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Abstract

Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a

widely examined task in biological information extraction. Currently, many kernel based

approaches such as linear kernel, tree kernel, graph kernel and combination of multiple ker-

nels has achieved promising results in PPI task. However, most of these kernel methods fail

to capture the semantic relation information between two entities. In this paper, we present

a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and

semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK

comprises of distributed trees with syntactic information along with distributional semantic

vectors representing semantic information of the sentences or phrases. To generate robust

machine learning model composition of feature based kernel and DSTK were combined

using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer,

HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experi-

mental results show that our system achieves better f-score with five different corpora com-

pared to other state-of-the-art systems.

Introduction

Automatic extraction of Protein-Protein Interaction (PPI) pairs from literature is an important

research area in biomedical information extraction, since PPI plays vital roles in many biologi-

cal pipelines and processes such as drug discovery, cell proliferation etc.[1]. The earlier appro-

aches for PPI extraction from literature includes pattern matching based techniques [2–4],

co-occurrence approaches [5] and machine learning based methods [6–9]. Pattern matching

techniques [2–4, 10] utilizes a set of handcrafted rules as patterns to extract the PPI pairs from

the corpus. On the other hand, in co-occurrence based methods [5] the protein pairs are extr-

acted from the training corpus as co-occurred genes to find the PPI sentences.

Later, for improving the PPI task with better performance, machine learning based (ML)

models [6, 11–15] were introduced. In former ML models, linear features [16–18] were often

used for PPI extraction. The commonly used linear features include linguistic features such as
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lexical, word context, and word distance features. For example, Landeghem et al. [16] pro-

posed a rich-set of features in combination with automated feature selection method for PPI

extraction. Liu et al.[18] examined the combination of lexical, syntactic and dependency infor-

mation based features for PPI extraction. However, the main disadvantage of the above fea-

ture-based approaches is that they cannot utilize the structural similarity information in a

sentence.

In next stage, various kernel-based methods were used to overcome this problem. These

methods use kernel function to represent diverse features in a high dimensional space and cal-

culate the similarity between two entities [19–21]. Among the kernel based methods, tree ker-

nel have the ability to use the structural information from sentences and are mostly used in

PPI extraction task [19].Various tree kernels used for PPI extraction task includes sub-tree ker-

nel [21], subset tree kernel [20], partial tree kernel [22], feature-enriched tree kernel [23], etc.

Few other kernels used for PPI extraction includes all path-graph kernel [24], and convolution

tree kernel [25].

As a recent enhancement, several studies attempt to use multiple kernels to overcome the

inadequacy of single kernel. For example, Kim et al.[26] used four kernels namely predicate

kernel, walk kernel, dependency kernel and hybrid kernel for PPI prediction based on the sen-

tential structures in two entities. Miwa et al. [27] used lexical features and several parsers com-

bined using composite kernel, which in turn combines multiple kernels such as bag-of-words

(BOW), subset tree and graph kernel. Giuliano et al. [28] proposed the Shallow Linguistic (SL)

kernel which combines both local and global context kernel. Yang et al.[29] combined multiple

kernels: feature-based kernel, tree kernel, APG kernel and part-of-speech path kernel. Simi-

larly, Li et al.[30]combined three kernels namely, feature-based kernel, tree kernel and seman-

tic kernel to extract PPIs. Chiang et al.[13] applied semantic similarity based features along

with random forest classifier for PPI extraction from biomedical literature. Niu et al. [14] used

a word similarity model approach in which they created a hybrid model based on relational

similarity approach. Chang et al.[8] proposed an interaction pattern generation approach

using convolution tree kernel for PPI extraction.

However, in all the above approaches the semantic relation between entities is ignored

except Li et al. approach [30]. They used semantic kernel that calculates the protein-protein

pair similarity and the context similarity features utilizing two external semantic resources:

WordNet and Medical Subject Heading (MeSH).

On the other side, Distributed Smoothed Tree Kernel (DSTK) models are proposed recently

that takes the advantage of combining Compositional Distributional Semantic Models

(CDSM) with tree kernels [31]. DSTK comprises the distributed trees with syntactic informa-

tion along with distributional semantic vectors representing semantic information of the sen-

tences or phrases [31]. DSTK transfers the sentences into matrices that can then be used by

learning algorithm as features. The DSTK model was successfully demonstrated to text classifi-

cation problem [31].

In this paper, we employ DSTK to extract PPIs from biomedical literature to take advantage

of both syntactic structure information and semantic vector representation. Further, to over-

come the shortcoming of information loss from single kernel approaches and to utilize the

advantage of multiple kernel approaches, the baseline feature based kernel, which uses lexical

features such as word features and word distance features is combined with DSTK as a multi-

ple kernel. Both feature base kernel and DSTK are combined using Ensemble SVM for training

and testing. Experimental results on five public PPI corpora show that our approach can

achieve enhanced performance than other state-of-the art systems.

PPI extraction using DSTK
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Materials and methods

Our approach in extracting PPI information comprise of three processing phases. i) Text pre-

processing which includes sentence segmentation and data cleaning, ii) Two distinctive types

of kernels which includes feature based kernel and distributed smoothed tree kernel iii)

Ensemble kernels based learning using SVM. The overall methodology of our approach is

shown in (Fig 1) and each component is described in the following sub-sections.

Text preprocessing

Text preprocessing includes tokenization, sentence segmentation, POS tagging and lemmati-

zation. In addition all the words in the corpus were converted to lowercases and numbers

which were found as individual words are replaced with NUM keyword. We used open source

tool, OpenNLP [32] for text pre-processing.

Feature extraction

Different types of features reveal different information aspects of the sentence which contains

the PPI instance. In our feature extraction phase we used two distinctive types of kernels i) fea-

ture based kernel which uses word context information features and ii) distributed semantic

tree kernel which uses distributed trees with syntactic information along with distributional

semantic vectors representing semantic information of the sentences or phrases.

Feature based kernel. The feature based kernel uses word features and word distance fea-

tures and is similar to the one previously used for PPI extraction [7,30].

Following are the word features used in our feature based kernel.

Protein name words: All the words in the protein names were used as word features.

Fig 1. System overview.

https://doi.org/10.1371/journal.pone.0187379.g001

PPI extraction using DSTK

PLOS ONE | https://doi.org/10.1371/journal.pone.0187379 November 3, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0187379.g001
https://doi.org/10.1371/journal.pone.0187379


Interaction keywords: The interaction keyword (e.g. bind, regulate etc.) which represent the

relation with the protein were used as word feature. If more than one interaction keyword is

present, first one will considered as feature.

Words between two protein names: All words that are located between two protein names in

the interaction sentences were used as word features.

Surrounding words: All words surrounding the protein names within the word length of 3

were used as word feature.

Similarly, following are the word distance features used in our feature based kernel.

Number of non-proteins: The word count of the non-protein words between two protein

pairs is considered as one of the count features. If word count is less than 3 the value will be

“1”. If word counts between 3 and 6 then the feature value is set to “2”. If the count is 6 to 9

then the feature value is set to “3” otherwise the value is set to “4”. If no words are present in

between two protein pairs the value is “0”.

Number of proteins: If any protein appears between the two protein pairs in the interaction

sentences, the feature value will be set to the count of proteins; if not, the feature value will be

set to “0”.

For example, the word and distance feature vector for a sentence “Biochemical complemen-
tation experiments also indicate that the PRP9 and PRP11 proteins interact.” is shown in

Table 1.

Distributed smoothed tree kernel. We use a special type of tree kernel for relation extrac-

tion which exploits both syntactic (structural) and semantic vector information. We adopted

Distributed Smoothed Tree kernel (DSTK) introduced by Ferrone and Zanzotto [31]. DSTK

merges the distributed trees [33] representing syntactic information with distributional

semantic vectors representing semantic information, as used in the smoothed tree kernels

[34].

Hence, DSTK can be considered as a Compositional Distributional Semantic Model

(CDSM) and that transforms the sentences into matrices (one dimension encodes the struc-

ture and one dimension encodes the meaning) that can be used by the learning algorithm as

feature vectors (Fig 2). DSTK is briefly introduced below and for the complete overview refer

Ferrone and Zanzotto [31].

DSTK transforms the sentences into matrices that are used by the algorithm as a feature

vector. DSTK uses Distributed smoothed trees (DST) to represent the structure and meaning

of the sentences.

DSTs follows the same data structure of constituency-based lexicalized parse trees as shown

in (Fig 3A). In (Fig 3A) N(t) denotes the set of non-terminal nodes of lexicalized tree t. Each

non-terminal node N(t) has a label ln composed of two parts ln = (sn,wn).

Table 1. Word and distance feature vector.

Feature Names Feature Values

Protein name P- PRP9, p- PRP11 proteins

Words between protein names b-and

Words surrounding protein names

Left n words

Right n words

l-indicate, l-that, l-the

r-proteins, r-interact, r-.

Interaction keywords ik-interact

No. of non-proteins between two proteins No. of non-proteins = 1

No. of proteins between two proteins No. of proteins = 0

https://doi.org/10.1371/journal.pone.0187379.t001
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Where sn is the syntactic label, while wn is the semantic headword of the tree headed by n,

along with its part-of-speech tag.

DSTs incorporate structure and distributional meaning on a 2D array (a matrix): one

dimension determines the structure and one dimension determines the meaning. The struc-

ture of a DST is represented as follows: Given a tree t, head(t) is its root node and synt(t) is the

tree formed from t but considering only the syntactic structure (that is, only the sn part of the

Fig 2. Work flow for feature extraction in both feature based kernel and DSTK.

https://doi.org/10.1371/journal.pone.0187379.g002

Fig 3. Distributed Smoothed Tree (DST) A) Lexicalized parse tree for DST B) Subtrees of tree in lexicalized parse tree.

https://doi.org/10.1371/journal.pone.0187379.g003
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labels), childi(n) denotes ith child of a node n. The distributional vector for the semantic head-

word wn is denoted as wn
�! 2 Rk.

The lexicalized tree structure is broken into subtrees ti which is given in (Fig 3B) and

belongs to the set S(t). In the set S(t), ti is a subtree if synt(ti) is the subtree of synt(t) and ti con-

tains a node n such that all the siblings of n in t are in ti. For each node of ti DST consider its

syntactic label sn except for the head(t) for which its semantic component wn is considered.

DST can be constructed using the following equation.

DST ðtÞ ¼ T ¼
P

ti2SðtÞ
Ti ð1Þ

Where Ti is the matrix associated to each subtree ti. The tree (T) can also be defined as follows

T ¼
P

ti2SðtÞ
Ti ¼

P
ti2SðtÞ

syntðti
���!

Þ headðtiÞ
T�����!

ð2Þ

The similarity between two sub trees using vector representation can be obtained using the

Frobenius product between two vector matrices associated with sub trees with the following

equation.

< Ti;Tj >¼< syntðti
���!

Þ; syntðtjÞ
����!

>< headðti
����!

Þ; headðtjÞ
�����!

>�

� δðsyntðtiÞ; syntðtjÞÞ < headðti
����!

Þ; headðtjÞ
�����!

>

ð3Þ

Using the Eq 3, similarity between lexicalized trees was computed. In order to obtain the

Frobenius product, we approximate the dot product between the distributional vectors of

headwords defined using the following two scenarios: i) If the subtrees have the same syntactic

structure the similarity is obtained as the semantic similarity of their heads ii) If the syntactic

structures are different, similarity is defined as 0.

The above scenarios are expressed as

< Ti;Tj >� δ ðsyntðtiÞ; syntðtjÞÞ: < headðti
����!

Þ; headðtjÞ
�����!

> ð4Þ

In order to achieve the above mentioned condition

Ti ¼ synt ðtiÞ
!

o headðtiÞ
��!T ð5Þ

Where synt ðtiÞ
!

are distributed tree fragment for sub tree t and o headðtiÞ
��! is the distributional

vector of the head. There is a property for distributional tree fragments that

syntðti
���!

Þ; syntðtjÞ
����!

� δðti; tjÞ ð6Þ

Finally by exploiting Eqs (4) and (5) the Eq (4) is satisfied as

< Ti;Tj >¼< syntðti
���!

Þ; syntðtjÞ
����!

> : < o headðtiÞ
��!;o headðtjÞ

��! >

� δ ðsyntðtiÞ; syntðtjÞÞ: < o headðtiÞ
��!;o headðtjÞ

��! >
ð7Þ

Compositional distributional model DST (t) computed using the recursive algorithm that

utilizes the vectors of the nodes of the tree. It also approximates the smoothed tree kernel and

recursively computes the following equation

DSTK ðta; tbÞ ¼ T ¼
P

ti 2 SðtaÞ

tj 2 SðtbÞ

wðti; tjÞ ð8Þ

PPI extraction using DSTK
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Where w(ti,tj) is the similarity weight between two sub trees ti and tj. ta,tb are the lexicalized

trees. In DSTK the weights are defined as

w ðti; tjÞ ¼ a: < o headðtiÞ
��!;o headðtjÞ

��! > :δ ðsyntðtiÞ; syntðtjÞÞ ð9Þ

Where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⋋jNðtiÞjþjNðtiÞj
p

and ⋋ is the weight parameter.

Our DSTK implementation for PPI extraction has two parts i) Syntactic tree generation ii)

Semantic feature vector generation and discussed below.

Syntactic tree generation: To generate syntax tree, we parsed the sentence with Stanford lexi-

calized Parser [35] and extracted the head words for use in the lexicalized trees with Collins

rules [36]. Here we have used interaction keywords as the “head words” or “root”, and con-

structed the lexicalized dependency tree. Further, in our syntax tree generation, the protein

pairs in the sentence were replaced by PROT1 and PROT2 and other protein names occur in

the same sentence were replaced by PROT. An example of lexicalized parse tree is shown in

(Fig 3A).

Semantic feature vector generation: The following steps were used to create the distributional

semantic vectors for the sentences in our PPI task.

Extraction of co-occurrence proteins and their counts: In this step we used the input corpus

to extract co-occurring proteins and their counts along with contextual features such as inter-

action words and conjunctive features. In our case, any two proteins that are present in the

sentences are taken as co-occurred proteins.

Choosing raw counts that give more similar meaning: This step involves the application of

weighting scheme. The focus here is to probably take out the preferences that commonly influ-

ence the counts and to create vectors which better infer similarity in meaning. Pointwise

Mutual Information (PMI) is utilized for weighting scheme and Singular Value Decomposi-

tion (SVD) is applied to reduce the vector dimension and to eliminate the vectors which were

irrelevant to the co-occurrence counts.

For distributed vector generation, we used the concatenation of five input PPI corpora

AIMed, BioInfer, HPRD50, IEPA and LLL as our source corpus with a total of about 1.2 billion

tokens to extract co-occurring proteins and their counts. The distributional vectors were gen-

erated using DISSECT[37] toolkit with standard parameters 1024 and 2048 as the dimension

of the distributed vectors and the weight parameter ⋋was set to 0.4 which was used as the opti-

mal value for most of the previous applications [33]

Ensemble kernel based learning using SVM

In feature based classification models, ensemble learning approaches demonstrated best per-

formance in many biological applications such as sequence prediction [38, 39], RNA function

prediction [40] and literature mining [15, 30]. Further, in most of such data challenges, SVM

showed best performance over other classification algorithms. Hence, we employed SVM to

train the classifier [41]. We incorporated a composite kernel (kckl) by combining both feature

based kernel (kfea) and distributed smoothed tree kernel (DSTK) (KDSTK).

The ensemble kernel can be obtained by following equation

kckl ¼ kfea þ KDSTK ð10Þ

F1 and F2 are two feature vectors from feature based kernels and D1, D2 are the two sub

trees of distributed smoothed trees. V1 and V2 represent the distributional vectors for the sub

trees D1 and D2.The parameter w is the similarity weight between two sub trees D1 and D2

PPI extraction using DSTK
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using vector Tvec.

TðF1; F2Þ ¼ TvðF1; F2Þ þ wðTdðD1;D2Þ:TvecðV1;V2ÞÞ ð11Þ

Results and discussion

Datasets

To access the performance of our system, we utilized five annotated and publically available

PPI corpora namely AIMed [42], BioInfer [43], HPRD50 [3], IEPA [44], and LLL [45]. All the

five corpora had various annotating information’s and grouped into frequent layout to extract

the PPI’s. The corpus statistics are given in Table 2.

Evaluation metrics

To explore the performance of the system we used the three different types of metrics com-

monly used in information extraction problems. These are Precision (P), Recall(R), and F-

score. Precision and recall is measured by four metrics true positive (TP), true negative (TN),

False positive (FP) and False negative (FN). The final F-score is calculated by the following

procedure.

PrecisionðPÞ ¼ TP=ðTP þ FPÞ ð12Þ

RecallðRÞ ¼ TP=ðTPþ FNÞ ð13Þ

F � ScoreðFÞ ¼ 2 � P � R=ðP þ RÞ ð14Þ

We performed 10-fold cross validation on the datasets to calculate the above metrics. The

performance was evaluated by dividing the PPI dataset into ten subsets, for each run, 90% of

the data was used as the training set, and the remaining 10% was used as the test set. Then,

each of the 10% of the data was selected one by one and tested by the model trained with the

remaining 90% of the PPI datasets. The average score was obtained by repeating the above pro-

cess ten times. In 10-fold cross validation, three types of experiments were performed i) Fea-

ture based kernel with linear feature only ii) DSTK with distributed tree features and iii)

Composite kernel as combination of both kernels to evaluate the performance of our system.

Precision (P), recall (R), F-score (F) results of our three approaches (feature based, DSTK,

composite kernel) evaluated by 10-fold cross-validation on five corpora, AIMed, BioInfer,

HPRD50, IEPA, LLL is shown in Table 3. It is obvious from the Table 3 that feature based ker-

nel results high precision but low recall. On the other side, distributed models such as DSTK

achieves high recall and relatively low precision when compare to simple feature based kernel.

The final composite kernel which takes advantage of the both lexical features and distributed

Table 2. List of corpora used for evaluation.

S.NO CORPUS COUNT No. of interaction proteins

1 AIMed 1955 Sentences 1000 positive interaction pairs,4834 negative interaction pairs

2 BioInfer 1100 Sentences 2534 positive interaction pairs, 7132 negative interaction pairs

3 HPRD50 145 Sentences 163 positive interaction pairs, 270 negative interaction pairs

4 IEPA 486 Sentences 335 positive interaction pairs, 482 negative interaction pairs.

5 LLL 77 Sentences 164 positive interaction pairs,166 negative interaction pairs

https://doi.org/10.1371/journal.pone.0187379.t002
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tree features improves the overall F-score when compared to single kernel approaches in all

five corpora. (Fig 4) shows the ROC plot of three kernels for the entire five corpora.

Comparison with other systems

The two main components of our approach include the use of DSTK kernel which utilizes the

semantic meaning of the sentence in addition to the syntactic structure and use of multiple

kernels. To demonstrate the advantages of our system over other earlier approaches we made

comparisons with following three different methods

1. Methods using semantic meaning of sentences

2. Methods using multiple kernels

3. Methods using state of the art non-kernel methods

Semantic tree kernel vs. semantic feature kernel. To our knowledge, the only other

approach which utilizes semantic meaning of the sentences is work of Li et al.[30]. They used

multiple-kernels to extract PPIs, combining three kernels namely feature-based kernel, tree

kernel and semantic feature kernel and evaluated on AIMed corpus. Their feature based

semantic kernel consists of two features, protein pair similarity and context semantic similarity

[30].

Our DSTK kernel based multiple kernel approach outperforms the simple feature based

semantic kernel approach and results are shown in Table 4 for AIMed corpus.

Semantic tree kernel vs. other multiple kernels. To demonstrate the advantages of our

system over other multiple kernel based methods, we compared our system performance with

other state-of-the art systems which uses multiple kernels and also evaluated on all the five cor-

pora. Table 5 show the performance comparison of our method with other multiple kernel

based approaches on all five corpora: AIMed, BioInfer, HPRD50, IEPA, and LLL in terms of

F-score. The results indicate clearly that our system outperformed all the existing multiple ker-

nel based approaches in all the five corpora which shows the importance of semantic meaning

of the sentences in PPI extraction task.

Semantic tree kernels vs. non-kernel methods. To further demonstrate the advantages of

our DSTK system over other non-kernel based methods, we carried out the third evaluation of

Table 3. Experimental results on three kernel feature based (Kfea), DSTK (KDSTK) and composite (Kckl).

Corpus AIMed BioInfer HPRD50 IEPA LLL

(%) P R F P R F P R F P R F P R F

Kfea 73.59 37.43 49.62 79.0 57.12 66.30 68.5 54.5 60.70 80.0 57.23 66.72 87.83 79.14 83.25

KDSTK 64.25 68.50 66.30 69.25 75.15 72.07 72.30 80.75 76.29 75.02 82.71 78.67 89.64 85.32 87.42

Kckl 68.91 73.24 71.01 75.7 76.90 76.29 76.25 84.15 80.0 75.85 85.15 80.23 87.31 91.18 89.20

https://doi.org/10.1371/journal.pone.0187379.t003

Fig 4. ROC plotting of our three different kernels (feature based, DSTK, Composite) in five corpora a) AIMed b) BioInfer c) HPRD50 d) IEPA e) LLL.

https://doi.org/10.1371/journal.pone.0187379.g004
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our method with three recent work on i) deep neural network [9]ii) automatic feature selection

[17] iii) deep learning methods [50].

Table 6 shows the comparison results of our method with other non-kernel based methods

as mentioned above. To conclude, our approach outperforms all the three non-kernel based

approaches on all the five corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL).

In general, while analyzing the results, DSTK performs better than both multiple kernel

based approaches and other non-kernel approaches. This may be due to the following facts.

• By refining syntactic tree with semantic vector representation DSTK defines the importance

semantics of the sentence in PPI task.

• By implementing lexicalized dependency parsing we generate a verb-centric tree which con-

tains interaction keywords or any other verbs as head words or root. This helps to solve the

missing interaction keyword problem while extracting the protein pairs in the tree.

• DST sub tree generation helps in the extraction of multiple interaction pairs in the same

sentence.

These facts are further explained in the following example sentence

Example:

Armadillo (Arm) repeat 10 to the COOH terminus of beta-catenin is involved in binding to
CBP, whereas beta-catenin interacts directly with the CREB-binding domain of CBP.

In the above example while extracting protein pairs “beta-catenin” and “CBP”, we found

feature based kernel tag them as negative because it cannot capture the syntactic representa-

tion. However, while applying DSTK, it tags both positive because while extracting protein

pairs from the sentences DSTK extracts not only protein pairs but also interaction keyword

(e.g. binding) present in the sentence.

Table 4. Comparison of our method with (Li et al [30]) in AIMed Corpus.

System P R F

Li et al [30](feature + semantic + tree kernels 72.45 66.70 69.46

Ours

(feature kernel + DSTK)

68.91 73.24 71.01

https://doi.org/10.1371/journal.pone.0187379.t004

Table 5. Comparison of our method with other kernel based methods.

Corpus AIMed BioInfer HPRD50 IEPA LLL

Ours

(feature kernel +DSTK)

71.01 76.29 80.0 80.23 89.20

Li et al[15]

(feature based+ tree kernel+ features)

69.7 74.0 78.0 76.5 87.3

Miwa et al [27]

(BOW+ subtree +graph kernels)

60.8 68.1 70.9 71.7 80.1

Choi et al [46]

(convolution parse tree kernel)

67.0 72.6 73.1 73.1 82.1

Satre et al[47]

(BOW + shortest path + dependency graph)

64.2 67.6 69.7 74.4 80.5

Satre et al [48]

(BOW + dependency graph)

52.0 - - - -

Miyao et al[49]

(BOW + constituent parse tree)

59.5 - - - -

https://doi.org/10.1371/journal.pone.0187379.t005
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Further, the words “interacts”, “binding” is the head of the two sub trees indicates high pos-

sibility of direct interaction. It also helps to extract one-many, many-many, many-one rela-

tionship correctly based on the dot product of the sub trees and vector matrix to generate a

DST.

In error analysis, we found our system fails to capture PPI information from complex sen-

tences which have four or more protein names. Table 7 shows the examples of such complex

sentences in each corpus. Applying a sentence simplification method before parsing such sen-

tences may solve this problem. In the current study, we used Stanford Parser (Klein and Man-

ning 2003) to parse the sentences. However, there are different parsers and each output

different syntactic structures. We hope, exploring parser specifically developed and trained in

biomedical text will address this issue and also improve system accuracy.

Conclusion and future work

In this paper we elucidated a multiple kernel based machine learning approach using feature

based kernel and DSTK to extract the PPI from biomedical literature. We are the first one to

explore a kernel which uses the distributional semantics of the sentence in addition to syntactic

structure. Experimental results on all five standard PPI corpora shows that our method

improve recall substantially and thus results overall high F-score. The results indicate that the

importance of semantics of the sentences in addition to syntactic structure in PPI extraction

task.

In future expansion, we plan to apply sentence simplification methods for complex sen-

tences and explore the result using DSTK and other kernels. In addition, we wish to incorpo-

rate domain knowledge into PPI extraction. We believe by exploring domain specific methods

Table 6. Comparison of our method with other non-kernel methods.

Corpus AIMed BioInfer HPRD50 IEPA LLL

Ours

(feature kernel +DSTK)

71.01 76.29 80.0 80.23 89.20

Zhao et al [9]

(deep neural network)

56.12 61.26 71.28 74.19 80.99

Phan et al [17]

(novel feature selection)

45.1 - 72.6 69.8 76.5

Peng et al[44]

(deep learning)

63.5 65.3 - - -

https://doi.org/10.1371/journal.pone.0187379.t006

Table 7. Complex sentences extracted while annotating PPI.

S.

No

Corpus Interaction sentences

1 BioInfer Immunopercipitation of metabolically labeled proteins with <protein>HECD-1

</protein>revealed three bands corresponding to <protein>E-cadherin</protein>,

<protein>alpha-catenin</protein>, and <protein>gamma-catenin</protein> and a

<protein>79-kDa band</protein> which was apparently smaller than that of normal

<protein>beta-catenin</protein>, indicating truncated <protein>beta-catenin</protein>.

2 HPRD In addition, coexpression of <protein> SRC-1</protein> but not<protein> p300</

protein> further stimulated the <protein>Bcl3</protein> -mediated enhancement of the

<protein> 9-cis-RA</protein>-induced transactivations of<protein> RXR</protein>
3 IEPA The hydrophilic form of MDP released from the cells on stimulation with

<protein>insulin</protein> was recognized by antibodies against the inositol 1,2-cyclic

monophosphate cross-reacting determinant, indicating that it had been generated by

cleavage of its GPI anchor through the action of a <protein>phospholipase C</protein>.

https://doi.org/10.1371/journal.pone.0187379.t007
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for parsing, semantic vector generation and feature extraction would be helpful in improving

the performance.
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