reference value between the coupled and decoupled

charges of 8.708 ± 0.001 kBT was obtained. Next, simulations
in five different states were carried out with both conventional
linear intermediates and VI using λs and ζs values of 0, 0.25,
0.5, 0.75, and 1, respectively. In each state, five production runs
were each conducted with 100 ns of simulation time, and
smaller portions of the trajectories of different lengths were
used to asses the MSEs as a function of the trajectory length.
For each trajectory length, a free-energy difference estimate
was calculated.
Figure 8 shows the obtained MSE for linear intermediates as

well as for three different VI variants (see Supporting
Information for a table of the MSEs), which differ in the
choice of the initial guess. The MSE of the VI sequence with
the exact estimate (blue) for C in eq 29 is about a factor of 2
better than the linear intermediates (red) at all simulation
lengths, or equivalently, only half the amount of simulation
time is necessary to obtain the same level of the MSE. For an
unrealistically large error in the initial guess C, the MSE of the
VI sequence is larger (green). However, with a more realistic
initial estimate deviating by 1 kBT from the reference value
(yellow), the MSE also improved by about a factor of 2 with
respect to the linear intermediates, barring very long simulation
lengths. Such estimates can, for example, easily be obtained by
linear intermediates with a simulation time of less than 40 ps,
and therefore only a small fraction of the total simulation time,
after which the VI becomes the significantly better option than

Figure 7. An argon LJ gas is morphed into a helium LJ gas. The MSE
with respect to a converged reference value is shown as a function of
the simulation time in each intermediate. It was obtained using linear
intermediates (red) and the approximated VI intermediates (green).
For both, an equal spacing of λ values and ζ values, respectively, has
been used.
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linear intermediates. In addition, the estimate can be further
refined during the simulation process.

5. CONCLUSIONS
Using a variational principle, we have derived a minimum MSE
sequence of intermediate Hamiltonians for free-energy
calculations using FEP and BAR. Our approach differs from
previous ones in that it, first, optimizes the full MSE with
respect to the exact free-energy difference rather than the
variance only (i.e., the precision). Second, it directly optimizes
the sequence of discrete states instead of a two step approach,
where first a continuous TI path is optimized17,26,27 and
subsequently a discrete subset of states is chosen from this
path. Third, it holds for finite sampling and for any number of
intermediate states, thus proving analytically that BAR is also
the optimal MSE estimator for finite sampling.
We assessed the performance of our method using three test

systems. First, a simple one-dimensional model was consid-
ered. Compared to linear interpolations, a marked improve-
ment in the MSEs was observed. Two limiting cases of our
general VI result are notable. In the limit of many steps, the
MSEs of the optimal VI and the MVP17,26,27 are similar. In the
limit of a few steps, an approximated sequence was derived, the
form of which appears similar to MVP but differs in the
exponent by factors of 2 and 1/2. However, for this model, the
smallest overall MSE was achieved for a given computational
effort at a medium number of intermediates (five in our case).
Interestingly, the improvement in the MSE of the optimal VI
compared to the MVP was mainly due to improvements of the
variance; thus, the discretization of the path affects not only
the bias but also the variance.
Next, we considered an argon and a helium LJ gas and,

somewhat closer to real applications for complex biomolecular
systems, the solvation free-energy difference between charged
and uncharged butanol. For both many-particle test systems,
marked improvements compared to conventional intermedi-
ates were seen.
This work focused on the theory and derivation of our

variational approach. We have so far not tested our method on
larger, more complex biomolecular systems involving con-

formational transitions. Therefore, further work is required
toward the practical applicability, along several lines.
First, VI was derived assuming statistically independent

sample points xi. For atomistic simulation-based sampling and,
to a lesser extent, MC sampling, subsequent sample points are
typically correlated, however, particularly when the relevant
configuration space densities are separated by large barriers. In
these cases, VI is not necessarily the optimal sequence but can
be combined with enhanced sampling techniques, such as
Hamiltonian replica exchange,37−39 appropriate biasing
potentials,40−42 or a combination thereof. Another possible
route, indicated by the EDS method,23,24 is to change the
Hamiltonians in order to reduce energy barriers and thereby
reduce time-correlations. We are, however, unaware of any
variational approach to optimize this trade-off, and therefore,
further research will be required toward this aim.
Second, VI requires an initial estimate of the free-energy

differences. For all of our test cases, this requirement involved
only little additional computational cost. Whether this remains
true for more complex biomolecular systems remains unclear
at present.
Third, vanishing particles are a particular challenge due to

possible singularities. Interestingly, preliminary simulations
(data not shown) on systems with such vanishing LJ particles
suggest that VI automatically generates intermediate Hamil-
tonians that resemble soft-core potentials. However, the
singularities still caused instabilities in our test simulations.
Smoothening the potential of the VI intermediates in these
regions avoided this problem, suggesting that VI can also be
used in this context. Clearly, additional work will be required
to provide a widely applicable sequence for the disappearance
of particles in solution.
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