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Abstract

Background: Mastitis is the most important disease in dairy cows and it causes significant lost of
profit to producers. Identification of the genes, and their variants, involved in innate immune
responses is essential for the understanding of this inflammatory disease and to identify potential
genetic markers for resistance to mastitis. The progeny of dairy cows would benefit from receiving
favourable alleles that support greater resistance to infection, thus reducing antibiotic use. This
study aims to identify a key gene in the innate immune response to mastitis, led us to evaluate its
genetic association with somatic cell score (SCS), which is an indicator of clinical mastitis, and to
evaluate its impact on other traits related to milk production.

Results: The osteopontin transcript (SPP/) was identified in the somatic cells from cows
experimentally infected with Escherichia coli. By selecting bulls with extreme estimated breeding
values (EBVs) for SCS, which is an indicator of mammary gland health, four DNA polymorphisms
in the SPPI genomic sequence were found. Statistical analysis revealed that the SNP SPP/c.-
1301G>A has an impact on EBV for SCS (P < 0.001) Using an allele substitution model, SPP/c.-
1251C>T, SPP|c-430G>A, and SPPIc.*40A>C have an impact on SCS whereas SPP/c.-1301G>A has
an effect on the EBVs for milk yield (second and third lactations), fat and protein percentages (all
three lactations). Analysis revealed statistically significant differences between haplotype groups at
a comparison-wise level with sire EBVS for SCS for the first (P = 0.012), second (P < 0.001), and
third (P < 0.001) lactations.

Conclusion: This study reports the link between DNA polymorphisms of SPPI, the number of
milk immune cells and, potentially, the susceptibility to mastitis. These SNPs were identified by in
silico search to be located in transcription factor recognition sites which factors are presumably
involved in the Thl immune response and in the Th2 regulation pathway. Indeed, one SNP
abolished the SPI recognition site, whereas another SNP affected the transcription binding factor
IKAROS. All together, these findings support the genetic potential of these variants in terms of
selection for the improvement of mastitis resistance in dairy cows.
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Background

Mastitis is an inflammatory condition of the mammary
gland caused primarily by microorganisms, usually bacte-
ria, that invade the udder, multiply and secrete toxic prod-
ucts that are very harmful to the host. In Canada,
environmental mastitis (clinical mastitis) is most com-
monly caused by Escherichia coli. This infection is gener-
ally short taking a few days to be eliminated by the
immune system, but the animal presents severe clinical
signs that include inflammation of the udder, milk clots
and altered behaviour (fever, loss of appetite). With
annual costs for the herd of approximately $180 per cow
[1], mastitis is still the most commonly occurring disease
in Canadian dairy herds. These important losses to pro-
ducers result not only from early culling and treatment
costs, but also from the adverse effects of the decrease in
production, and the need to discard milk that is unfit for
human consumption because it is infected or contains
antibiotic residues [2,3].

The mammary gland is typically a sterile environment
and, therefore, the entry of any foreign body usually trig-
gers a localized immune response. The first line of defence
against disease-causing microorganisms is the innate
immune system, which induces mechanisms that are not
pathogen species-specific [4]. Innate immune cells in the
mammary gland are comprised of macrophages, granulo-
cytes, natural killer cells, and dendritic and mammary epi-
thelial cells [5]. These cells have receptors that recognize
motifs or pathogen-associated molecular patterns
(PAMP) on the surface of microorganisms. For example,
the lipopolysaccharides on the surface of Gram-negative
bacteria such as E. coli become attached to the phagocytic
cells via Toll-like receptor 4 (TLR-4), whereas Toll-like
receptor 2 (TLR-2) binds to Gram-positive motifs such as
peptidoglycan or lipoteichoic acid on the surface of S.
aureus [6].

Recognition of an invading pathogen activates cellular
reactions, leading to the secretion of inflammatory medi-
ators called cytokines. These signalling molecules trigger
cellular communication, chemotaxis and lymphocyte dif-
ferentiation. The cytokines include inflammatory inter-
leukins-(IL)-1B, -6 and -12, tumour necrosis factor-alpha
(TNF-a) and interferon-gamma (IFN-y) [7]. Once phago-
cytic cells recognize and internalize pathogens, the cells
present the pathogen's antigenic determinants to the T
lymphocytes. Then these cells, in the presence of IL-12,
differentiate into Th1 effector cells which are responsible
for cell-mediated immunity. These Thl cells produce
inflammatory mediators such as IFN-y, that enhance mac-
rophage effectors functions against intracellular patho-
gens [8].

Macrophages are the predominant cells in the healthy
mammary gland [9]. During intramammary infection,
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however, a release of inflammatory mediators, especially
by macrophages, leads to the recruitment of neutrophils
into infected quarters from the circulation. At this stage,
these cells account for more than 90% of milk cells [10].
The neutrophils are responsible for the eventual elimina-
tion of the pathogens. For example, activated neutrophils
degranulate and produce/secrete bactericidal compo-
nents, namely reactive oxygen species (ROS) [11]. The
recruitment of neutrophils into the mammary gland
causes an increase in somatic cell count (SCC) that can
reach more than 1,000,000 cells/mL during the course of
an infection, whereas the SCC is normally less than
100,000 cells/mL in a healthy mammary gland [4].

Prevention and control of mastitis by improving the nat-
ural defence mechanisms is important not only for dairy
producers but also for consumers, because of increased
concerns about food safety, antibiotic use and animal wel-
fare [12]. One approach would be to define breeding
objectives with increased weight of health-related traits in
genetic selection [13]. Genetic selection to increase anti-
body responsiveness seems to be possible, but the
acquired immune response traits have proven to be incon-
sistent indicators of udder health [14]. Components of
the adaptive immune system have been studied inten-
sively, but there is still need for the development of effi-
cient vaccine against pathogens that cause intramammary
infection for bovine [12,15-17]. Unlike the adaptive
immune system, some mechanisms of the innate immu-
nity are conserved throughout the animal kingdom and
can thus be thought of as general mechanisms responsible
for broad environmental responses. These evolutionarily
conserved systems have been analyzed in detail and
include, among others, the complement gene family [18]
and the Toll-like receptors (TLR) [19]. The parameters of
innate immune responses can be used to study resistance
to mastitis. These results can lead to the selection of breed-
ing animals that carry favorable polymorphisms or alleles
able to improve the resistance to infection of their off-
spring. [20].

Genetic parameters such as heritability and phenotypic
and genetic correlations are useful statistical tools for
measuring the genetic component of a trait or group of
traits. These genetic parameters do not require any knowl-
edge about the number of genes involved as they are esti-
mated from correlations of phenotypic data among
relatives. The present study is based essentially on the
somatic cell score (SCS), because data for clinical mastitis
prevalence are still not available for the Canadian dairy
population [21]. However, the usefulness of SCS as an
indirect selection tool for reducing mastitis has been
reported in several studies [22-25]. Most estimates of the
genetic correlation between SCS and clinical mastitis
range from 0.50 to 0.80 [26-29]. In a recent study, the
genetic correlation was observed to ranges from 0.55 to
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0.93 [30]. These are reasonably high values which suggest
that SCC and mastitis occurrence are partly caused by the
expression of the same trait. The SCC distribution is often
highly skewed and it is usually transformed on a loga-
rithm scale, as follows: SCS = log, (SCC/100,000) + 3
[22]. When used for genetic evaluation, bulls receive an
estimated breeding value (EBV) based on the SCS records
of their daughters. If dairy producers select bulls with a
low EBV for SCS, this is expected to improve mastitis
resistance in their herd [22,28,31]. The SCS has now
become the most important indicator associated with the
health of the mammary gland, but little is known about
the key factors which regulate the number of somatic cells
in milk from healthy cows. Thus, in the present study we
investigated the early activated transcripts of immune cells
of the lactating mammary gland in order to identify a key
gene in the innate immune response to mastitis.

Osteopontin (or secreted phosphoprotein 1, SPP1) is a
cytokine produced by macrophages and activated T cells
[32]. Osteopontin has been described as an early compo-
nent of the T cell activation mechanism. Enhanced in T
cells, it recruits macrophages at the infection site and
improves cell-mediated immunity (Th1l) by inducing
secretion of Th1l cytokines [33-36]. Osteopontin is a
multi-faced protein [35,37]. It promotes bone remodel-
ling [38], wound healing and survival of stressed cells
[39], but is also associated with metastasis status and poor
survival prognosis [40,41]. It was found associated with
certain pathologies such as restenosis, formation of kid-
ney stones, and autoimmune disease [37], but also found
to confer resistance to several intracellular pathogen infec-
tions through recruitment and activation of macrophages
[42]. In this study, we reported the detection of this abun-
dant transcript, which is expressed early on during masti-
tis. Following the detection of this key gene in the
mammary somatic cells isolated early during the immune
response, we evaluated the association of SPP1 with SCC,
which is the most widely used indicator of mastitis [31].
Identifying favourable SPP1 alleles for mastitis resistance
would make it possible for dairy breeders to increase them
in the Canadian Holstein population to potentially
increase the natural resistance to mammary gland infec-
tion.

Results

Experimental mastitis and detection of the candidate gene
An infectious dose of 94 + 8 CFU of a fresh exponential
culture of E. coli was used and produced a bacterial infec-
tion in all challenged quarters (Figure 1A) of the four lac-
tating cows: groups 6 h (n =2) and 12 h (n = 2). The front
control quarters, which had been infused with saline,
remained free of bacteria. There were no apparent signs of
clinical infection at 6 h whereas infection was confirmed
by 12 h. These two cows showed signs of clinical infec-
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tion: clotting in milk, fever (40°C), and local redness
along with pain after 12 h. The tumour necrosis factor-
alpha (TNF-a)) was detectable in milk at 9 h post-infection
(Figure 1A). Increases in both SCC and granulocytes in
milk were highly correlated between 6 and 9 h post-chal-
lenge (Figure 1B), which confirmed that granulocytes
were the major invading cells in the mammary gland
upon infection. During the same 6-to-9-h period, macro-
phages drastically decreased in proportion (P < 0.05; Fig-
ure 1B). Only 2 to 4% remained detectable whereas in the
bacteria-free quarters, a significant level (51 to 56%) of
macrophages was maintained. The inflection point for
this longitudinal survey was 6 h. Indeed, no changes in
the distribution of lymphocytes, macrophages and granu-
locytes in milk, between infected quarters (continuous
lines) and uninfected quarters (dashed lines) were appar-
ent in the first 6 h post-infection (Figure 1B). We thus
monitored the molecular events prior to the increase of
granulocytes (inflection point) in milk. The differential
transcripts of milk immune cells were analysed at 5 h
post-infection. One hundred clones from the cDNA
library of milk immune cells were sequenced (Material
and Methods). The SPP1 transcript was identified using
the Basic Local Alignment Search Tool (BLAST) to search
against the National Center for Biotechnology Informa-
tion (NCBI) database. This induction of SPP1 transcript
was also observed in PBMC (peripheral blood mononu-
clear cells) challenged in vitro with heat-inactivated bacte-
ria as described in Material and Methods. The increased
SPP1 transcripts abundance in PBMC was detected within
6 h (up to 4 fold by 3 h) by real-time RT-PCR in three
independent assays (data not shown).

Analysis of the SPP1 genomic sequence

Search for DNA polymorphisms was performed by select-
ing bulls with extreme EBV for SCS (Material and Meth-
ods). Each different genomic region of SPP1 (promoter, 5'
untranslated sequence [UTR], intron 1, exons 1-7 and 3'
UTR) were sequenced as described in Materials and Meth-
ods. Comparison of the results of the electrophoregrams
from the two groups presenting extreme EBV for the SCS
trait uncovered differences in the allelic distribution of
four nucleotides. Two single-nucleotide polymorphisms
(SNPs) were found in the promoter. A novel SNP was
identified and has been submitted to NCBI dbSNP on
April 23142009 (SNP submission number ss130452346).
This novel transition SNP (SPP1c.-1301G>A) and the tran-
sition SNP SPP1c.-1251C>T were found respectively 1,301
and 1,251 nucleotides (nt) before the ATG (start) codon,
which initiates translation from exon 2. The third transi-
tion SNP (SPP1c.-430G>A) was located in the first intron,
430 nt upstream from the start codon. Lastly, the transver-
sion SNP (SPP1c.*40A>C) was found 40 nt downstream
from the stop codon in exon 7 within the 3' UTR. No SNPs
were found in the coding region. We scrutinized the elec-
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Figure |

Experimental mastitis. Milk samples were analysed at dif-
ferent times for intramammary bacterial infection (pannel A;
CFU, left y-axis), inflammatory mediator (pannel A; TNF-a;
right y-axis), and for somatic cell profil (pannel B). Data are
expressed as mean * standard error of the mean. During the
first 6 hours post-challenge, mean values of 4 cows are
reported. By 6 hours, two cows were not sampled because
they received antibiotics (Materials and Methods). Error bars,
standard error of the means.

trophoregrams in the 2,428-to-2,419-nucleotide region
upstream from the ATG gene corresponding to the inser-
tion and deletion (INDEL) variation rs43702359 (NCBI
dbSNP accession number) which had been reported else-
where [43]. No such variation was observed in the popu-
lation sequenced.

SNPs and allelic frequencies

Genotypic and allelic frequencies of the four SNPs for the
578 bulls are summarized in Table 1. All SNPs were
checked for conformance with the Hardy-Weinberg equi-
librium, as determined by the Chi-square test. The fre-
quency of the alleles varied in the population. Some
alleles were present in low frequency, such as allele A
(10.5%) for the SNP SPPIc.-1301G>A, which also
explained the low abundance of homozygous bulls
(1.0%) in the population tested. Homozygous bulls har-
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bouring the genotype T for SPP1¢.-1251C>T and genotype
A for SPP1c.-430G>A were not frequent (6.4%), and the
abundance of these alleles was 25.2% for both among the
578 genotyped bulls. These two SNPs were linked in the
population tested: allele C for SPP1c.-1251C>T was linked
to allele G for SPPI1c.-430G>A, and vice versa (allele T
linked to allele A). For the SNP SPP1c.*40A>C, 9.1% of
the bulls were homozygous for allele C, a proportion of
30% in the population genotyped (Table 1).

SNP associations

The EBVs for SCS at the first, second and third lactations
and for over all lactations are reported according to the
genotypes for SPP1c.-1301G>A, SPP1c.-1251C>T, SPPIc.-
430G>A and SPP1c.*40A>C (Table 2). Allele G of SPP1c.-
1301G>A had a favourable impact on SCS EBV at any lac-
tation (P < 0.001). The SNP SPPIc.-1251C>T and SPPIc.-
430G>A did not have an effect on SCS EBV (global com-
parison - over all lactations), but genotypic comparison
showed a significant difference for the third lactation only
between homozygous and heterozygous bulls for the
dominant allele (P = 0.046; data not shown). The statisti-
cal analysis also revealed a stronger association between
SPP1c.*40A>C and EBVs for SCS as the number of lacta-
tions increased: first lactation (SCS1; P = 0.183), second
lactation (SCS2; P = 0.014) and third lactation (SCS3; P =
0.004).

The estimated average allele substitution effects are pre-
sented in Table 3. No significant association of SNP
SPP1c.-1301G>A was detected with SCS in any of the lac-
tations. The SNP SPPIc.-1251C>T and SPP1c.-430G>A
were significant at a comparison-wise level in association
with EBVs for SCS (P = 0.014), SCS1 (P = 0.035), and
SCS2 (P = 0.023). The estimated substitution effect was
about the same for SCS3 but the larger SE crushed the sta-
tistical validity (P = 0.056). The allele substitution effects
for SPP1c.-1251C>T for over all, first, and second lacta-
tions are respectively 0.117 + 0.047, 0.097 + 0.046 and
0.118 + 0.052. Thus, the increase in SCS for allele T over
allele C corresponded to 33% of the SD for SCS EBV. The
same effects on EBV for SCS were found for SPPic.-
430G>A, but the negative allelic substitution effect carried
by allele A had the opposite effect (reduced the EBV for
SCS). Although it was not significant for the first lactation
(SCS1; P = 0.121), the 3' UTR SNP SPPIc.*40A>C was
associated with EBVs for SCS2 (P = 0.038), SCS3 (P =
0.045) and over all lactations (P = 0.023); the correspond-
ing allele substitution effects for this SNP were -0.103 +
0.049, -0.112 + 0.056 and -0.102 + 0.045, respectively,
meaning that allele C reduces SCS over allele A.

Effect of SPP1 SNPs for production traits

The average substitution effect of the SNP SPPlc.-
1301G>A was significant for milk yield from the second (P
= 0.027) and third (P = 0.046) lactations. Substitution of
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allele G over allele A decreased the EBV for milk yield by
the equivalent of 178 kg and 165 kg, respectively (Table
4). Although no significant effect was observed for fat or
protein yield (kg), the same allele G had a favourable
effect on the EBVs for the fat and protein percentages. Pro-
tein percentages were associated with the SNP in the sec-
ond (P = 0.030) and third (P = 0.036) lactations (0.03%
+ 0.01), whereas the effects for fat percentages were
observed for all three lactations, as follows: 0.08% =+ 0.03
(P = 0.004), 0.09% + 0.03 (P = 0.012) and 0.08% + 0.03
(P = 0.009), respectively. None of the three other SNPs
was found to have a significant allelic substitution effect
when associated with the EBVs for production traits (data
not shown) or any significant effect using the regression
model (Additional file 1). However, all three SNPs were
associated with EBVs for fat yield and fat percentage (P <
0.05) (Additional file 1).

Haplotype analysis

Table 5 shows the estimated population haplotype fre-
quencies, comparing two different algorithms provided
by the HAPROB and Haploview analysis methods. Both
methods reported that four haplotypes were more likely
to be present in the population tested. However, HAPROB
analysis was more sensitive for detecting low abundant
alleles. Block H1 (GCGA) was the most frequent haplo-
type (59.2%), whereas block H5 was detected in only six
offspring among the 578 bulls. Blocks H2, H3 and H4 had
frequencies equal to 0.24, 0.10 and 0.05, respectively. The
remaining haplotypes, H6 to H13, had frequencies less
than 0.2% and were pooled together (into H6) for statis-
tical analysis. Table 6 reports the genotypes of both alleles
from all 578 bulls, displayed using the haplotype blocks
present in the population (Table 5). The EBVs (least mean
squares) for all traits are reported, according to their
homozygosis or heterozygosis, sorted by increasing value
of the EBV for SCS for the over all lactations. Analysis
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revealed statistically significant differences between hap-
lotype groups at a comparison-wise level with EBVs for
SCS1 (P =0.012), SCS2 (P < 0.001), SCS3 (P < 0.001) and
over all lactations (P < 0.001). For production trait, anal-
ysis revealed statistically significant differences between
haplotype groups at a comparison-wise level with EBVs
for fat (P = 0.044) and fat percentage (P = 0.043) (Table
6), and for protein percentage for the first and second lac-
tations only (data not shown). None of the haplotypes
produced a significant allele substitution effect on EBV for
SCS or for the production traits (Table 7 or Additional
file 1).

Discussion

The objective of this work was to identify one candidate of
the innate immune response, to define the association of
the genetic variants with the immune cells in milk, but
also to evaluate their impact on other traits related to
dairy production. Osteopontin has been described as an
early component of the T cell activation mechanism and
was also detected in the immune cells in the present study
during the first hours of E. coli infection. This confirms the
results of other studies which show the importance of
osteopontin in inflammatory responses. The expression
of SPP1 is enhanced in T cells during bacterial infection in
order to recruit macrophages to the infection site and to
improve cell-mediated immunity (Th1) by increasing the
secretion of Th1l cytokines [34-36]. Indeed, knockout
SPP1-/- mice have shown significantly impaired Thl
immunity to viral and bacterial infections with dimin-
ished production of interleukin-12 (IL-12) and inter-
feron-gamma (IFN-y) and elevated production of
interleukin-10 (IL-10) [44]. However, no studies have
been carried out to correlate osteopontin with mastitis.

Innate immune responses are activated by a cross-species
conserved signalling pathway. Study of this activation

Table I: Genotype and allele frequencies of the SNPs detected in the bovine SPPI gene.

DNA polymorphisms Genotype Code Frequency (%) Allele Frequency (%)
SPPlc-1301G>A GG -1 463 (80.1) G 1035 (89.5)
GA 0 109 (18.9)
AA | 6 (1.0 A 121 (10.5)
SPPlc-1251C>T CC -1 324 (56.1) C 865 (74.8)
CT 0 217 (37.5)
TT | 37 (6.4) T 291 (25.2)
SPP1c-430G>A GG -1 324 (56.1) G 865 (74.8)
GA 0 217 (37.5)
AA | 37 (6.4) A 291 (25.2)
SPP|c.*40A>C AA -1 287 (49.6) A 813 (70.3)
AC 0 239 (41.4)
CC | 52 (9.1) C 343 (29.7)
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Table 2: Effects of polymorphisms in the bovine SPPI gene on EBVs for SCS for the first, second, third, and over all lactations.

SNP Least squares mean? (£ SEM)2 P value
SPPlc-1301G>A GG GA AA

SCS 2.98b 3.16c 3.38¢ (£ 0.14) <.001
SCSI 2.98b 3.10c 3.25b.¢ (£ 0.13) <.001
SCS2 2.96b 3.14¢ 3.39¢ (£ 0.15) <.001
SCS3 2.99> 3.16¢ 3.50¢ (£ 0.16) <.001
SPPlc-1251C>T CC CT TT

SCS 3.04 297 3.02 (£ 0.06) 0.067
SCSI 3.02 2.98 3.02 (+ 0.05) 0.446
SCS2 3.03 2.96 3.00 ( 0.06) 0.155
SCS3 3.060 2.97¢ 3.0lb.¢c (£ 0.07) 0.057
SPP1c.-430G>A GG GA AA

SCS 3.04 297 3.02 (% 0.06) 0.067
SCSI 3.02 2.98 3.02 ( 0.05) 0.446
SCS2 3.03 2.96 3.00 (£ 0.06) 0.155
SCS3 3.06b 2.97¢ 3.01b.¢c (£ 0.07) 0.057
SPP|c.*40A>C AA AC CC

SCS 3.060 2.97¢ 2.98b.¢c (£ 0.05) 0.004
SCSI 3.03 2.98 2.98 (+ 0.05) 0.183
SCS2 3.05b 2.95¢ 2.97b ¢ ( 0.05) 0.014
SCS3 3.090 2.97¢ 2.97b ¢ ( 0.06) 0.004

2 The least square means are the adjusted means of the EBVs for the SCS for bulls which are grouped by genotype for each SNP and calculated for
the respective lactation (over all, first, second or third lactations). SEM standard error of the mean.
b.c Means (within a line) without a common superscript letter differ from each other at the 5% level of significance.

could lead to the identification of candidates genes for
disease resistance. The detection of favourable allelic vari-
ants of the innate immune response genes will make it
possible to select progeny with a more efficient immune
system. Because of the potential immunological role of
SPP1 in the milk of cows diagnosed with mastitis, the next
step was the validation of SPP1 genetic variants that
would explain the SCS observed in the dairy population.
Indeed, although SCS in milk is an indirect measure of
cow health status, SCS is considered to be the most widely
used biological marker of clinical mastitis in lactating
cows [30]. We thus found polymorphisms in the genomic
sequence of SPP1 that influence the number of somatic
cells in milk and, potentially, influence their susceptibility
to mastitis, although this latter assumption remains to be
validated. Through the use of animals with extreme EBV
for SCS, a novel SNP was discovered in the promoter

region of SPP1 (SPP1c.-1301G>A), 50 nucleotides (nt)
upstream from the SNP SPP1¢.-1251C>T.

The 5' UTR SNP SPP1¢.-1251C>T and SPP1¢.-430G>A, and
the 3' UTR SNP SPPIc.*40A>C were also identified both
in the present study and in a previous one [43]. These
DNA polymorphisms were not investigated for an associ-
ation with SCS. However, these authors found one DNA
polymorphism (T,/T;, INDEL) that had an effect on the
fat and protein percentage traits, based on the results of
167 bull sires, but was not associated with SCS [43]. This
INDEL polymorphism, which corresponds to polyT tract
alleles of either nine or 10 thymines (T,/T;, INDEL), is
absent from the 100 bulls sequenced in the present study,
and also from the mouse [45], human and swine SPP1
promoter (see sequence alignment in Additional file 2A).
The bovine SPPI region containing this polymorphism

Table 3: Association of the SNPs in the SPPI gene with EBVs for SCS.

Average allelic substitution effect (in EBV units of score)?2

SCS SCsI SCS2 SCS3

DNA Polymorphisms Average allele effect + SE (P value)

SPPlc-1301G>A 0.047 +0.030 (0.121) 0.033 +0.030 (0.280) 0.047 +0.034 (0.165) 0.035 +0.038 (0.362)
SPPlc-1251C>T 0.117 +0.047 (0.014) 0.097 +0.046 (0.035) 0.118 +£0.052 (0.023) 0.112 £0.059 (0.056)
SPPIc.-430G>A -0.117 +0.047 (0.014) -0.097 +0.046 (0.035) -0.118 +0.052 (0.023) -0.112 +0.059 (0.056)
SPPIc.*40A>C -0.102 +0.045 (0.023) -0.068 +0.044 (0.121) -0.103 +0.049 (0.038) -0.112 +0.056 (0.045)
2 EBVs are calculated for the respective lactation: over all (SCS), first (SCSI), second (SCS2), and third (SCS3) lactations
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Table 4: Association of the SNP SPPlc.-1301G>A in the SPPI gene with EBVs for production traits.

EBV unit

over all lactations

Ist lactation

2 nd lactation 3 rd lactation

Trait Average allele effect £ SE (p value)

Milk yield (Kg) -6 +78 0.142)  -177 91 (0.052) -178 + 80 0.027)  -164 +82 (0.046)
Fat yield (Kg) 2 +3 (0.500) 3 +3 (0.289) | +3 (0.658) 2 3 (0.485)
Protein yield (Kg) -2 +2 (0.420) -3 3 (0.175) -3 2 (0.167) -3 +2 (0.251)
Fat % 0.05 +0.03 (0.059) 009 +0.03 (0.004) 008 +0.03 0.012) 008 +0.03 (0.009)
Protein % 0.02 00l (0.090) 002  £0.0l (0.060) 003 x0.0I (0.030) 003 0.0l (0.036)

(also -1,301 and -1,251 nt) was aligned with other mam-
mals using the CLUSTALW algorithm (Additional file 2A).
This region does not contain any transcription factor (TF)
motifs (data not shown). The To/T,, INDEL polymor-
phism may not associate with TF. It is located 1,119 nt
upstream from the novel SPP1¢.-1301G>A, is absent from
sequenced individuals selected, and thus may not be a
functional SNP for the SCS trait. Therefore, we cannot
exclude this Ty/T,, INDEL polymorphism from the Cana-
dian population, since the present experimental design
does not address differences among bulls with extreme
EBVs based on production traits (e.g. fat).

We searched for cross-species similarity in regions of the
genome containing the SNP detected in the present study.
Both of the SNPs in the promoter are very similar to other
species (Additional file 2: B and C). Interestingly, these
regions included a "GC-rich" area identical to both the
mouse and the human regions. Among the potential func-
tional factors that could explain the impact on the EBV for

the SCS, IKZF2 (IKAROS family zinc finger 2) and SP1 are
two TFs that recognize binding sites at or in the vicinity of
the SNP (Figure 2). The TF SP1 binds specifically to GC
box DNA within the 5' flanking promoter sequences for
promoting eukaryotic transcription [46,47]. Specifically,
the TF SP1 binds to the SPP1 promoter and is involved in
Th1 immune responses [48]. The TF IKZF2 is a regulator
of Th2 responses [49]. In that way, allele G of SPPIc.-
1301G>A abolishes IKZF2 recognition (Figure 2). Thus,
impaired IKZF2 binding would have the consequence of
promoting a Th1 immune response in the absence of a
Th2 polarizing effect on naive immune cells [49].
Impaired IKZF2 binding could also facilitate the access of
SP1 (Th1 response) through its binding activity, which is
present in the vicinity of SPP1c.-1301G>A (Figure 2). This
hypothesis is supported by the fact that allele A is associ-
ated with an elevated SCS (Table 3), SCS having been
associated with increased mastitis incidence [30]. Indeed,
an inefficient Th1 response or abrogated innate immunity
predisposes cows to environmental mastitis.

Table 5: Estimated haplotype block and population frequencies of the SPPI locus.

Haplotype SPPlc.-1301G>A SPPlc.-1251C>T SPPlc.-430G>A SPPlc.*40A>C Frequency? Frequencyb
HI G C G A 0.59230 0.599
H2 G T A C 0.23976 0.252
H3 A C G A 0.10267 0.105
H4 G C G C 0.05079 0.045
H5 G T A A 0.00704
Hé A T A C 0.00164
H7 G T G C 0.00125
H8 G C A C 0.00123
H9 A C G C 0.00107
HI10 G C A A 0.00106
HIl G T G A 0.00104
HI12 A C A C 0.00003
HI3 A T G A 0.00003
Hli4 A T G C 0.00003
HI15 A C A A 0.00003
Hlé A T A A 0.00003
aAnalysis were performed using HAPROB [72]
bAnalysis were performed using Haploview [73], version 4
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Table 6: Estimated haplotype frequencies and effects of haplotypes in the bovine SPPI gene on EBVs for SCS2 and for production

traits.
Genotype Least squares mean
Allele | Allele 2 Frequency SCS SCSI SCS2 SCS3 Milkyield Fat yield Protein Fat % Protein %
(%) (Kg) (Kg) yield (Kg)

H4 (GCGC) H4 (GCGC) 2 (0.4) 2.81 2.9 2.74 2.79 -594 0 -17 0.22 0.02

HI (GCGA) H4 (GCGQ) 30 (5.2) 2.87 2.90 2.85 2.88 -238 -6 -3 0.03 0.04

H2 (GTAC) H4 (GCGC) 13(2.2) 2.88 2.88 2.92 2.88 -333 -8 -8 0.04 0.03

HI (GCGA) H2 (GTAC) 170 (29.4) 2.94 2.96 2.92 2.94 -128 | -0.7 0.07 0.04

H3 (ACGA) H4 (GCGC) 5(0.9) 3.01 3.04 3.03 2.96 296 25 8 0.15 -0.01

HI (GCGA) HI (GCGA) 205 (35.6) 3.02 3.00 3.01 3.05 4?2 -2 | -0.02 0.001

H2 (GTAC) H2 (GTACQ) 37 (6.4) 3.02 3.02 3.00 3.01 -99 -13 -2 -0.09 0.02

H4 (GCGC) H5 (GTAA) 6 (1.0 3.03 3.01 3.03 3.05 -244 4 -8 0.14 0.005

HI (GCGA) H3 (ACGA) 76 (13.2) 3.16 3.09 3.13 3.17 -139 2 0.1 0.07 0.05

H2 (GTAC) H3 (ACGA) 28 (4.8) 3.17 3.15 3.18 32 -198 -7 -2 0.0l 0.04

H3 (ACGA) H3 (ACGA) 6 (1.0 3.38 3.25 3.39 3.50 -517 -1 -10 0.08 0.07
+ SEM +024 +0.22 +026 +0.28 + 567 + 19 16 +0.21 +0.08
P value <.00l 0.012 <.001 <.00l 0.236 0.044 0.745 0.043 0.078

2 EBVs are calculated for the respective lactation: over all (SCS), first (SCSI), second (SCS2), and third (SCS3) lactations

An additional SP1 recognition site was found in the loca-
tion of SPP1c.-1251C>T, with allele T abolishing the SP1
GC box recognition (Figure 2). This TF binding site has
been found to colocalize with the human "-66T" SNP,
which is referred to as the human SPP1 transcription start-
ing site [48]. The authors, Hummelshoj et coll., confirmed
by electrophoretic mobility shift assay that recognition of
the TF SP1 is influenced by the presence of DNA polymor-
phism. Furthermore, using a luciferase assay reporting the
SPP1 promoter, they observed increased activity with
allele T compared to allele C for the corresponding -66 T/
G SNP [48]. Alignment of human and bovine sequences
revealed that the -66 T/G SNP is located 7 nt from the
bovine SNP SPPIc.-1251C>T, both within the TF SP1
binding site. Although it remains to be confirmed, the
influence of the SNP SPP1c.-1251C>T on the regulation of
the bovine promoter is highly plausible. Indeed, the regu-
lation of promoters based around the Sp family binding

Table 7: Estimated haplotype effects on EBVs for SCS.

protein has been observed in a number of housekeeping
genes. These factors act as transcriptional activators in
mammalian cells [50]. Since SP1 recruits the basal tran-
scription machinery and controls the rate of transcription
[51,52], it thus explains the constitutive secretion of oste-
opontin in several biological fluids (blood, semen, serum,
bile) and its distribution in a very broad variety of tissues
[53]. Our results suggest that the absence of the SP1 DNA
binding site would impair or reduce the transcription
activity of the SPP1 promoter. Unless validation of the
SPP1 transcript or osteopontin protein from cows har-
bouring allele C or T SPP1¢.-1251C>T is performed (hap-
lotypes H2 and H5 contained an abolished SP1 binding
site [Table 6]) the veracity of the tangible impact of
SPP1c.-1251C>T on bacterial infection remains unknown.
Further study by in vitro assay using reporter genes and
binding shift assays could help elucidate the impact of
promoter variants on transcription activity.

Average haplotype substitution effect (in EBV units of score)?

Haplotypes SCS SCsI SCSs2 SCS3
Estimated haplotype effect * SE (P value)
HI (GCGA) 0.118 +0.268  (0.660) 0.034 +0.26l (0.896) 0.120 +0.295 (0.685) 0.173  +£0.333  (0.604)
H2 (GTAC) 0.132  +£0274 (0.629) 0.06l +£0266 (0818 0.136 +0.300 (0.650) 0.174 +0.340  (0.609)
H3 (ACGA) 0.169  +0.277  (0.541)  0.071 +0270 (0.793) 0.177 +£0305 (0.562) 0209 +0345  (0.545)
H4 (GCGCQC) 0.023 +0.276  (0.935) 0.030 +0.269 (0.913) 0025 +£0303 (0.933) 0.071 +0.343 (0.836)
H5 (GTAA) 0212 +£0352 (0.547) 0090 +£0339 (0.790) 0247 +0.382 (0518 0285 +0433 (0.512)
2 EBVs are calculated for the respective lactation: over all (SCS), first (SCSI), second (SCS2), and third (SCS3) lactations
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Lastly, two other binding sites, the nuclear factor of acti-
vated T cells (NF-AT) and the interferon-stimulated
response element (ISRE), were positioned close to SPP1c.-
430G>A (-7 and +2 nt, respectively), located in the first
intron. The NF-AT promotes cell proliferation and the
expression of inflammatory cytokines, such as IL-6 and
SPP1 [54], whereas ISRE would regulate the expression of
SPP1 [55]. A polymorphism in this region could poten-
tially affect the binding of these two TFs and influence the
rapidity of the response of SPP1 to infection. Therefore,
functional studies are required to interrogate the signifi-
cance of this SNP with TF binding and gene expression.

In an association study, neither SPP1c.-1251C>T nor
SPP1c.-430G>A was found to be associated with SCS
(Table 2). We found that these two are linked (i.e. C/G or
T/A on the same allele; data not shown), which could
explain why only heterozygous animals (CT genotype for
SPP1c.-1251C>T and GA genotype for SPP1c.-430G>A),
when compared to their respective homozygotes, had an
impact on SCS. This was also shown by their opposite
allelic substitution effects (Table 3). Therefore, both allele
C for SPP1c.-1251C>T and allele A for SPP1c. 430G>A,
which are linked to G and T, respectively, would be
required to compensate for the negative effect of the sec-
ond allele.

As innate immunity is not an adaptive immune response,
an association study regarding the genetics should not be
modulated as time passes. In other words, immune
response should be maintained, irrespective of the
number of times the pathogen is encountered. Indeed,
this constant trend (for statistically significant values) was
observed regarding the allele substitution effect (Table 3),
which means that cows harbouring the favourable allele
do not benefit (i.e. there is no decrease of the SCS value)
in later parities from these SPP1c.-1251C>T and SPPIc.-
430G>A SNPs. The SNP SPPIc.-1301G>A was only found
to be associated with SCS in the regression model (Table
2). However, it may also have an impact that was not
revealed by the allele substitution effect. Because of the
discrepancy in the abundance of both alleles (89.5% ver-
sus 10.5%; Table 3), the substitution effect may not be sta-
tistically significant.

For the fourth SPP1c. *40A>C SNP, it is less clear how the
3'UTR DNA polymorphisms affect SPP1, although a more
general mechanism such as microRNA would affect tran-
script stability. We cannot exclude that SPP1 would be rel-
atively more stable than other transcripts in milk cells.
Although amplitude of the SPP1 induction was smaller
than TNF transcript, both were correlated as the bacterial
challenge of the PBMC progressed (data not shown). The
TNF-a is an important inflammatory mediator involved
in neutrophil recruitment [56,57] and SPP1 might acti-

http://www.biomedcentral.com/1471-2164/10/444

vate or maintained the Th1-Th2 balance. Thus SPP1 could
be either an upregulated gene or stabilized transcript.
MicroRNA are an important class of regulatory RNA that
repress animal genes by preferentially interacting with
complementary sequence motifs in the 3' UTR of target
mRNA [58]. The importance of the region is further high-
lighted by the presence of the SPP1c.*40A>C SNP within
two other bovine species. The presence of this DNA poly-
morphisms was detected within the Guernsey (n = 42)
and Jerseys (n = 81) cows (data not shown). Whereas both
human and mouse 3' UTR of SPP1 are the target of several
microRNA, retrieved by an in silico search (http://
www.microrna.org/; data not shown), this hypothesis
remains to be verified for the bovine SPP1 3' UTR
sequences.

In previous studies, nine DNA polymorphisms were
found within eight sires sequenced for the SPPI gene.
Whereas one SNP was associated with production traits
(fat and protein yield and percentage, milk yield), this
"OPN3909" was not found associated with SCS [43]. The
main reason may be inherent to the selection of the Hol-
stein dairy cattle population, which in our study was
based on extreme EBV for SCS from a directory of 6,453
bulls (Canadian Dairy Network database). How SPPI
may affect fat yield and fat percentage in bovine milk
remains an open question. In humans, a significant posi-
tive correlation was found between osteopontin levels
and body fat as well as circulating concentrations of total
cholesterol [59]. Osteopontin is also associated with cho-
lesterol gallstone formation in human and mouse [60].
The specific role of osteopontin beyond its immune role
in milk warrants further investigation. From a genetic per-
spective, it is well known that health and disease may
affect other performance traits such as longevity and fertil-
ity among others. Therefore, genetic factors affecting
health trait may impact other traits. For bull fertility, the
EBV for the male fertility index is reported as the non-
return rate trait (Canadian Dairy Network database).
Among the genotyped bulls, we did not find significant
statistical association of the four SPP1 SNP with the EBV
of the non-return rate (data not shown). Even though
osteopontin was reported to influence bull fertility
[61,62], these SPP1 variants were not found associated
with male fertility (data not shown). We cannot exclude
that a genetic association could be observed using bulls
with extreme EBV for the male fertility index. Therefore,
further investigations are still required before suggesting
favourable allele for the innate immune system, such as
how the genetic SPP1 variants may influence male fertility
or milk composition (e.g. concentration of cholesterol).
In fact, milk is used for human consumption and an
increase of the concentration of cholesterol may not be
valuable.
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TTCATGGGCCCTCTAGATGCCCTTCCAGGATGCTGGAAGTCAGTGCTATGAACAAAAAAAGATAGTTAGTGATATTGTACATA
AGTAATGTTTTAACTTTAACTAGCAGGGTAGTGGGTGTTTGTGTGCGTGTGCGCGTGTGTGTGTGCCTGTGTTTGTTCTGTGA
c—Myb
CCACAAAACCAGAGGGGGAAGTGTGGGAACAAGTGGGCTGGGTAGTGGCAAAATGCCCCATGACACATCTCTCCGCCCCCTGT
IKZF2 SP1 SP1 STRE
SPPl1c.-1301G>A SPP1c.-1251C>T
GTAGGTGGAGAGCATCTGGAGCAGCCTTTAAATTCTGGGAGATCCTGGTTGTCAGCAGCAGGGAGAGCAGGCCAGGAGGGCAG
Lyf-1 AP-4
CACTGAGCACTGCATCAGCATCACAGGGGACTGGACTCTTCTCGCCGCCGCAGACCAAGGTAAGCCTGCAGTTTGCTACAGAC
TCCTGTCCTCTCTGTGCGCTGCCTCATTTCATTGGGAAGGTCAATTTGTAAGGAAAAGAGTATAATGGTAAACACTGTTAATC
AP-1 IKZF1/2
AGACTTGAGTTGTTCTTGTCTTTTGAATATGCATGCCAGATCCAGGGCTGATGTCCTGCAGGAAAGGTGGCCGGTTATTTTGA
Oct-1
AAGACAGTCGAATATAAAACTTGAAAATATTTCCATGGAGTCCTCAAAAGAATTGAGACTACTTTTTTCAGTCAGGAAATAAA
AGAAAAATTCTATGCCCTTTTGGGATGATTGTATATACATCATTTTAATGAATAGATGACCATGGGATATTTAAAAGGAAAAT

IKZF2 TCF11 NF-AT
GCTTTTTAGTATTCATATAACCTGACGTTAATGCTAATTTTTAGTGATTTGATTTATCCCTTTTTCAAGGAAAAAAAAAAAAA
ATEF CRE-BP STATx

CCCTTTCTGAATATTTITCACCTCTGTATTTAGCTATTAAAATTTCACCCAAATATCTATATGATACTGTTTAGACTTACAAAT
AGAAAAGCTGTTGACTTCAGTGTTTTCTTTTTCATTTCAAACTTTTAGAATACCTTGACTTACTAACCTTAGAGACAGCTACA

TTACACCTAACTAATACCTTTTAAATAATTTAAAATCACATTTGAAATGCATGTTGGAAAATGGAGACAGCAAGTTTCTCTTT
NF-AT SPPIlc.-430G>A ISRE

CTTATTTTTATCTTCTCTCTTCATGTTTTTCTTCTCTGAAAAGTAAATATTCTCATTCTTGCTTTATTATTTTAATTCAATTA
CTGCTGATCTGTITTTTAGGTTTAGATAGCTGGAGATATCAGGTAGTAATGGTGTAATCTCTGAAACTCTAAATGTTAAAGTCG
AATAAATATAGATTTGTAAAATTCCTCTCTCCCTTGCCTAATAGTGAGAGATGGAAAATAGAGGTGGCAGTACAAATATTAAC
TCAAAAGATCATAATATTAAAAAGAAATTAGTGGAGTGTTTCCACACAAAATACATATTTATTTGTGATGATTTTIGTAATGTG

GATA-3 CCAAT
GTAGCCTAAAAAAAGTATCACTGTTTIGACCTTAGAAAAGATAAAATATTTCTTACAAAATATTITTIGCAGGAAAAATCATTAC
GATA-1/2/3 STATx NF-AT
CATGAGAATTGCAGTGATTT ... GGTCAATTGARAGGAGAAAATACAATTTICTTACTTTGCTTTTAGTAAAAAGAAAAGGA
+1 *1 SPPlc.*40A>C

Figure 2

Nucleotide sequence of the 5' upstream region (GenBank accession No. AY878328) of the bovine osteopontin
gene SPPI. The 5' region is indicated in uppercase letters, and position +1 (translation initiation codon) is indicated in italic
uppercase letters until position *| (translation termination codon). SNPs are in bold. Putative binding sites (found with http://
motif.genome.jp) are shown in grey or underlined when co-localized: octamer factor | = Oct-I; TCFI I/KCR-FI/Nrfl
homodimers = TCFI I; LyF-1 = Lyf-1; c-Myb = c-Myb; stimulating protein | = SPI; stress-response element = STRE; AP-1 bind-
ing site = AP-1; activator protein 4 = AP-4; IKAROS family zinc finger | (Ikaros) = IKZFI; IKAROS family zinc finger 2 (Helios)
= IKZF2; nuclear factor of activated T-cells = NF-AT; CRE-binding protein |/c-Jun heterodimer = CRE-BP; signal transducers
and activators of transcription = STATx; C/EBPalpha CCAAT/enhancer binding protein alpha = CCAAT; GATA-binding factor
| = GATA-1; GATA-binding factor 2 = GATA-2; GATA-binding factor 3 = GATA-3; interferon-stimulated response element =

ISRE; activating transcription factor = ATF.

In the present study, we found a strong correlation
between SPP1 and SCS, and we identified potential func-
tional sites in the promoter of the gene. The different pro-
moter haplotypes have been cloned, and the relevance of
the functional sites will be studied in order to elucidate
the molecular mechanisms responsible for the abundance
of milk somatic cells in the Holstein dairy population as
well as to depict the immune response to environmental
stimuli.

Conclusion

This study reports the link between DNA polymorphisms
within the innate immune SPP1 gene, the number of milk
immune cells and, potentially, susceptibility to mastitis.
Indeed, one SNP abolished the SP1 recognition site,
whereas another SNP affected the transcription binding
factor IKAROS. These SNPs, located in the promoter, are
potentially involved in the Th1 immune response and in
the Th2 regulation pathway since they were identified by
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in silico search to abolish these transcription factor recog-
nition sites. Because these SNPs are associated with the
level of immune (somatic) cells measured in milk which
is associated with clinical mastitis and because of their
potential implication in the Th1- Th2, all together, these
findings suggest the genetic potential of these variants in
terms of selection for improving mastitis resistance in
dairy cows. But osteopontin is not only involved in regu-
latory mechanisms of the immune response but also in
mammary gland development and milk secretion. Thus,
before recommending any SPP1 haplotype for genetic
selection, the beneficial role of these genetic forms would
require further investigation.

Methods

Animals

Twenty multiparous Holstein cows were selected from
surrounding dairy farms based on several criteria. All cows
were from different dam and sire families, and had low
SCCranging from 5 x 104to 1 x 10> cells/mL, no past his-
tory of mastitis, tested negative for bovine virus diarrhoea,
leucosis, neospora and mycoplasmosis, and were found
to be free from bacteria in aseptically collected milk sam-
ples. Milk was aseptically sampled from each quarter
every week starting at calving until the end of the trial
period (110 to 170 days of lactation). Four cows were kept
for the study based on these criteria: no calving associated
problem and bacteriologically negative milk samples with
SCC values below 1 x 105 cells/mL across lactation. The
cows were transferred to the level 2 biosecurity facility one
week before the challenge. They were handled according
to the Guide for the Care and Use of Agricultural Animals
by the Institutional Animal Care and Use Committee at
Agriculture and Agri-Food Canada's Dairy and Swine
Research and Development Centre (Document 188).

Bacteria and intramammary challenge

Escherichia coli strain SHY97-3923-2, previously isolated
from a clinical case of bovine mastitis and kindly pro-
vided by the Laboratoire provincial de pathologie animale
(St-Hyacinthe, Quebec, Canada), was used for the
intramammary challenge. An antibiotic susceptibility test
was validated on the strain (Biovet, St-Hyacinthe, Quebec,
Canada). The bacteria were cultivated in tryptic soy broth
(TSB) and the fresh starter was incubated for approxi-
mately 3 h to bring it to an exponential growth phase (0.6
to 0.7 OD). The culture was then centrifuged, washed
once in pyrogen-free saline (PFS) and re-suspended fol-
lowing an established serial dilution protocol to get a final
concentration of 1,000 CFU/mL. The concentration was
confirmed by plating 200 pL of three independent dilu-
tions on TSA. The 3-mL volume was injected in the chal-
lenged glands via the teat canal immediately after the
morning milking in the left and right rear quarters of the
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mammary gland (n = 4 cows). As controls, the right and
left front quarters of each cow were infused with 3 mL of
sterile saline solution. All the quarters were then massaged
to ensure dispersal of the inoculum. Bacteriological anal-
ysis was conducted by plating 200 pL of each milk sample
from each quarter onto TSA overnight at 37°C to deter-
mine the number of colony-forming units over the chal-
lenge.

Clinical signs, collected samples and assays

Antibiotic treatment (Borgal; Hoechst, Montreal, Canada)
and pain relief medicine (Anafen; Merial, Baie d'Urfé,
Canada) were administered following 6 h (n = 2 cows)
and 12 h (n = 2) according to the Guide for the Care and
Use of Agricultural Animals. Rectal temperature and gen-
eral state were monitored for each cow every 3 h. The SCC
in milk samples were analyzed by the Dairy Production
Centre of Expertise (Valacta, Montreal, Quebec, Canada)
and provided values on crude milk. All contaminated
samples were processed in the level 2 biosecurity microbi-
ology laboratory. The tumour necrosis factor-alpha (TNF-
a) concentration in the milk samples was determined
using an enzyme-linked immunosorbent assay (ELISA)
kit provided by the Vaccine and Infectious Disease Organ-
ization (Saskatoon, Saskatchewan, Canada). The assay
was performed according to the protocol developed at the
Vaccine and Infectious Disease Organization and as
described previously by other authors [63].

Fluorescence-activated cell sorting

Measurement of differential leukocyte populations in
milk was performed by flow cytometry using the SYTO 13
labelling method, as described previously by other
authors [64] but with some modifications. Briefly, 15 mL
of collected milk was added to 35 mL of 1x Hank's bal-
anced salt solution without Ca2+ or Mg?+ (HBSS 10x; Inv-
itrogen, Toronto, Ontario, Canada) and centrifuged. The
pellet was re-suspended in RPMI-1640 (Invitrogen) sup-
plemented with 5% fetal bovine serum (FBS; Invitrogen)
at1x 105to 1 x 10°cells/mL. Then, 490 uL was transferred
to a new tube, and 10 pL of diluted SYTO 13 green fluo-
rescent nucleic acid stain solution (1:400 in RPMI-1640; 5
mM, Invitrogen) was added. After 10 min in the dark, the
staining was stopped with 4 mL of HBSS 1x, and the cells
were recolted. The pellet was re-suspended in 400 pL of
cold RPMI-1640 supplemented with 5% FBS, and was
analyzed with a Coulter Epics XL-MCL flow cytometer
using Expo 32 software (Beckman Coulter, Mississauga,
Ontario, Canada). The forward scatter and side scatter
were measured on a linear scale, whereas green fluores-
cence was registered on a log scale. The differential leuko-
cyte count in milk after SYTO 13 staining was quantified
using the side scatter/green fluorescence dot plot. The per-
centage of different leukocyte populations in milk sam-
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ples was established, after counting 10,000 events, as
follows: percentage of the number of cells in the gated leu-
kocyte population out of the total number of gated lym-
phocytes, macrophages and granulocytes.

RNA extraction and analysis

Mammary quarters were sampled aseptically. Twenty mL
was diluted in an equal volume of PBS and centrifuged at
180 x g for 10 min at 4°C. The cell pellet was washed with
cold PBS and 1 mL of TRIzol (Invitrogen, Carlsbad, Cali-
fornia, USA) was added. The RNA extraction was per-
formed as recommended by the manufacturer but with
minor modifications. The RNA samples were resuspended
in water with SUPERase. In (1 U/uL; Ambion) and treated
with Recombinant DNase I (Ambion). The final concen-
tration was determined using a NanoDrop ND-1000 spec-
trophotometer. For each cow, equal amounts of RNA
from the infected rear quarters and the non-infected fore-
quarters were pooled, with one pool for the infected quar-
ters and one for the non-infected quarters. RNA was
amplified using the SMART mRNA Amplification Kit
(Clontech, Mountain View, California, USA) according to
the manufacturer's protocol. This kit uses the template-
switch mechanism to generate the double-stranded cDNA
necessary for in vitro transcription without the polymerase
chain reaction (PCR) step that is generally associated with
a conventional SMART technique. The cDNA library was
performed according to the recommended protocol for
the PCR-Select cDNA Subtraction Kit (Clontech), which is
a suppressive subtractive hybridization (SSH) technique.
Briefly, equal amounts of amplified RNA from both
infected quarters of cows were pooled prior to the hybrid-
izations. The same pooling step was performed for the
non-infected quarters. The pool of infected samples was
used as the "tester" in accordance with the SSH procedures
and was subtracted with an excess of the "driver," the
"driver" being the pool prepared from transcripts derived
from the non-infected quarters. Consequently, this
scheme allows the generation of a differential representa-
tion of infected transcripts normalized with non-infected
transcripts. Supplementary PCR amplifications of the
hybridization product were then cloned into a TA vector
(pCRII, Invitrogen) and transformed into MAX Efficiency
DHS5a-competent cells (Invitrogen) to make up a cDNA
library. To identify clones containing a single insert, each
clone was submitted to PCR using NP1 and NP2R prim-
ers, and the products were electrophoresed on a 2% agar-
ose gel. Clones were sequenced according to the BigDye
Terminator v3.1 Cycle Sequencing Kit protocol with a
3100-Avant genetic analyzer (Applied Biosystems, Foster
City, California, USA). Lastly, gene similarity was
searched among our sequences using the Basic Local
Alignment Search Tool (BLAST) algorithm of the National
Center for Biotechnology Information (NCBI) public
database.

http://www.biomedcentral.com/1471-2164/10/444

Isolation of bovine PBMC and induction

Peripheral blood mononuclear cells (PBMC) were iso-
lated from the buffy coat fractions of peripheral blood and
further purified by Ficoll and sucrose gradients. Blood was
collected from the jugular or caudal vein in 10 x heparin
(1:10) tubes (n = 3 cows). Centrifugation was performed
at 572 x g for 15 min at 18°C. For the respective cow, the
fractions were pooled together, completed to 40 mL with
1x HBSS (Hanks' Balanced Salt Solution without Ca2+and
Mg?+; Wisent, St-Bruno, Canada), poured very slowly
onto 2 x Ficoll gradients (Ficoll Paque Plus; Amersham,
Baie d'Urfe, Canada), and centrifuged at 572 x g for 40
min at 18°C. The PBMC were rinsed with 1x HBSS, re-sus-
pended in 5 mL of 1x HBSS and poured onto a 20%
sucrose (Sigma, Oakville, Ontario) discontinous gradient
prior to centrifugation at the same parameters described
above. The PBMC were rinsed with 1x HBSS and the cell
pellets were treated with Red Cell Lysis buffer (Sigma) to
eliminate residual erythrocytes. Finally, PBMC were re-
suspended in 2 mL RPMI-1640 (Wisent) with 5% foetal
calf serum (Wisent). Cells were cultured at 5 x 10°in 12
wells flat bottom plate at 39°C in 5% CO, in a humidified
atmosphere. Cells were incubated for 45 min to allow
monocytes to attach before bacterial induction and incu-
bated with either medium alone (nonstimulated) or with
heat-inactivated bacteria (63°C for 30 min, as described
before [65]) at a concentration of 30 CFU/PBMC. The
samples were harvested immediately after the attachment
period (time zero) or after 0.5, 1, 3 or 5 h post-infection.
Cells in suspension were harvested, 1 mL of TRIzol was
added to each well and transferred to the respective pellet
cells in order to recover both attached and cells in suspen-
sion. The RNA extraction was performed as described
above.

RT-PCR and quantitative RT-PCR

The reverse transcription (RT) was performed with 1 pg of
RNA according to the SuperScript II RT procedure (Invit-
rogen). Each RT assay was made in a 20-pl reaction using
Oligo(dT),,.5 (Invitrogen) as a primer and according to
the supplier's recommendations. Quantitative RT-PCR
(qRT-PCR) was performed in a 10-pL final volume using
5 uL of Fast SYBR Green Master Mix 2x (Applied Biosys-
tems), 300 nM of both forward and reverse primers (Addi-
tional file 3), and 2 pL of diluted template. All RT
reactions were performed in triplicate. The amplification
was carried in a 7500 Fast Real-Time PCR System (Applied
Biosystems) following denaturation of 20 s at 95°C and
amplification during 40 cycles of denaturation at 95°C for
3 s followed by an annealing/elongation period of 20 s at
60°C. Three reference genes were also measured, namely
actin beta (ACTB), glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) and peptidylprolyl isomerase A (PPIA).
The qRT-PCR results were analyzed according to the rela-
tive quantification method given by the arithmetic for-
mula 2-2ACt[66].
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Genetic DNA material and EBVs for the SCS and milk
production traits

Selection of Holstein genetics was performed using infor-
mation downloaded from the Canadian Dairy Network
database (Guelph, Ontario, Canada), which can also be
accessed using the web interface http://www.cdn.ca/. The
EBV data for the August 2008 genetic evaluation were
downloaded onto a local server. These EBVs comprised
the SCS, the non-return rate, and production (protein and
fat yields, protein and fat percentages, and milk yield)
over lactations. The semen of 578 bulls presenting a mean
EBV of 3.01 (Table 8) for the SCS, which is very close to
the breed average (3.00; Canadian Dairy Network data-
base), was available for the study. Table 8 describes the
EBVs (SCS) for the different lactations. Among the 6,453
recorded bulls, two selections were made using the 150
lowest-ranked and 150 highest-ranked bulls for the EBV
for SCS. Among these two groups, semen was available for
51 and 50 bulls, corresponding respectively to the low
and high cohorts for the EBV (SCS), and thus defined as
the low SCS (2.48 + 0.07) and the high SCS (3.72 + 0.17)
pools. Genomic DNA (gDNA) was extracted from semen
samples, as described previously by other authors [67]
and concentration was measured using the NanoDrop
ND-1000 spectrophotometer.

SNP mining and sequencing

A sequence of 12,300 bp (GenBank accession No.
AY878328) was retrieved by a BLAST search for similarity
to a consensus sequence assembled from the SPPI tran-
script sequences from our cDNA library. We used the mul-
tiple sequence alignment methods (CLUSTALW) of the
DNASTAR suite program MegAlign (Lasergene, v7.2;
DNASTAR, Madison, Wisconsin, USA) (data not shown).
The sequence of the 5' region of SPP1 was analyzed in sil-
ico for identification of transcription factors' recognized
DNA binding motifs (Figure 2) using the software MOTIF
Search http://motif.genome.jp/ with a cut off score of 85.
To construct both pools (high and low EBV for SC) for
SNP detection, equal amount of each bulls was PCR-
amplified for the respective delimited genomic sequence
of SPP1 (promoter or respective exons) using the appro-
priate primers designed from the AY878328 sequence
(Additional file 4). PCR reactions were carried out in a
final volume of 50 pL containing 2 ng of template, 200
nM of each primer, 200 uM of each ANTP, 1.5 mM of
MgCl,, 1x PCR buffer (20 mM of Tris-HCI pH 8.4, 20 mM
of KCI) and 1 U of Tag DNA polymerase (BioShop Can-
ada, Burlington, Ontario, Canada). The conditions were
94°C for 3 min, followed by 35 cycles of 30 s of denatur-
ation (94°C), 30 s of annealing (59°C) and 1 min of
elongation (72°C), followed by 5 min of final elongation
(72°C). The amplicon size was confirmed by 1.2% agar-
ose gel electrophoresis. The amplified fragments were
purified using NucleoFast PCR plates (Macherey-Nagel

http://www.biomedcentral.com/1471-2164/10/444

distributed by MJS BioLynx, Brockville, Ontario, Canada),
quantified with the NanoDrop and diluted to a final con-
centration of 10 ng/uL. To construct the selective DNA
pools, equal amounts of the amplified genomic fragments
from each bull were assembled into the respective high
and low EBV (SCS) pools. Two pools comprising different
individuals were assembled, one each for the high and
low EBV (SCS) DNA. These pools were used as templates
for sequencing with the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems) according to the
company's recommendations, using the forward or
reverse PCR primer (Additional file 4) to sequence both
strands. When a SNP was detected (overlap of nucleotide
bases), all bulls from the pool were individually
sequenced to confirm the DNA polymorphisms.

SNP genotyping

Five hundred seventy-eight bulls, from 26 different sires,
were genotyped using tetra-primer amplification refrac-
tory mutation system PCR (ARMS-PCR), as described pre-
viously by other authors [68-70]. Primers designed using
the open source Cedar Genetics Software http://
cedar.genetics.soton.ac.uk/public_html/primer1.html are
listed in Additional file 5. Reactions were carried out in a
25-uL final volume containing 50 ng of template in the
presence of the appropriate concentration of primers
(Additional file 5), 200 uM of each dNTP, 1.5 mM of
MgCl,, 1x PCR buffer (20 mM of Tris-HCl pH8.4 and 20
mM of KCl), and 1 U of Taq DNA polymerase (BioShop
Canada). The PCR reactions were performed at 94°C for
3 min, followed by 35 cycles of 30 s of denaturation
(94°C), 30 s of annealing at the appropriate temperature
(Additional file 5) and 1 min of elongation (72°C), fol-
lowed by 5 min of final elongation (72°C). The genotypes
were determined according to the fragment length ana-
lyzed following 2% agarose gel electrophoresis, as
described previously by other authors [68].

Statistical analysis

Descriptive statistics for the selective pools (high and low
EBV pools for SCS) and the genotyped cohort of 578 bulls
are presented in Table 2. Allele and genotype association
analyses were done through comparison of the frequen-
cies of the different genotypes and alleles with EBVs for
SCS for the respective lactation using logistic regression.
Conformance of the allele frequencies with the Hardy-
Weinberg equilibrium for all the SNPs was tested using
the Chi-square test. All analyses were performed using Sta-
tistical Analysis System (SAS) software (release 9.1; SAS
Institute, Cary, North Carolina, USA).

The average allele substitution effects of the SNPs were
calculated using the model described above [68], as fol-
lows:
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Table 8: Descriptive statistics of the EBVs for the SCS trait for the Holstein bulls2.

EBVP? units Bulls selected for SNP mining
Bulls' cohort Low EBY for SCS High EBV for SCS
Nb Mean *SD [min-max] Nb Mean *SD [min-max] Nb mean £SD [min-max]
SCS 578 3.01 +0.35 [2.34-4.16] 51 2.48 +0.07 [2.34-2.72] 50 372 +0.17 [2.99-4.16]
SCsI 521 3.00 +0.31 [2.36-4.36] 49 2.53 +0.08 [2.36-2.65] 45 3.63 +0.18 [3.37-4.36]
SCs2 521 3.00 +0.37 [2.28-4.12] 49 2.47 +0.09 [2.29-2.62] 45 3.76 +0.15 [3.40-4.12]
SCS3 521 3.03 + 0.4l [2.08-4.15] 49 242 +0.13 [2.13-2.70] 45 3.82 +0.19 [3.42-4.26]

Breed average: 3.00

Selected sub-group average: 3.09

2EBV values from the Canadian Dairy Network database, evaluation published on August 2008
b EBVs are calculated for the respective lactation: over all (SCS), first (SCSI), second (SCS2), and third (SCS3) lactations.

3
Yik :p+z,8iGi+S]- +eji
i=1

where Yj, is the trait EBV of the jh animal in the kth sire, p
is the overall mean, f;is the fixed linear regression coeffi-
cient for the ith SNP, G, is the genotype of the ith SNP
recoded [71] (namely -1 [homozygous dominant/abun-
dant genotype], 0 [heterozygous genotype] or 1
[homozygous recessive genotype]), S;is the random poly-
genic effect of the jh (1 to 26) sire, and e is the random
error. The bull's EBVs for SCS in the first (SCS1), second
(SCS2), third (SCS3) and global (SCS) lactations were
used.

Haplotype

The four SNPs detected in the osteopontin gene were used
for the construction of haplotype blocks. A total of 578
bulls distributed into 26 Holstein families were selected,
thus eliminating families with fewer than 10 offspring.
The haplotype reconstruction was performed using the
HAPROB algorithm [72], and the results were compared
using Haploview (v4.1; [73]). Each family comprised a
minimum of 10 half-sib sons, which is considered a min-
imum family size for reaching greater than 80% accuracy,
as reported previously by other authors [72]. From the
578 bulls genotyped, 16 haplotypes were reconstructed,
but 11 of those had very low probabilities and were then
pooled together to represent a single haplotype for the
study on haplotype effect. The linear effects of the six hap-
lotypes were estimated, restricting block H6 to an esti-
mated effect equal to 0 to account for a linear dependency
among haplotype effects, as described elsewhere [68].
Haplotype effects were estimated with PROC MIXED of
SAS (SAS Institute), using the same model as described
above [68], as follows:

6
Yy =u+ Z BiHapy +8; + ey
i=1

where Y, is the trait EBV of the jhanimal in the kth sire, p
is the overall mean, f; is the fixed linear regression coeffi-
cient for the ith haplotype, Hap,, is the probability of the
ith haplotype for the kh bull, S; is the random polygenic
effect of the jth (1 to 26) sire, and ¢y is the random error.
Results were considered significant if P values were less
than 0.05.
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Additional material

Additional file 1

Effects of polymorphisms in the bovine SPP1 gene on EBV:s for produc-
tion traits. The data provided represent the statistical analysis of the least
mean squares of the estimated breeding values of different traits for the
respective DNA polymorphisms SPP1c.-1301G>A, SPP1c.-1251C>T,
SPP1c.-430G>A, and SPP1c.*40A>C.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-444-S1.DOC]
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Additional file 2

Sequence alignment of the different regions of SPP1 surrounding (A)
-2,419 nucleotides (nt) (T,/T,, INDEL), (B) -1,301 nt (SPP1c.-
1301G>A), and (C) -1,251 nt (SPP1c.-1251C>T). The figure presents
the sequence alignment of the respective regions surrounding the three
SNPs of the bovine SPP1, compared with other mammals using the
CLUSTALW algorithm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-444-S2.DOC]

Additional file 3

Oligonucleotide primer sequences for quantitative real-time PCR.
Sequence of the primers used in quantitative real-time PCR assays for the
detection of SPP1, TNF, ACTB, GAPDH, and PPIA genes are listed.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-444-S3.DOC]

Additional file 4

Sequencing primers for SPP1. The sequence of the primers designed from
the AY878328 sequence and used to amplify the respective delimited
genomic sequence of SPP1 (promoter or respective exons) are listed.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-444-S4.DOC]

Additional file 5

Primers and conditions for SNP genotyping using tetra-primer ARMS-
PCR in the bovine SPP1 gene. Sequence of the primers and the condi-
tions of the PCR reactions used to genotype SPP1 using tetra-primer
amplification refractory mutation system PCR (ARMS-PCR) are listed.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-444-S5.DOC]

Acknowledgements

We thank N Gagnon for technical assistance in the FACS analysis, SD Pant
for his assistance in the use of the HAPROB algorithm, S Method for statis-
tical analysis, and Semex Alliance Inc. for the semen samples that it pro-
vided. This work was supported by grants from the Dairy Cattle Genetics
Research and Development (DairyGen) Council and from Agriculture and
Agri-Food Canada.

References

Bar D, Tauer LW, Bennett G, Gonzilez RN, Hertl JA, Schukken YH,
Schulte HF, Welcome FL, Gréhn YT: The cost of generic clinical
mastitis in dairy cows as estimated by using dynamic pro-
gramming. | Dairy Sci 2008, 91(6):2205-2214.

Bradley A: Bovine mastitis: an evolving disease. The Veterinary
Journal 2002, 164(2):116-128.

Huijps K, Lam TJ, Hogeveen H: Costs of mastitis: facts and per-
ception. The Journal of Dairy Research 2008, 75(1):113-120.
Sordillo LM, Shafer-Weaver K, DeRosa D: Immunobiology of the
mammary gland. | Dairy Sci 1997, 80(8):1851-1865.

Rainard P, Riollet C: Innate immunity of the bovine mammary
gland. Vet Res 2006, 37(3):369-400.

Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis ]J: Cutting edge:
repurification of lipopolysaccharide eliminates signaling
through both human and murine toll-like receptor 2. jJournal
of immunology (Baltimore, Md: 1950) 2000, 165(2):618-622.

20.

21.

22.
23.

24.

25.

26.

27.

28.

http://www.biomedcentral.com/1471-2164/10/444

Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol
2004, 4(7):499-511.

Nagai S, Hashimoto S, Yamashita T, Toyoda N, Satoh T, Suzuki T,
Matsushima K: Comprehensive gene expression profile of
human activated T(h) |- and T(h)2-polarized cells. Int Immunol
2001, 13(3):367-376.

Concha C: Cell types and their immunological functions in
bovine mammary tissues and secretions--a review of the lit-
erature. Nord Vet Med 1986, 38(5):257-272.

Lahouassa H, Moussay E, Rainard P, Riollet C: Differential cytokine
and chemokine responses of bovine mammary epithelial
cells to Staphylococcus aureus and Escherichia coli. Cytokine
2007, 38(1):12-21.

Peveri P, Walz A, Dewald B, Baggiolini M: A novel neutrophil-acti-
vating factor produced by human mononuclear phagocytes.
The Journal of experimental medicine 1988, 167(5):1547-1559.

Rupp R, Hernandez A, Mallard BA: Association of bovine leuko-
cyte antigen (BoLA) DRB3.2 with immune response, masti-
tis, and production and type traits in Canadian Holsteins. |
Dairy Sci 2007, 90(2):1029-1038.

Sordillo LM, Streicher KL: Mammary gland immunity and mas-
titis susceptibility. | Mammary Gland Biol Neoplasia 2002,
7(2):135-146.

Begley N, Buckley F, Pierce KM, Fahey AG, Mallard BA: Differences
in udder health and immune response traits of Holstein-Frie-
sians, Norwegian Reds, and their crosses in second lactation.
J Dairy Sci 2009, 92(2):749-757.

Wilson DJ, Grohn YT, Bennett GJ, Gonzalez RN, Schukken YH, Spatz
J: Comparison of J5 vaccinates and controls for incidence, eti-
ologic agent, clinical severity, and survival in the herd follow-
ing naturally occurring cases of clinical mastitis. | Dairy Sci
2007, 90(9):4282-4288.

Wilson D), Mallard BA, Burton JL, Schukken YH, Grohn YT: Milk and
serum )5-specific antibody responses, milk production
change, and clinical effects following intramammary
Escherichia coli challenge for }5 vaccinate and control cows.
Clin Vaccine Immunol 2007, 14(6):693-699.

Wilson DJ, Mallard BA, Burton JL, Schukken YH, Grohn YT: Associ-
ation of Escherichia coli )5-specific serum antibody
responses with clinical mastitis outcome for J5 vaccinate and
control dairy cattle. Clin Vaccine Immunol 2009, 16(2):209-217.
Nonaka M, Kimura A: Genomic view of the evolution of the
complement system. Immunogenetics 2006, 58(9):701-713.

Jault C, Pichon L, Chluba J: Toll-like receptor gene family and
TIR-domain adapters in Danio rerio. Mol Immunol 2004,
40(11):759-771.

Kadarmideen HN, von Rohr P, Janss LL: From genetical genomics
to systems genetics: potential applications in quantitative
genomics and animal breeding. Mamm Genome 2006,
17(6):548-564.

Olde Riekerink RG, Barkema HW, Kelton DF, Scholl DT: Incidence
rate of clinical mastitis on Canadian dairy farms. | Dairy Sci
2008, 91(4):1366-1377.

Rupp R, Boichard D: Genetics of resistance to mastitis in dairy
cattle. Vet Res 2003, 34(5):671-688.

Mrode RA, Swanson GJT: Estimation of genetic parameters for
somatic cell count in the first three lactations using random
regression. Livestock Production Science 2003, 79(2-3):239-247.
Heringstad B, Klemetsdal G, Ruane J: Selection for mastitis resist-
ance in dairy cattle: a review with focus on the situation in
the Nordic countries. Livestock Production Science 2000, 64(2-
3):95-106.

Rupp R, Bergonier D, Dion S, Hygonenq MC, Aurel MR, Robert-
Granie C, Foucras G: Response to somatic cell count-based
selection for mastitis resistance in a divergent selection
experiment in sheep. | Dairy Sci 2009, 92(3):1203-1219.

Luttinen A, Juga J: Genetic relationship between milk yield,
somatic cell count, mastitis, milkability and leakage in Finn-
ish dairy cattle. Interbull 1997, 15:78-83.

Poso |, Mantysaari EA: Relationships between clinical mastitis,
somatic cell score, and production for the first three lacta-
tions of Finnish Ayrshire. | Dairy Sci 1996, 79(7):1284-1291.
Rupp R, Boichard D: Genetic parameters for clinical mastitis,
somatic cell score, production, udder type traits, and milking
ease in first lactation Holsteins. J Dairy Sci 1999,
82(10):2198-2204.

Page 15 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-10-444-S2.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-10-444-S3.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-10-444-S4.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-10-444-S5.DOC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18487643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18487643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18487643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12359466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9276826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9276826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16611554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16611554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10878331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10878331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10878331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3540852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3540852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3540852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17532224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17532224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17532224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2835419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2835419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17235182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17235182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17235182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12463736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12463736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19164687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19164687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17699047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17699047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17699047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17460115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17460115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19052158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19052158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19052158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16896831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16896831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14687933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14687933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16783637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16783637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16783637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18349229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18349229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19233814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19233814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19233814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8872724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8872724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8872724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531607

BMC Genomics 2009, 10:444

29.

30.

31

32.

33.

34.

35.
36.

37.

38.
39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Nielsen US, Pedersen GA, Pedersen |, Jensen J: Genetic correla-
tions among health traits in different lactations. Interbull 1997,
15:68-77.

de Haas Y, Ouweltjes W, ten Napel }, Windig JJ, de Jong G: Alterna-
tive somatic cell count traits as mastitis indicators for
genetic selection. | Dairy Sci 2008, 91(6):2501-2511.

Heringstad B, Sehested E, Steine T: Short communication: corre-
lated selection responses in somatic cell count from selec-
tion against clinical mastitis. | Dairy Sci 2008, 91(1 1):4437-4439.
Patarca R, Freeman GJ, Singh RP, Wei FY, Durfee T, Blattner F, Reg-
nier DC, Kozak CA, Mock BA, Morse HC 3rd, et al.: Structural and
functional studies of the early T lymphocyte activation |
(Eta-1) gene. Definition of a novel T cell-dependent response
associated with genetic resistance to bacterial infection. The
Journal of experimental medicine 1989, 170(1):145-161.

Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Den-
hardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, et al.: The influ-
ence of the proinflammatory cytokine, osteopontin, on
autoimmune demyelinating disease. Science 2001,
294(5547):1731-1735.

Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman |S: Oste-
opontin as a means to cope with environmental insults: reg-
ulation of inflammation, tissue remodeling, and cell survival.
The Journal of clinical investigation 2001, 107(9):1055-1061.

Chabas D: [Osteopontin, a multi-faceted molecule]. Medecine
Science 2005, 21(10):832-838.

Konno S, Eckman JA, Plunkett B, Li X, Berman S, Schroeder |, Huang
SK: Interleukin-10 and Th2 cytokines differentially regulate
osteopontin expression in human monocytes and dendritic
cells. | Interferon Cytokine Res 2006, 26(8):562-567.

Wang KX, Denhardt DT: Osteopontin: Role in immune regula-
tion and stress responses. Cytokine Growth Factor Rev 2008, 19(5-
6):562-567.

Campbell TM, Wong WT, Mackie EJ: Establishment of a model of
cortical bone repair in mice. Calcif Tissue Int 2003, 73(1):49-55.
Giachelli CM, Liaw L, Murry CE, Schwartz SM, Almeida M: Oste-
opontin expression in cardiovascular diseases. Ann N Y Acad Sci
1995, 760:109-126.

Singhal H, Bautista DS, Tonkin KS, O'Malley FP, Tuck AB, Chambers
AF, Harris JF: Elevated plasma osteopontin in metastatic
breast cancer associated with increased tumor burden and
decreased survival. Clinical cancer research: an official journal of the
American Association for Cancer Research 1997, 3(4):605-61 I.

Plumer A, Duan H, Subramaniam S, Lucas FL, Miesfeldt S, Ng AK, Liaw
L: Development of fragment-specific osteopontin antibodies
and ELISA for quantification in human metastatic breast
cancer. BMC Cancer 2008, 8:38.

Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S:
Phosphorylation-dependent interaction of osteopontin with
its receptors regulates macrophage migration and activa-
tion. | Leukoc Biol 2002, 72(4):752-761.

Schnabel RD, Kim JJ, Ashwell MS, Sonstegard TS, Van Tassell CP,
Connor EE, Taylor JF: Fine-mapping milk production quantita-
tive trait loci on BTAG6: analysis of the bovine osteopontin
gene. Proc Natl Acad Sci USA 2005, 102(19):6896-6901.

Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M,
Zawaideh S, Rittling SR, Denhardt DT, Glimcher M), Cantor H: Eta-
| (osteopontin): an early component of type-l (cell-medi-
ated) immunity. Science 2000, 287(5454):860-864.

Higashibata Y, Sakuma T, Kawahata H, Fujihara S, Moriyama K, Okada
A, Yasui T, Kohri K, Kitamura Y, Nomura S: Identification of pro-
moter regions involved in cell- and developmental stage-spe-
cific osteopontin expression in bone, kidney, placenta, and
mammary gland: an analysis of transgenic mice. | Bone Miner
Res 2004, 19(1):78-88.

Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly T, Tjian R: A cellular
DNA-binding protein that activates eukaryotic transcription
and DNA replication. Cell 1987, 48(1):79-89.

Yokono M, Saegusa N, Matsushita K, Sugiura Y: Unique DNA bind-
ing mode of the N-terminal zinc finger of transcription fac-
tor Spl. Biochemistry (Mosc) 1998, 37(19):6824-6832.

Hummelshoj T, Ryder LP, Madsen HO, Odum N, Svejgaard A: A
functional polymorphism in the Eta-1 promoter is associated
with allele specific binding to the transcription factor Spl
and elevated gene expression. Mol Immunol 2006,
43(7):980-986.

49.

50.

51,

52.

53.
54.

55.

56.

57.

58.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

http://www.biomedcentral.com/1471-2164/10/444

Quirion MR, Gregory GD, Umetsu SE, Winandy S, Brown MA: Cut-
ting edge: lkaros is a regulator of Th2 cell differentiation. |
Immunol 2009, 182(2):741-745.

Black AR, Black JD, Azizkhan-Clifford J: Spl and kruppel-like fac-
tor family of transcription factors in cell growth regulation
and cancer. | Cell Physiol 2001, 188(2):143-160.

Suske G: The Sp-family of transcription factors. Gene 1999,
238(2):291-300.

Gill G, Pascal E, Tseng ZH, Tjian R: A glutamine-rich hydrophobic
patch in transcription factor Spl contacts the dTAFIII 10
component of the Drosophila TFIID complex and mediates
transcriptional activation. Proc Natl Acad Sci USA 1994,
91(1):192-196.

Sodek J, Ganss B, McKee MD: Osteopontin. Crit Rev Oral Biol Med
2000, 11(3):279-303.

Zetterqvist AV, Ohman |N, de Frutos Garcia S, McGuire PG, Bosc
LG, Gomez MF: Hyperglycemia activates the Ca2+/cal-
cineurin-dependent transcription factor NFAT (Nuclear
Factor of Activated T-Cells) in retinal microvessels in vivo.
The FASEB journal 2008, 22(1_MeetingAbstracts):| [48.

Li X, O'Regan AW, Berman JS: IFN-gamma induction of oste-
opontin expression in human monocytoid cells. | Interferon
Cytokine Res 2003, 23(5):259-265.

Oviedo-Boyso |, Valdez-Alarcon JJ, Cajero-Juarez M, Ochoa-Zarzosa
A, Lopez-Meza JE, Bravo-Patino A, Baizabal-Aguirre VM: Innate
immune response of bovine mammary gland to pathogenic
bacteria responsible for mastitis. | Infect 2007, 54(4):399-409.
Riollet C, Rainard P, Poutrel B: Differential induction of comple-
ment fragment C5a and inflammatory cytokines during
intramammary infections with Escherichia coli and Staphy-
lococcus aureus. Clin Diagn Lab Immunol 2000, 7(2):161-167.
Majoros WH, Ohler U: Spatial preferences of microRNA tar-
gets in 3' untranslated regions. BMC Genomics 2007, 8:152.
Gomez-Ambrosi |, Catalan V, Ramirez B, Rodriguez A, Colina |, Silva
C, Rotellar F, Mugueta C, Gil M|, Cienfuegos JA, et al.: Plasma oste-
opontin levels and expression in adipose tissue are increased
in obesity. | Clin Endocrinol Metab 2007, 92(9):3719-3727.

Ichikawa H, Imano M, Takeyama Y, Shiozaki H, Ohyanagi H: Involve-
ment of osteopontin as a core protein in cholesterol gall-
stone formation. | Hepatobiliary Pancreat Surg 2009, 16(2):197-203.
Cancel AM, Chapman DA, Killian GJ: Osteopontin is the 55-kilo-
dalton fertility-associated protein in Holstein bull seminal
plasma. Biol Reprod 1997, 57(6):1293-1301.

Erikson DW, Way AL, Chapman DA, Killian GJ: Detection of oste-
opontin on Holstein bull spermatozoa, in cauda epididymal
fluid and testis homogenates, and its potential role in bovine
fertilization. Reproduction 2007, 133(5):909-917.

Lessard M, Gagnon N, Godson DL, Petit HV: Influence of parturi-
tion and diets enriched in n-3 or n-6 polyunsaturated fatty
acids on immune response of dairy cows during the transi-
tion period. | Dairy Sci 2004, 87(7):2197-2210.

Dosogne H, Vangroenweghe F, Mehrzad J, Massart-Leen AM, Burven-
ich C: Differential leukocyte count method for bovine low
somatic cell count milk. | Dairy Sci 2003, 86(3):828-834.
Wellnitz O, Reith P, Haas SC, Meyer HHD: Immune relevant gene
expression of mammary epithelial cells and their influence
on leukocyte chemotaxis in response to different mastitis
pathogens. Vet Med (Praha) 2006, 51(4):125-132.

Livak KJ, Schmittgen TD: Analysis of relative gene expression
data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods 2001, 25(4):402-408.

Nadesalingam J, Plante Y, Gibson JP: Detection of QTL for milk
production on Chromosomes | and 6 of Holstein cattle.
Mamm Genome 2001, 12(1):27-31.

Leyva-Baca |, Schenkel F, Martin ], Karrow NA: Polymorphisms in
the 5’ upstream region of the CXCRI chemokine receptor
gene, and their association with somatic cell score in Hol-
stein cattle in Canada. | Dairy Sci 2008, 91(1):407-417.

Rincon G, Medrano JF: Single nucleotide polymorphism geno-
typing of bovine milk protein genes using the tetra-primer
ARMS-PCR. | Anim Breed Genet 2003, 120(5):331-337.

Ye S, Dhillon S, Ke X, Collins AR, Day IN: An efficient procedure
for genotyping single nucleotide polymorphisms. Nucleic Acids
Res 2001, 29(17):E88-88.

Zeng ZB, Wang T, Zou W: Modeling quantitative trait Loci and
interpretation of models. Genetics 2005, 169(3):1711-1725.

Page 16 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18487674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18487674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18487674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18946151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18946151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18946151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2787378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2787378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2787378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11342566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11342566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16881866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16881866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16881866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14506954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14506954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7785890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7785890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9815727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9815727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9815727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14753740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14753740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14753740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3024847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3024847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3024847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16009426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16009426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16009426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19124715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19124715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11424081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11424081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11424081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8278363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8278363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8278363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11021631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10702487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10702487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10702487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17595250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17595250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17595250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19214371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19214371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19214371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17616721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17616721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17616721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15328234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15328234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15328234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12703619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12703619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11178740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11178740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11522844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11522844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15654105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15654105

BMC Genomics 2009, 10:444

72.

73.

Boettcher PJ, Pagnacco G, Stella A: A Monte Carlo approach for
estimation of haplotype probabilities in half-sib families. |
Dairy Sci 2004, 87(12):4303-4310.

Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visu-
alization of LD and haplotype maps. Bioinformatics 2005,
21(2):263-265.

http://www.biomedcentral.com/1471-2164/10/444

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 17 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15545394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15545394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297300
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Experimental mastitis and detection of the candidate gene
	Analysis of the SPP1 genomic sequence
	SNPs and allelic frequencies
	SNP associations
	Effect of SPP1 SNPs for production traits
	Haplotype analysis

	Discussion
	Conclusion
	Methods
	Animals
	Bacteria and intramammary challenge
	Clinical signs, collected samples and assays
	Fluorescence-activated cell sorting
	RNA extraction and analysis
	Isolation of bovine PBMC and induction
	RT-PCR and quantitative RT-PCR
	Genetic DNA material and EBVs for the SCS and milk production traits
	SNP mining and sequencing
	SNP genotyping
	Statistical analysis
	Haplotype

	Authors' contributions
	Additional material
	Acknowledgements
	References

