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Abstract: In response to DNA damage, cells have developed a sophisticated signaling pathway,
consisting of DNA damage sensors, transducers, and effectors, to ensure efficient and proper repair
of damaged DNA. During this process, posttranslational modifications (PTMs) are central events
that modulate the recruitment, dissociation, and activation of DNA repair proteins at damage
sites. Emerging evidence reveals that protein arginine methylation is one of the common PTMs
and plays critical roles in DNA damage response. Protein arginine methyltransferases (PRMTs)
either directly methylate DNA repair proteins or deposit methylation marks on histones to regulate
their transcription, RNA splicing, protein stability, interaction with partners, enzymatic activities,
and localization. In this review, we summarize the substrates and roles of each PRMTs in DNA
damage response and discuss the synergistic anticancer effects of PRMTs and DNA damage pathway
inhibitors, providing insight into the significance of arginine methylation in the maintenance of
genome integrity and cancer therapies.
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1. Introduction

Cells receive a constant onslaught on the genome from both endogenous and ex-
ogenous genotoxic stress, leading to numerous DNA lesions [1,2]. Among various types
of DNA damage, including mismatches, base modifications, crosslinks, bulky adducts,
and single/double-strand breaks (SSBs/DSBs), DSBs are the most serious and cytotoxic
forms [3]. These damaged DNA can impede vital cellular processes including replication
and transcription, which potentially causes cell cycle arrest and cell death if they are not re-
paired [4-6]. In mammalian cells, at least five major repair pathways are involved in repair-
ing different types of DNA damage [7]. Mismatch repair (MMR) resolves single nucleotide
mismatches generated during replication [8]. Base excision repair (BER) corrects covalent
addition to DNA bases [9], while nucleotide excision repair (NER) clears bulky adducts
and cross-linking lesions [10]. Homologous recombination (HR) and non-homologous end
joining (NHE]J) are the two main repair pathways responsible for DSBs [11-13].

DNA repair is executed by a sophisticated cellular network, consisting of DNA
damage sensors, transducers, and effectors, collectively termed DNA damage response
(DDR) [14-16]. Three PI3K-related kinases, ATM, ATR, and DNA-PK, are positioned at the
center of DDR [17]. The MRE11-RAD50-NBS1 (MRN) complex acts as a sensor of DSBs and
contributes to the recruitment and activation of ATM [18]. ATRIP senses RPA-bound ssDNA
and recruits ATR to DNA damage sites for activation [19]. The Ku70/80 heterodimer binds
to DSBs and subsequently recruits and activates DNA-PK to promote NHE] [20,21]. These
active kinases phosphorylate and recruit hundreds of other transducers and effectors, such
as H2AX, MDC1, 53BP1, BRCA1, TopBP1, Chkl, and Chk2, to complete the DNA repair
process [17,22]. Aberrancy in the DDR protein network may lead to genome instability and
is frequently associated with many human diseases, particularly cancers [23,24].
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To ensure the efficient and proper repair of DNA damage, the DDR signaling is
spatiotemporally regulated through multiple mechanisms [25]. Notably, various post-
translational modifications (PTMs) including phosphorylation, ubiquitylation, PARylation,
methylation, acetylation, and sumoylation play prominent roles in controlling the dynamic
recruitment and dissociation of DDR proteins at DNA breaks, [26,27]. The representative
PTM event in DDR is the phosphorylation of histone H2AX at serine 139 (termed YH2AX)
by ATM, ATR, and DNA-PK [28-31], which is a common marker of DNA damage and
provides a platform for the assembly of downstream DDR proteins [32,33].

A wealth of studies in recent years has revealed that arginine methylation is as preva-
lent and versatile as serine phosphorylation and lysine ubiquitylation [34-37]. In mammals,
a family of nine proteins called protein arginine methyltransferases (PRMTs) catalyzes the
transfer of a methyl group from the donor S-adenosylmethionine (SAM) to the guanidino
nitrogen atoms of arginine, which generates three forms of methylarginine: monomethy-
larginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine
(SDMA). As such, these PRMTs can be categorized as three groups based on their cat-
alytic activity: Type I includes PRMT1, PRMT2, PRMT3, CARM1 (Coactivator-associated
arginine methyltransferase 1, also known as PRMT4), PRMT6, and PRMTS; Type II con-
sists of PRMT5 and PRMTY; and Type III has PRMT7 only. Type I PRMTs register MMA
and ADMA, while type II PRMTs generate MMA and SDMA. Type III catalyzes only
MMA formation (Figure 1) [38,39]. Numerous downstream substrates of PRMTs have
been identified, through which PRMTs regulate diverse fundamental processes, including
transcription [40], RNA metabolism [41], DNA repair [42], signal transduction [43,44], and
cell cycle control [45]. In this review, we will summarize the substrates of PRMTs and their
roles in DDR.
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Figure 1. Three forms of protein arginine methylation, including MMA, ADMA, and SDMA, are
catalyzed by nine PRMTs (Type I, II, and III). MMA, monomethylarginine; ADMA, asymmetric
dimethylarginine; SDMA, symmetric dimethylarginine.

2. Roles of PRMTs in DDR
2.1. Roles of PRMT1 in DDR

PRMT1 is the predominant methyltransferase that is responsible for approximately
90% of ADMA formation in mammalian cells [46,47]. Dysregulation of PRMT1 has been
implicated in various human pathological conditions, such as breast cancer [48], prostate
cancer [49], colon cancer [50], and other cancer types [51,52]. One of the critical roles of
PRMT1 is maintenance of genome integrity. The mouse embryonic fibroblasts (MEFs) de-
rived from PRMT1 knockout mice display spontaneous DNA damage and polyploidy [53].
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Several DDR proteins have been identified as PRMT1 substrates, including MRE11, BRCA1,
53BP1, Pol 3, FEN1, APE1, and hnRNPUL1 (Figure 2).
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Figure 2. PRMT1 functions as a critical DDR regulator by methylating MRE11, BRCA1, 53BP1, Pol {3,
FENI1, APE1, and hnRNPUL1. MRE11, Meiotic recombination 11; BRCA1, Breast cancer type 1 suscep-
tibility protein; 53BP1, p53-binding protein 1; Pol 3, DNA polymerase {3; FEN1, Flap endonuclease 1;
APE1, Apurinic/apyrimidinic endonuclease 1; hnRNPULI, heterogeneous nuclear ribonucleoprotein
U-like protein 1; GAR, glycine-arginine-rich motif; NBS1, Nijmegen breakage syndrome 1; DSBs,
DNA double-strand breaks; HR, homologous recombination; NHE], non-homologous end joining;
PCNA, proliferating cell nuclear antigen; TOM?20, translocase of outer mitochondrial membrane
20; BER, base excision repair; LP-BER, long-patch BER; Me, methylation. Green arrows represent
“increase” and red arrows represent “decrease”.

2.1.1. MRE11 (Meiotic Recombination 11)

MRE11, RAD50, and NBS1 form the MRN complex and function as the DSB sensor
and transducer. After detecting the DNA damage signal, the MRN complex is directly
recruited to the DSBs and initiates DNA end resection. Subsequently, it recruits ATM to
the DNA damage sites for activation. In turn, activated ATM phosphorylates the MRN
complex to further extend the DNA end resection for recruitment of other repair factors [54].
As the key component of the MRN complex, MRE11 possesses both endonuclease and
exonuclease activities [55], which is essential for DNA end processing [56,57]. Aberrancy
in MRE11 nuclease activity is associated with various human diseases, such as Alzheimer’s
disease (AD) and cancers [58,59]. As such, extensive studies have focused on the regu-
latory mechanisms of MRE11, particularly PTMs [60], including arginine methylation as
described below.

MRE11 contains a nuclease domain and a capping domain in the N-terminus, a DNA
binding domain, and a glycine-arginine-rich (GAR) motif [61,62]. The arginine residues
within the GAR motif are methylated by PRMT1, which is required for the exonuclease
activity of MRE11, but the mechanism remains undefined. It is possible that methylation of
the GAR motif causes MRE11 conformation change and thereby directly affects its enzyme
activity or its binding to regulators. Moreover, arginine methylation of the GAR motif is
required for the S phase checkpoint, but not for the MRN complex formation [63]. Further
investigation found that mutating these arginine residues to lysine residues (MRE11RK,
the non-methylable form of MRE11) leads to impairment in the recruitment of RPA and
RAD51 to DSBs, ATR activation defects, and genomic instability. Interestingly, MRE11RK
MEFs display normal localization of MRN complex to the DSBs sites and ATM pathway
activation in response to y-irradiation (IR). It is possible that arginine methylation of MRE11
is recognized by certain readers, which specifically interacts with and activates ATR. As
a result, MRE11RK knock-in mice are hypersensitive to IR with all the mice dying within
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2 weeks post-10 Gy of IR treatment [64]. A recent study found that GFI1 functions as an
adaptor protein mediating interaction between PRMT1 and MRE11. Knockout of GFI1
results in a severe reduction in ADMA on MRE11, DNA repair defects, and cell death
following DNA damage in T-cell acute lymphoblastic leukemia (T-ALL) [65]. However,
GFI1 is mainly expressed in T lymphocytes. It remains to be determined how PRMT1-
mediated methylation of MRE11 is regulated in cells without GFI1 expression.

2.1.2. BRCAL1 (Breast Cancer Type 1 Susceptibility Protein)

BRCAL1 plays an important role in DSB repair by HR [66,67]. It is an 1836 amino
acid protein and contains multiple functional domains interacting with a range of pro-
teins [68]. The N-terminal RING domain binds to BARD1, which enhances the E3 ubiquitin
ligase activity of BRCA1 [69,70]. The C-terminal BRCT domain is a reader of Ser/Thr
phosphorylation and interacts with phosphorylated proteins, such as Abraxas and CtIP,
which are associated with the recruitment of BRCA1 to DNA damage sites [67]. The coiled-
coil domain in the middle region is required for BRCA1 interaction with PALB2 [71,72].
BRCAL1 directly promotes HR repair by displacing the NHE] protein 53BP1 from DSBs and
enhancing end resection through interaction with CtIP, thereby recruiting downstream
HR factors [73-75].

BRCA1 was reported to be methylated at the 504-802 region by PRMT1. Interestingly,
arginine methylation of BRCA1 was significantly higher in breast cancer cells than in
normal breast cells, suggesting it may affect the tumor suppressor function of BRCA1 [76].
A subsequent study showed that PRMT1-mediated methylation of BRCA1 is induced in
response to IR. The silencing of PRMT1 likely prevents BRCA1 interaction with BARD1 and
blocks the translocation of BRCA1 to the nucleus. As a result, the loss of PRMT1 impairs
HR-mediated DSB repair [77]. However, the exact role of BRCA1 arginine methylation
remains elusive, and the arginine methylation sites are yet to be defined.

2.1.3. 53BP1 (p53-Binding Protein 1)

53BP1 is a key transducer/effector of the DDR and plays a crucial role in determining
DSB repair pathway choice [78]. During the G1 phase of the cell cycle, 53BP1, together with
RIF1 and PTIP, promotes NHE]J-mediated DSB repair and inhibits HR by blocking DNA
end resection, while during the S/G2 phase, BRCA1 and CtIP remove 53BP1 to enable
resection for HR repair [79]. 53BP1 loss restores HR repair and confers resistance to the
PARP inhibitor in BRCA1-deficient cells [73,80,81].

53BP1 recruitment to DSB sites requires the minimal focus-forming region (FFR) com-
posed of an oligomerization domain (OD), a GAR motif, a tandem Tudor domain, and
a ubiquitylation-dependent recruitment (UDR) motif. The Tudor domain binds to dimethy-
lated Lys20 of histone 4 (H4K20me2) and the UDR muotif interacts with ubiquitylated
H2AK15 (H2AK15ub) [82,83]. Studies have reported that the GAR motif is asymmetrically
methylated by PRMT1, which is required for 53BP1 binding to single and double-stranded
DNA. However, the mutation of arginine residues within the GAR motif does not affect
53BP1 foci formation upon topoisomerase II inhibitor treatment, implying methylation was
not a prerequisite for 53BP1 recruitment to DSB sites. It was speculated that methylation of
the GAR motif modulates the Tudor domain binding to histone or 53BP1 interaction with
other DDR proteins to regulate the role of 53BP1 [84,85]. Like MRE11, GFI1 also mediates
the 53BP1 interaction with PRMT1 to promote its arginine methylation in GAR [65]. The
identification of GAR motif binding proteins or readers of methylated GAR would be
helpful to dissect the exact role of PRMT1-mediated methylation of 53BP1.

2.1.4. Pol 3 (DNA Polymerase 3)

Pol B is the major polymerase in the BER pathway that remove apurinic/apyrimidinic
(AP) sites from DNA [86]. It is involved in two steps of BER: 5'-end deoxyribose phosphate
(dRP) removal and gap-filling DNA synthesis, which is carried out by the N-terminal lyase
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domain and the C-terminal polymerase domain [87]. A recent study also showed that Pol
(3 is involved in alternative NHE] (aNHE]) repair [88].

Available data show that PRMT1 directly interacts with Pol § via its lyase domain
and monomethylates it at arginine 137. This methylation does not affect Pol (3 lyase and
polymerase activity but disrupts its interaction with PCNA [89]. Given that PCNA enhances
Pol 3-dependent long-patch BER (LP-BER) [90], it is possible that the PRMT1-mediated
methylation of Pol {3 serves as a termination signal to inactivate Pol 3 when the repair
is complete.

2.1.5. FEN1 (Flap Endonuclease 1)

FENT1 is a structure-specific nuclease that participates in various DNA repair pathways,
including LP-BER, MMR, NER, and HR. It recognizes the single-strand flap and cleaves it
to create a nick, which is filled by DNA ligasel [91,92]. Overexpression of FEN1 is observed
in many cancer types and is correlated with cancer aggressiveness [93]. The activity and
DNA binding ability of FEN1 are regulated by several PTMs, including phosphorylation,
acetylation, and methylation [94].

PRMTT1 catalyzes ADMA on FEN1 and thereby enhances FEN1 protein stability, but
does not alter FEN1 mRNA level, localization, and its interaction with PCNA. PRMT1
knockdown decreases FEN1 expression and increases DNA damage in A549 lung cancer
cells treated with Temozolomide (TMZ) or 5-fluoro-uracil, which can be partially rescued
by overexpressing FEN1 [95]. These results suggest that FEN1 is an important downstream
substrate of PRMT1 in DDR. However, the methylated arginine site(s) has not yet been
identified, preventing evaluation of the physiological significance of PRMT1-mediated
arginine methylation in FEN1-dependent DNA repair.

2.1.6. APE1 (Apurinic/ Apyrimidinic Endonuclease 1)

APEL1 is a multifunctional and ubiquitous protein responsible for most endonuclease
activities. It also possesses exonuclease and RNA cleavage capabilities [96,97]. APE1 is
a key component of the BER pathway. It cleaves the 5 phosphodiester bond to generate
dRP for further processing of the AP sites by Pol 3 [98,99].

PTMs, including acetylation, phosphorylation, ubiquitination, and methylation, play
crucial roles in regulating APE1 activities, localization, and protein stability [100,101].
A recent study found that APE1 is methylated at arginine 301 (R301) by PRMT1, which
is enhanced by oxidative agents, such as HyO; and menadione [102]. This methylation
does not affect its nuclease activity but enhances APE1 binding to the mitochondrial
outer membrane translocase, TOM20, and thus promotes APE1 translocation to the mi-
tochondrion. Deficiency in R301 methylation increases DNA damage in mitochondria
and sensitizes cells to oxidative stress. Further studies are warranted to define the role of
PRMT1-mediated methylation in oxidative DNA damage. For example, identification of
PRMT1 as a target of oxidative agents using label-free methods [103] and genome-wide
mapping of PRMT1-associated DNA lesions induced by oxidants using DNA-protein
cross-linking sequencing [104]

2.1.7. hnRNPUL1 (Heterogeneous Nuclear Ribonucleoprotein U-like Protein 1)

hnRNPULL1, also known as adenovirus early region 1B-associated proteins 5 (E1B-AP5),
is a member of the heterogenous nuclear ribonucleoprotein family that mainly functions in
RNA splicing, stabilization, decay, and transcription [105].

In addition to RNA metabolism, hnRNPUL1 has been shown to play a role in DDR [106].
It interacts with the MRN complex via NBS1 and is recruited to DSB sites in the presence of
transcription inhibitors, which is dependent on the GAR motif of hnRNPUL1. Subsequently,
hnRNPUL1 promotes DNA end resection and ATR-dependent signaling, leading to the
promotion of HR. As a result, hnRNPUL1 depletion renders cells sensitive to DSB-inducing
agents. To further elucidate the role of the GAR motif in hnRNPUL1-mediated DNA repair,
Gurunathan et al. showed that PRMT1 interacts with hnRNPUL1 and methylates R612,
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R618, R620, R639, R645, R656, and R661 that are located at the GAR motif. PRMT1 knock-
down or mutating these arginine sites to lysine blocks the methylation signal and reduces
its interaction with NBS1 and recruitment to DSB sites upon treatment of transcription
inhibitors [107]. Therefore, it was proposed that the roles of hnRNPUL1 in RNA metabolism
and DSB repair are likely determined by PRMT1-mediated methylation at the GAR motif.

2.2. Roles of PRMT?2 in DDR

PRMT?2 was first identified by its sequence homology to PRMT1 in the human genome
with 27% identity and 50% similarity [108,109]. Although PRMT?2 contains the canonical
catalytic domain as other PRMTs, it exhibits low methyltransferase activity towards his-
tones H3 and H4 [110], and undergoes strong automethylation [111]. No developmental
defects and malignancies are found in PRMT2 knockout mice [112]. PRMT2 expression is
dysregulated in many cancers, such as breast cancer and hepatocellular carcinoma [113,114].

RNA-seq and pathway analysis showed that multiple genes involved in DNA damage
are downregulated and the DNA repair pathway is suppressed in PRMT2-knockdown
MCEF-7 cells, suggesting a critical role of PRMT2 in DDR [115]. Indeed, PRMT2 knockdown
promotes the clearance of cyclobutane pyrimidine dimers (CPDs) after ultraviolet (UV)
radiation, indicating the role of PRMT2 in BER or NER. Moreover, using the DR-GFP
recombination reporter system, it was shown that PRMT2 depletion increases DSB repair
through HR. However, BRCA1, a known positive regulator of HR, is decreased upon
PRMT2 depletion. It is unclear how PRMT2 depletion promotes HR repair with BRCA1
downregulation. Further studies are needed to fully dissect the role of PRMT2 in DDR,
including identifying DDR proteins as PRMT2 substrates.

2.3. Roles of CARM1 (PRMT4) in DDR

CARML is a type I PRMT that methylates R17/R26 of histone H3 [116,117] and non-
histone substrates, such as BAF155 [118]. CARM1 regulates diverse cellular processes
including transcription, RNA splicing, and cell cycle to control autophagy, metabolism,
and development [119]. Of note, embryos in CARM1 knockout mice survived the course of
development but died right before birth (E19.5), suggesting that CARM1 is an essential gene
for organism growth [120]. Like other PRMTs, CARM1 dysregulation has been implicated
in colorectal cancer, leukemia, breast, and prostate cancer [121].

Regarding the role of CARM1 in DDR, it has been evidenced that CARM1 dimethy-
lated p300 at R754 promotes p300 interaction with BRCA1, leading to enhancement of the
BRCAL1 transcriptional activity (Figure 3). CARM1 knockdown suppresses DNA damage-
induced expression of p21 and GADDA45, two important regulators of cell cycle arrest.
Importantly, overexpression of p300 wild-type, but not the p300 R754A mutant, enhances
p21 expression in response to DNA damage, suggesting the significance of R754 methyla-
tion. Mechanistically, CARM1 and p300 promote BRCA1 recruitment to the p21 promoter
and induce its transcription [122]. Even though CARM1 may indirectly modulate DNA
repair through p21, it will give a clear vista if DDR proteins can be identified as its di-
rect substrates.
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Figure 3. CARM1 methylates p300 to enhance BRCA1 transcriptional activity towards p21, leading
to G1 cell cycle arrest upon DNA damage. BRCA1, Breast cancer type 1 susceptibility protein.

2.4. Role of PRMT5 in DDR

As the predominant Type II PRMT, PRMTS5 is distributed in both cytoplasm and
nucleus, where it methylates histones and non-histone substrates to exert versatile func-
tions [123,124]. PRMTS5 forms an octameric complex with MEP50 to optimize its methyl-
transferase activity [125]. Its overexpression has been documented in several different
cancer types and has largely been tagged as an oncoprotein [126]. Consequently, PRMT5
has gained tremendous interest as a potential antitumor target and dozens of inhibitors
have been developed with some being evaluated in clinical trials. Numerous PRMT5
substrates have been identified, which are involved in transcription, RNA splicing, and
signal transduction [44]. It is not surprising that PRMT5 also serves as a crucial regulator
of genome stability through methylating DDR proteins, including 53BP1, FEN1, RAD9,
RUVBL1, and TDP1 (Figure 4).
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Figure 4. PRMTS5 regulates different DNA repair pathways by methylating various DDR proteins,
including 53BP1, FEN1, RAD9, RUVBL1, and TDP1. 53BP1, p53-binding protein 1; FEN1, Flap
endonuclease 1; RUVBL1, RuvB-like 1; TDP1, Tyrosyl-DNA phosphodiesterase 1; Toplcc, Top 1
cleavage complexes. Green arrows represent “increase and red arrows represent “decrease”.

2.4.1. 53BP1 (p53-Binding Protein 1)

In addition to PRMT1-mediated ADMA, a recent study by Hwang et al. showed that
53BP1 also undergoes SDMA on the GAR motif by PRMT5 [127]. As such, PRMT5 knock-
down decreases SDMA but increases ADMA of 53BP1, whereas PRMT1 depletion reverses
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this observation, indicating that PRMT5 and PRMT1 compete to methylate 53BP1 on the
GAR motif. Notably, either PRMT5 depletion or mutation of the five arginine residues
to lysine residues (5RK) within the GAR motif shortens the half-life of 53BP1 protein,
suggesting that PRMT5-mediated SDMA increases 53BP1 protein stability. Consequently,
compared to control cells, PRMT5-depleted cells display a reduction in the overall intensity
and the number of 53BP1 foci, leading to impairment of NHE] and HR-mediated repair
process and sustained YH2AX levels. Importantly, these repair defects were rescued by
overexpression of 53BP1, suggesting PRMTS5 exerts its functions in DDR in part through
the stabilization of the 53BP1 protein. These studies provide a fascinating example whereby
ADMA and SDMA coordinatively finetune DDR to control DNA repair. However, the
mechanisms underlying how PRMTS5 controls 53BP1 turnover remain to be explored. Given
the E3 ligases RNF8/RNF168/RNF146-mediated ubiquitination and NUDT16-mediated
removal of ADP-ribosylation have been involved in 53BP1 protein degradation [128,129], it
would be interesting to explore crosstalk among these mechanisms.

2.4.2. FEN1 (Flap Endonuclease 1)

Like 53BP1, FEN1 is another DDR protein that is co-regulated by both PRMT1 and
PRMTS. It interacts with PRMT5 and is symmetrically dimethylated at four arginine
residues (R19, R100, R104, and R192) with R192 as the primary methylation site [130]. This
methylation event leads to a decrease in cyclin E/CDK2-mediated phosphorylation of
FENT1 at 5187, thereby enhancing its interaction with PCNA to promote LP-BER. Cells
expressing the methylation deficient FEN1 mutant (R192K or 4RK) display higher YH2AX
levels compared to cells expressing FEN1 wild-type, indicating accumulation of DSBs.
Consequently, these cells are more sensitive to oxidative stresses. It is proposed that FEN1
arginine methylation promotes its loading on flap sites via interaction with PCNA and
then offload Pol 3 or Pol §, allowing FEN1 to remove flap structure. After cleavage, FEN1
is demethylated and re-phosphorylated by cyclin E/CDK?2, following dissociation from
DNA. A subsequent study found that cyclin E/CDK2-mediated phosphorylation of FEN1
at S187 is required for SUMOlyation and cell cycle-dependent proteasomal degradation
of FEN1 [131]. Thus, it is speculated that like PRMT1, PRMTS5 also plays a role in the
modulation of FEN1 protein stability.

2.4.3. RAD9

RAD?9 is evolutionarily conserved from yeast to human and has multiple functions,
including cell cycle checkpoint, DNA repair, radioresistance, and apoptosis [132]. The
N-terminal part of RAD9 is responsible for interaction with HUS1 and RAD], thus forming
a heterotrimer called a 9-1-1 complex [133]. The C-terminal portion harbors a nuclear
localization signal and is phosphorylated by multiple kinases, which is required for RAD9
translocation to the nucleus and its interaction with other DDR proteins including RPA
and TopBP1 [134]. In response to DNA damage, the 9-1-1 complex is recruited to the
damaged sites with the assistance of the RAD17-RFC2-5 complex and then activates the
ATR-mediated signaling pathway and plays a role in HR, BER, NER, MMR, and alternative
NHE] (aNHE]) [134-136]. For example, RAD9 influences HR by interacting with RAD51
and affects BER through stimulating enzymatic activities of APE1 and Pol 3 [137].

PRMTS5 directly binds and methylates RAD9 in vitro and in cells [138]. Mutation of
three arginine sites, R172, R174, and R175, to lysine or alanine (3RK or 3RA) or knockdown
of PRMTS5, abolished the methylation signal, suggesting that these three arginine residues
are the major methylation sites by PRMT5. Of note, this methylation event does not
affect the 9-1-1 complex formation but is induced by DNA damaging agent, hydroxyurea
(HU). Cells expressing RAD9 3RA or 3RK are defective in the G2/M checkpoint and ATR-
dependent Chk1 phosphorylation in response to HU or IR treatment. However, these cells
are more sensitive to HU, but not IR, indicating PRMT5-mediated methylation of RAD9
may be required for SSB repair but dispensable for DSB repair.
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2.4.4. RUVBLI1 (RuvB-like 1)

RUVBLI and its homolog RUVBL2 are AAA+ ATPases and are involved in chromatin
remodeling, transcription, and DNA repair. They act as a scaffolding protein to participate
in diverse protein complexes, such as INO80, SWR1, YY1, and TIP60, all of which have been
implicated in DDR [139,140]. The RUVBL1-containing TIP60 acetyltransferase complex
is recruited to DNA damage sites and is required for acetylation of histone H4 or H2AX,
which is critical for the dephosphorylation of YH2AX [141,142]. In addition, the TIP60
complex-mediated acetylation of histone H4K16 impairs 53BP1 binding to methylated
H4K20, and consequently increases BRCA1 localization to DSBs to promote HR [143].
RUVBL1/2 also promotes RAD51 foci formation during the HR repair process [144,145].

In demystifying the mechanism associated with PRMT5 in DDR, RUBVL1 was iden-
tified as a PRMTS5 interacting partner and substrate that is symmetrically dimethylated
on R205 [146]. Depletion of RUBVL1 impaired HR-mediated DSB repair with increased
YH2AX and 53BP1 foci upon IR exposure. The reintroduction of RUBVL1 wild-type, but
not the methylation deficient RUBVL1 R205K mutant, rescued these repair defects. Notably,
RUBVL1 methylation promotes TIP60-mediated acetylation of histone H4K16, leading
to the dissociation of 53BP1 from DSBs. Interestingly, both RUBVL1 wild-type and the
R205K mutant were effectively recruited to DNA damage sites, suggesting that arginine
methylation does not regulate TIP60 chromatin association. This study provides another
example that PRMTS5 regulates the choice of NHE] and HR-dependent DSB repair.

2.4.5. TDP1 (Tyrosyl-DNA Phosphodiesterase 1)

TDP1 is an important DNA repair enzyme for the removal of trapped Top I cleavage
complexes (Toplcc) that are generated by either DNA lesions (mismatches, abasic sites,
nicks, and adducts) or Top I inhibitor (Camptothecin, CPT) during Top I-mediated cleavage—
religation process. Toplcc may stall the progression of replication and transcription forks
and generate DSBs. TDP1 interacts with other DDR proteins including PARP1, Ligases III,
XRCC1, and PNKP, and has been engaged in BER, NHE], and HR [147-150].

TDP1 consists of two domains: the N-terminal domain that is critical for its protein
stability and recruitment to DNA damage sites and the C-terminal catalytic domain that hy-
drolyzes the phosphodiester bond between Top I tyrosyl moiety and the DNA 3'-end [151].
PRMTS5 interacts with the N-terminus of TDP1 and symmetrically dimethylates it at R361
and R586, which is enhanced by CPT treatment in a DNA replication-dependent man-
ner [152]. Notably, PRMT5-mediated arginine methylation promotes TDP1 catalytic activity
and is required for TDP1 interaction with XRCC1. This methylation event is critical for the
repair of CPT-induced Toplcc and protects cells against CPT treatment.

2.5. Role of PRMT6 in DDR

PRMT6 catalyzes MMA and ADMA on multiple sites of histones, including H3R2,
H3R17, H3R42, and H2AR?29, through which it possesses both transcriptional repression
and activation roles [153-157]. PRMT6 promotes H3R2me2a to antagonize the activating
mark H3K4me3, leading to the suppression of tumor suppressors expression, such as p53
and p21 [156,158]. In contrast, PRMT6 generates H3R42me?2a to stimulate p53-dependent
transcription [153]. It is unclear how these arginine modifications of histones by PRMT6
coordinatively control transcription. PRMT6 also regulates several non-histone substrates
that are involved in cancers and cardiac diseases [159-161].

Like PRMT1, PRMT®6 also binds the lyase domain of Pol 3 to promote methylation of
Pol 3 at R83 and R152, which increases in response to methyl methane sulfonate (MMS)
treatment. Functionally, R83/R152 methylation enhances Pol 3 polymerase activity, DNA
binding, and processivity to promote LP-BER (Figure 5) [162]. Therefore, PRMT1 and
PRMT6 regulate LP-BER by catalyzing the methylation of Pol (3 at different sites for
modulation of Pol 3 functions through different mechanisms. These modifications likely
offer flexibility to tightly control Pol 3 for DNA repair in different tissues or cell types.
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Figure 5. PRMT6-mediated methylation of Pol 3 enhances its activity and binding of DNA to promote
LP-BER. Pol 3, DNA polymerase 3. Green arrows represent “increase”.

PRMTS is also functionally redundant with CARM1 [155]. Both CARM1 and PRMT6
can deposit the H3R17me2a mark. CARM1/PRMT6 double knockout mouse embryonic
fibroblasts (MEFs) display higher basal YH2AX staining than single knockout MEFs. Con-
sistently, a combination of CARM1 and PRMT6 inhibitors enhances YH2AX levels and
has synergistic effects on inhibitors on cell proliferation. However, it remains unknown
whether CARM1 and PRMT6 share common DDR proteins as substrates or act on different
repair pathways to maintain genome integrity.

2.6. Role of PRMT7 in DDR

Unlike other PRMTs, PRMT7 catalyzes only the MMA formation and contains two
putative SAM binding motifs, both of which are necessary for its methyltransferase
activity [163,164]. PRMT7 methylates histone H2B at R29/R31/R33 and histone H4
at R17/R19 [164]. Non-histone substrate of PRMT7 include Dvl13 [165], G3BP2 [166],
elF2« [167], and Hsp70 [168]. PRMT7 overexpression has been implicated in breast cancer
and leukemia [169,170].

PRMT? also plays a role in DDR. It is enriched on the promoter region of DNA repair
genes, including ALKBH5, APEX2, POLD1, and POLD2, and methylates the H2AR3 and
HA4R3, leading to the transcriptional repression of these genes (Figure 6). As a result,
PRMT7 depletion confers resistance to cisplatin, chlorambucil, and mitomycin C, but not
doxorubicin. Interestingly, depletion of POLD1, but not ALKBH5, APEX2, or POLD2, re-
sensitizes PRMT7-depleted cells to these DNA damaging agents [171]. In contrast, PRMT7
knockdown enhances sensitivity to CPT, indicating that it may play a role in Toplcc and
BER [172]. Hence, PRMT?7 regulation of DNA damage appears to be cell type or genotoxin
specific. Identifying DDR substrates of PRMT7 would reveal how PRMT7 specifically
modulates DNA repair and sensitivity to DNA damage agents.

/N

Toplcc repair H2AR3 HAR3 POLD1/2
BER — M} T ALKBH5

APEX2

Figure 6. PRMT7 suppresses transcription of DNA repair genes by methylating H2AR3 and H4R3,
and it is likely involved in Toplcc repair and BER via unknown mechanisms. ALKBH5, AIkB homolog
5; APEX2, Apurinic/apyrimidinic endodeoxyribonuclease; POLD1, DNA polymerase delta 1; POLD2,
DNA polymerase delta subunit 2.

2.7. Role of PRMT8 in DDR

Compared to other PRMTs, PRMTS displays some unique characteristics: it is largely
expressed in brain and neurons [173]; it is localized to the plasma membrane by myris-
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toylation at the Gly2 residue, while the N-terminus (1-60 aa) suppresses its catalytic
activity [174]; and it also possesses phospholipase activity that directly hydrolyzes phos-
phatidylcholine (PC) [175]. Several specific substrates of PRMT8 have been identified,
including NIFK [176] and voltage-gated sodium channel Nav1.2 [177]. PRMTS8 has been
implicated in neurological diseases [178].

Even though PRMTS substrates in DDR have not yet been identified, available evi-
dence indirectly shows their relevance in DNA repair. Simandi et al. showed that motor
neurons (MNs) from aged PRMT8 knockout mice exhibit increased YH2AX levels, indi-
cating accumulation of unrepaired DNA. Consistently, pathway analysis of differentially
expressed genes in control and PRMT8 knockout spinal cord samples identifies DNA
replication, recombination, and repair as some of the top affected pathways [179].

2.8. Role of PRMT3 and PRMT9 in DDR

PRMT3 is a distinct Type I PRMT, which displays different subcellular localization
and substrate specificity [180,181]. Several substrates of PRMT3 have been identified,
such as the 40S ribosomal protein S2 (RpS2) [182,183], the nuclear poly(A)-binding pro-
tein (PABPN1) [184], and others [185,186]. Little is known about PRMT9 as spliceosome-
associated protein 145 (SAP145, also known as SF3B2) is its sole substrate to date [187,188].
The functions of PRMT3 and PRMT9 in DDR have not yet been studied.

3. Synergistic Effects of PRMT and DDR

Due to the toxicity and increased resistance to monotherapy during cancer treatment,
extensive studies have focused on identifying novel targets or strategies that display
synergistic effects for overcoming these drawbacks to improve therapeutic outcomes.
Numerous combinatorial treatments have been approved by The United States Food and
Drug Administration (FDA) or are currently being evaluated in clinical trials for various
cancers [189,190]. For example, the combination of the PARP inhibitor (Olaparib) and
anti-angiogenesis agent (Bevacizumab) was approved by FDA in 2020 as the first-line
maintenance treatment of ovarian cancer patients with HR deficiency [191,192].

Multiple PRMT inhibitors have been developed and are undergoing evaluation in
clinical trials (Table 1) [193,194].

Table 1. PRMT inhibitors in clinical trials.

Drug Name Targeted PRMTs Trial Number Disease or Condition Status

GSK3368715 Type I PRMTs NCT03666988 DLBCL and MTAP-deficient solid tumors Terminated
GSK3326595 PRMT5 NCT04676516 Breast cancer Not yet recruiting

JNJ-64619178 PRMT5 NCT03573310 Solid tumor, Non—H(?dgkm Lymphoma, Acth(?, 'not

myelodysplastic syndromes recruiting

Metastatic NSCLC, HNSCC, esophageal
PF-06939999 PRMT5 NCT03854227 cancer, endometrial cancer, cervical cancer, Terminated
and bladder cancer
PRT811 PRMTS5 NCT04089449  Advanced solid tumors, CNS lymphoma, Recruiting
and glioma

PRT543 PRMTS5 NCT03886831 Advanced s.ohd tgmors E.lnd Actlve.z, .not

hematologic malignancies recruiting

TNG908 PRMT5 NCT05275478 | atients with MTAP-deleted advanced or Recruiting

metastatic solid tumors
MRTX1719 PRTM5-MTA NCT05245500 | atients with MTAP-deleted advanced or Recruiting

metastatic solid tumors

However, the phase I trial of type I PRMT inhibitor GSK3368715 has been terminated in
part due to serious adverse events. Several defects of PRMTS5 inhibitors have also emerged
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in preclinical studies, such as resistance in triple-negative breast cancer cells [195] and
suppression of immune response [196-198]. Since PRMTs are crucial regulators of DDR,
targeting DDR can be a potential strategy for enhancing the anti-tumor efficacy of PRMT
inhibitors to achieve better outcomes (Table 2).

Table 2. Inhibition of PRMT1 or PRMT5 synergizes with PARP inhibitors or DNA damaging agents.

Inhibition of PRMT1 or PRMT5 Synergistic Agents Cancer Type
Type I PRMT inhibitor (MS023) PARP inhibitor (BMN-677) Lung Cancer [199]
Type I PRMT inhibitor (MS023) Cisplatin Ovarian cancer [201]

Knockdown of PRMT1 Etoposide Osteosarcoma [53]
Knockdown of PRMT1 TMZ or 5-FU Lung Cancer [95]
PRMTS5 inhibitor (EPZ015666) Gemcitabine Pancreatic cancer [53]
Knockdown of PRMT5 Etoposide Breast cancer [127]
PRMTS5 inhibitor (GSK3186000A) PARP inhibitor (Olaparib) AML [200]

Dominici et al. screened a small molecule library of epigenetic and anticancer drugs
and identified PARP inhibitors as the top synergistic compounds with the type I PRMT
inhibitor MS023 in A549, a human MTAP-negative non-small cell lung carcinoma (NSCLC)
cell line. Compared to mono-treatment, co-treatment of A549 cells with low doses of MS023
and the PARP inhibitor BMN-677 significantly increases cell death and YH2AX levels,
indicating that the elevated cytotoxicity is in part due to aggravated DNA damage. Notably,
MS203 treatment overcomes PARP inhibitor resistance [199]. Similarly, a recent study
showed that PRMT5 loss impairs HR-mediated DNA repair in Leukemia cells through
aberrant splicing of TIP60. As a result, PRMT5 inhibitor GSK3186000A renders hemopoietic
cells vulnerable to PARP inhibitor Olaparib. Importantly, the synergism is also observed in
leukemic cells resistant to PRMTS5 inhibitor [200]. Hence, the combination of PRMT and
PARP inhibitors is a potential option for combating HR-proficient cancers.

PRMT inhibition has also been shown to enhance sensitivity to DNA damaging
agents. In ovarian cancer cells, PRMT1 promotes the expression of genes involved in
senescence-associated secretory phenotype (SASP) in response to cisplatin (CCDP), which
is believed to halt the cell cycle and protect cells from death. As result, genetic depletion
of PRMT1 or the type I PRMT inhibitor MS023 increases the cytotoxicity of cisplatin [201].
Likewise, depletion of PRMT1 impairs DNA repair and increases apoptosis in response to
etoposide or 5-fluorouracil (5-FU) or temozolomide (TMZ) [53,95]. Recent studies have also
documented that the combination of PRTMS inhibition and gemcitabine synergistically
decreases tumor growth in a patient-derived pancreatic cancer xenograft model in part due
to excessive unrepaired DNA damage [202], while knockdown of PRMT5 augments the
antiproliferative effect of etoposide in breast cancer cells [127].

4. Conclusions and Perspectives

As a common PTM, arginine methylation regulates DDR signaling by modulating
DDR protein transcription, RNA splicing, protein stability, binding partners, enzymatic
activities, and localization. Intriguingly, a DDR protein can be methylated by multiple
PRMTs, leading to diverse outcomes. Moreover, PRMT-mediated regulation of DDR
proteins appears to be cell-type and genotoxin specific. These unveil the complexity of
arginine methylation in DDR.

In the past decade, the expanded list of arginine-methylated DDR proteins further em-
phasizes the significance of PRMTs in DNA damage repair. However, the research on this
topic is still at an early stage and plenty of questions remain to be answered. What are the
upstream regulators that control PRMTs activity upon DNA damage and their recruitment
to DNA damage sites? It has been reported that DNA-PK-dependent phosphorylation of
PRMT1 is required for its recruitment to chromatin in response to replication stress [201],
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while Src kinase phosphorylates PRMT5 to impede its enzymatic function in NHE] re-
pair [127]. If and how do other PTMs, such as acetylation, ubiquitination, and methylation,
regulate PRMTs in DDR? Moreover, what are the readers of arginine-methylated DDR
proteins that may serve as a platform for the assembly of DNA repair complexes? How
is the arginine methylation signal terminated when the DNA repair is completed? Does
arginine methylation interplay with other PTMs, such as phosphorylation and ubiquitina-
tion, to coordinatively regulate the DDR signaling pathway? Addressing these questions
may significantly advance our knowledge on arginine methylation-mediated regulation of
genome stability and identify novel targets and strategies to combat cancers.
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53BP1 p53-binding protein 1 Key mediator of NHE]
ALKBH5  AIkB homolog 5 RNA demethylase of m®A

APE1 Apurinic/apyrimidinic endonuclease 1 ~ Key player of BER

APEX2 Apurinic/apyrimidinic Key player of BER
endodeoxyribonuclease 2

ATM Ataxia-telangiectasia mutated Master regulator of DDR

ATR ATM- and Rad3-Related Essential kinase involved in DNA

replication stress

Recruitment of ATR to DNA
damaging site

Interaction with BRCA1 to potentiate
BRCAL1 E3 ligase function

Key mediator of HR

ATRIP ATR-interacting partner

BARD1 BRCA1-associated RING n

domai protein

BRCA1 Breast cancer type 1
susceptibility protein

BRCT BRCA1 C terminus Phospho-protein binding domain

CARM1  Coactivator-associated arginine Type I protein arginine
methyltransferase 1 methyltransferase
CDK2 Cyclin-dependent kinase 2 G1/S and S/G2 transition control
Chk1 Checkpoint kinase 1 Cell cycle checkpoint control
during DDR
Chk2 Checkpoint kinase 2 Cell cycle checkpoint control
during DDR
CtIP C-terminal-binding protein Interaction with MRN complex to
(CtBP)-interacting protein facilitate DNA end resection
DNA-PK DNA-dependent protein kinase Regulator of NHE] and HR
Dvl3 Dishevelled 3 Key player of the Wnt
signaling pathway
elF2« Eukaryotic translation initiation Regulation of translation initiation
factor 2o
FEN1 Flap endonuclease 1 Key enzyme for DNA replication

and repair
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G3BP2

GADD45

GFI1
H2AX

hnRNPUL1
Hsp70
MDC1
MEP50
MRE11
Navl.2
NBS1
NIFK
NUDT16
PALB2
PARP1
PCNA
PI3K
PNKP

Pol 3
POLD1

POLD2
PTIP
RFC2-5
RIF1
RING
RNF146
RNF168

RNF8

RPA

Ras GTPase-activating protein-binding
protein 2

Growth arrest and DNA
damage-inducible gene 45

Growth factor independent 1

H2A histone family member X
Heterogeneous nuclear
ribonucleoprotein U-like protein 1
Heat shock protein 70

Mediator of DNA damage
checkpoint 1

Methylosome protein 50

Meiotic recombination 11
Voltage-gated sodium channel type 2
Nijmegen breakage syndrome 1
Nucleolar protein interacting with the
forkhead-associated domain of Ki-67
Nudix hydrolase 16

Partner and localizer of BRCA2

Poly (ADP-ribose) polymerase 1
Proliferating cell nuclear antigen
Phosphoinositide 3-kinase

Polynucleotide kinase 3’-phosphatase

DNA polymerase (3
DNA polymerase delta 1

DNA polymerase delta subunit 2

Pax transactivation
domain-interacting protein
Replication factor C subunit 2-5
Replication timing regulatory factor 1
Really Interesting New Gene

RING finger protein 146

RING finger protein 168

RING finger protein 8

Replication protein A

RNA-binding protein involved in
mRNA metabolism and stress
granules formation

Regulator of DNA repair, cell cycle
control, senescence, and genotoxic stress
Transcriptional repressor
Accumulation and recruitment of
DNA repair proteins to sites of DSBs
RNA-binding protein involved in
RNA metabolism and DNA repair
Molecular chaperone in

protein folding

Recruitment of repair proteins to the
site of DNA damage

Interaction with PRMTS5 to

promote activity

Component of MRN complex for
DSB sensing

Sodium channel involved establishing
action potential

Component of MRN complex for
DSB sensing

Regulator of RNA maturation during
cell cycle progression

RNA-binding and decapping enzyme
Bridging molecule connecting
BRCA1- BRCA2-RAD51 to

promote HR
Poly(ADP-ribosyl)transferase critical
for initiation of DNA repair

Key factor in DNA replication

and repair

Synthesizing PtdIns(3,4,5)P3 (PIP3) to
activate AKT/mTOR pathway
Polynucleotide phosphatase /kinase
involved in NHE]J and BER
Catalyzing DNA synthesis

Catalytic subunit of DNA
polymerase &

Regulatory subunit of DNA
polymerase &

Interaction with repair proteins to
regulator DNA repair

Accessory proteins involved in the
elongation of primed DNA template.
Regulation of DSB repair pathway
choice and DNA replication timings
Catalytic domain of RING E3
ubiquitin ligases
Poly(ADP-ribose)-directed E3 ligase
Key E3 ubiquitin ligase required for
accumulation of repair proteins to
sites of DNA damage

Key E3 ubiquitin ligase required for
accumulation of repair proteins to
sites of DNA damage

Single-strand DNA binding protein
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RUVBL1 RuvB-like 1 DNA helicase involved in chromatin
remodeling, transcription, and
DNA repair

RUVBL2 RuvB-like 2 DNA helicase involved in chromatin
remodeling, transcription, and
DNA repair

TDP1 Tyrosyl-DNA phosphodiesterase 1 ~ Repair of trapped Top I
cleavage complexes

TIP60 Tat interacting protein 60 kD Lysine acetyltransferase
TOM20 Translocase of outer mitochondrial =~ Central component of the TOM receptor
membrane 20 complex responsible for translocation
of proteins to mitochondria
Top1 Topoisomerase I Enzyme that relaxes
supercoiled DNA

TopBP1  Topoisomerase II Binding Protein 1 ~ Scaffold protein involved in DNA
replication, DNA repair,
and transcription

XRCC1 X-ray repair cross-complementing  Scaffold protein involved in repair
protein 1 of SSBs
YY1 Yin Yang 1 Transcription factor
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