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Abstract

Little is known about disorder-specific biomarkers of bipolar disorder (BD) and major

depressive disorder (MDD). Our aim was to determine a neural substrate that could be used

to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-

degree relatives (FDRs) of individuals with BD), MDD group (17 patients with MDD, 17

FDRs of individuals with MDD), and 27 healthy individuals. Structural and functional brain

abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT),

respectively. The BD group showed a significant main effect of diagnosis in the gray matter

(GM) volume of the anterior cingulate cortex (ACC; p = 0.01) and left insula (p < 0.01). FDRs

of individuals with BD showed significantly smaller left ACC GM volume than healthy sub-

jects (p < 0.01), and patients with BD showed significantly smaller ACC (p < 0.01) and left

insular GM volume (p < 0.01) than healthy subjects. The MDD group showed a tendency

toward a main effect of diagnosis in the right and left insular GM volume. The BD group

showed a significantly inverse correlation between the left insular GM volume and TMT-A

scores (p < 0.05). Our results suggest that the ACC volume could be a distinct endopheno-

type of BD, while the insular volume could be a shared BD and MDD endophenotype. More-

over, the insula could be associated with cognitive decline and poor outcome in BD.

Introduction

Differentiating between a diagnosis of bipolar disorder (BD) and major depressive disorder

(MDD) is of clinical importance, as 69% of individuals with BD are misdiagnosed with MDD

[1]. These errors cause harmful consequences for patients with BD, such as inappropriate medi-

cation prescription, drug-induced switching of the mood phase, and a poor prognosis. Although
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empirical markers that could allow these two disorders to be distinguished are desired, the bio-

logical mechanisms that would underlie such markers remain unknown.

Accumulating evidence from neuroimaging studies suggests that patients with BD and

MDD show reduced brain volume and altered brain metabolism in regions related to emo-

tional and cognitive processing, such as the orbital, inferior, medial, and dorsolateral prefron-

tal cortex, as well as in subcortical regions involving the hippocampal/amygdala complex and

the striatum [2–9]. For instance, meta-analysis studies of voxel-based morphometry (VBM)

have revealed that patients with BD exhibit small gray matter (GM) volumes in the inferior

frontal/anterior insula [2,3], medial frontal/anterior cingulate cortex (ACC) [2], and temporal

regions [3], while patients with MDD show small GM volumes in the ACC [5,6] and dorsolat-

eral and dorsomedial prefrontal cortex [6]. Moreover, a few volumetric neuroimaging studies

have directly compared patients with BD and MDD to identify disorder-specific abnormalities.

Relative to patients with MDD, patients with BD show reduced GM volumes in the habenula

[10], middle cingulate gyrus [11], hippocampus, and amygdala [12], while those with BD have

larger GM volumes in the anterior cingulate gyrus [12]. In functional magnetic resonance

imaging (fMRI) studies, patients with BD demonstrated altered resting- state brain activity

and connectivity relative to patients with MDD[13, 14]. Although these results indicate that

patients with BD and MDD have differences in the brain, disorder-specific structural abnor-

malities remain unclear.

Epidemiological genetic studies of BD and MDD can also be used to evaluate biological

markers for distinguishing between the two disorders. Family studies show a relative risk of

10.7 for BD in first-degree relatives (FDRs) of BD probands, while the comparable relative risk

for MDD is 2.8 [15]. Moreover, a twin study has shown that the heritability of BD is twice as

high as that of MDD [16]. These results suggest a stronger genetic vulnerability for BD than

for MDD. Unaffected FDRs of probands are also known to be at higher risk of developing BD

or MDD than the general population [17, 18]. Sub-clinical traits of mood disorders show addi-

tional common traits that have been defined as candidate endophenotypes of mood disorders

among unaffected relatives as compared to the general population [19].

There have been a few VBM studies on FDRs of patients with BD and MDD. For example,

it has been shown that the FDRs of individuals with BD exhibit smaller [20] and larger GM

volumes [21,22] in the inferior frontal gyrus and insula than healthy control subjects. More-

over, the FDRs of individuals with MDD show reduced hippocampal volumes [23] and

increased amygdala volumes as compared to healthy control subjects [24]. Twin studies have

also demonstrated decreased hippocampal volumes in FDRs of individuals with BD and

MDD, as compared to healthy control subjects [25,26]. These results suggest that brain volu-

metric abnormalities reflect the vulnerability of FDRs and may reveal candidate endopheno-

types for BD and MDD. However, there is, to our knowledge, no study comparing

morphometric abnormalities of patients with BD and MDD to their respective FDRs in order

to identify disorder-specific volumetric changes.

To facilitate discrimination of BD from MDD, we investigated differences in brain volume

and function between patients with BD and the FDRs of individuals with BD (BD group) and

patients with MDD and the FDRs of individuals with MDD (MDD group). We examined

brain volumes using VBM in both groups, and explored executive functioning in these

patients, as impaired executive function has been revealed as a candidate endophenotype of

BD [27]. Based on prior VBM studies of individuals with BD and MDD, we hypothesized that

BD and MDD groups would show GM volume changes in regions related to emotional and

cognitive processing. Such regions would include the medial frontal/ACC and inferior frontal/

insula cortex, as well as subcortical regions. We also expected to observe abnormalities in
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executive function, and that these deficits would be more pronounced in the BD group than in

the MDD group.

Materials and Methods

Participants

This study was approved by the Institutional Review Board of Yamaguchi University Hospital.

Written informed consent was obtained from all participants after a complete description of

the study was provided.

Our study consisted of 81 subjects, which included 10 patients with BD and 10 FDRs of

individuals with BD (BD group), 17 patients with MDD and 17 FDRs of individuals with

MDD (MDD group), and 27 healthy control subjects who had no immediate family members

that had any psychiatric disorder (Table 1). Among the patients with BD, seven were diag-

nosed with bipolar I disorder (BD-I) and three with bipolar II disorder (BD-II). In patients

with MDD, seven were undergoing their first major depressive episode, while 10 were classi-

fied as having recurrent episodes. All patients were screened by the International Neuropsychi-

atric Interview (M.I.N.I., Japanese version 5.0.0) [28] and underwent an interview to confirm

their diagnosis by psychiatrists according to the DSM-IV-TR. Patients who had a history of

electroconvulsive therapy or comorbid psychiatric disorders, including anxiety disorders and

current or previous substance use disorders, were excluded.

Current mood states of the patients were evaluated by a 17-item Hamilton Depression Rat-

ing Scale (HDRS) [29] and the Young Mania Rating Scale (YMRS) [30]. History of suicide was

rated in six grades: 1, “never”; 2, “a brief thought”; 3, “planned at least once but did not attempt”;

4, “planned at least once and really wanted to die”; 5, “attempted suicide but did not want to

die”; 6, “attempted suicide and hoped to die”. All patients were taking mood stabilizers (10 with

BD, one with MDD), antidepressants (four with BD, 17 with MDD), or antipsychotics (second-

generation antipsychotics: seven with BD, four with MDD; first-generation antipsychotics: two

with BD, three with MDD). Eight of the 10 patients with BD took lithium. Antipsychotic doses

Table 1. Demographics and clinical characteristics of participants.

HC (n = 27) BD group (n = 20) p MDD group (n = 34) p

patients (n = 10) FDRs (n = 10) patients (n = 17) FDR (n = 17)

Age (y) 48.3 ± 13.0 46.9 ± 12.3 54.8 ± 20.1 0.409 51.8 ± 11.4 45.5 ± 14.5 0.37

Gender(M/F) 10/17 3/7 5/5 0.109 7/10 5/12 0.03

Premorbid IQ 99.7 ± 7.9 107.4 ± 2.6 97.9 ± 2.6 0.049 94.8 ± 2.0 97.8 ± 2.0 0.097

Years of education (y) 14.0± 2.0 14.7± 1.6 12.7± 2.5 0.094 13.8± 2.3 13.4± 2.0 0.64

Handedness 88.7± 12.7 91.0± 13.9 97.0± 5.4 0.179 90.0± 15.8 86.5± 24.5 0.84

GAF 99.4± 2.1 42.0± 17.0 98.3± 3.3 < 0.01 40.3± 7.8 97.5± 3.1 < 0.01

HDRS 0.3± 0.7 21.3± 6.7 0.2 ± 0.4 < 0.01 23.5 ± 5.1 0.4± 1.0 < 0.01

YMRS 0.0 ± 0.0 0.0 ± 0.0 0.1± 0.3 0.158 0.2 ± 0.5 0.06± 0.1 0.18

Antipsychotic doses 181.4± 113.7 81.0± 69.8 0.072

Antidepressants doses 158.8± 36.1 211.7± 96.2 0.25

Duration of illness (m) 74.1± 110.3 49.5± 65.1 0.8

Onset age of illness (y) 32.2 ± 11.5 43.6 ± 13.9 0.047

The number of depressive episodes 6.4±5.2 2.2±1.1 < 0.01

HC, healthy control subjects; BD, bipolar disorder; MDD, major depressive disorder; GAF, Global Assessment for Function by DSM-IV-TR; HDRS, Hamilton

Rating Scale for Depression; YMRS, Young Mania Rating Scale; TMT, Trail Making Test; the value was represented the mean ± SD. Statistics were done

by ANOVA or Mann-Whitney test.

doi:10.1371/journal.pone.0168493.t001
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were estimated using chlorpromazine dose equivalents and antidepressant doses were estimated

using imipramine dose equivalents.

Of the FDRs of individuals with BD, four had a parent with BD, four had a sibling with BD,

and two had a child with BD. In FDRs of individuals with MDD, three had a parent with

MDD, 12 had a sibling with MDD, and two had a child with MDD. The FDRs were screened

by the M.I.N.I. and were excluded from the study when the examination revealed any psychiat-

ric disorders. Twenty-seven healthy control subjects were screened using the M.I.N.I., and

were excluded if any of their immediate family members had psychiatric disorders or heritable

neurological diseases.

Exclusion criteria for all participants included the presence of neurological or endocrine

diseases, or abnormal results on medical laboratory tests, such as hypothyroid function, head

trauma, Parkinson’s disease, family history of hereditary neurological disorder, severe hyper-

tension and diabetes, active liver disease, kidney problems, and respiratory problems. All sub-

jects were right-handed, as assessed using the Edinburgh handedness inventory [31]. The

Global Assessment of Function (GAF) from the DSM-IV-TR was used to assess social func-

tioning. Premorbid IQ scores were estimated using the Japanese Adult Reading Inventory

(JART) [32].

Magnetic resonance imaging

Brain images were collected on a 1.5-tesla Magnetom Vision scanner (Siemens Medical System

Inc., Erlangen, Germany). A three-dimensional gradient-echo sequence (FLASH, fast low-angle

shot) yielding 160–180 contiguous slices (1.0 mm thick) in the sagittal plane was used for image

analysis. The MRI parameters were as follows: echo time = 5 ms, repetition time = 24 ms, flip

angle = 40˚, field of view = 256 mm, matrix size = 256 × 256, voxel size = 1 × 1 × 1 mm. MR

images were manually checked for quality before the VBM analysis, and abnormal findings

were identified by psychiatrists with expertise in MRI studies, as well as by radiologists who

were blinded to the subjects’ diagnosis.

Image analysis

Image preprocessing was performed using SPM8 software (Wellcome Department of Imaging

Neuroscience, London, UK) using Matlab R2012b 8.0.0.783 (MathWorks, Natick, MA, USA).

T1-weighted images were segmented and imported into a format that could be used by the

VBM8 algorithm. The segmented images were normalized to the Montreal Neurological Insti-

tute (MNI) space and smoothed with an 8-mm Gaussian filter.

Executive function

Cognitive function was assessed by a trail making test (TMT). Recent meta-analyses of execu-

tive function in individuals with BD and MDD have shown poorer performance in patients

than in healthy control subjects [33, 34]; thus, poor executive function could be a candidate

endophenotype for BD [35]. Here, we used the time it took to complete a task for assessing

function. The test consists of two parts (A and B) that must be performed as quickly as possi-

ble. Part A required individuals to connect a series of 25 numbered dots randomly distributed

on a sheet of paper by drawing a line between them (1-2-3. . .), and assessed visual attention

and processing speed [36]. Part B required individuals to connect a series of alternating num-

bered and lettered dots in order (1-A-2-B. . .), and assessed set-shifting [37]. The difference

between the time it took subjects to complete Part A and Part B (TMT B-A) was also deter-

mined. The TMT B-A score is meant to remove the speed component from the test evaluation

and represents executive function; it has been reported as a sensitive tool for assessing frontal

Neural Substrates of Mood Disorders
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lobe function [38]. Higher scores on the TMT B-A represented lower executive function. Fur-

thermore, the score of the TMT was reportedly associated with medial frontal, insula, and

ACC volumes [39, 40].

Statistical analysis

VBM. We used SPM8 software to implement a general linear model analysis. First, we

performed a whole-brain analysis using a factorial design, with age, sex, and premorbid IQ

scores as covariates, in SPM8, to determine whether there was an effect of diagnosis when

comparing either the BD or the MDD group with healthy control subjects. A voxel-wise F-test

was performed with the threshold set at p< 0.05, corrected by a family-wise error (pFWE-corr).

Mean GM volumes of regions that showed a significant main effect of diagnosis were then

extracted by MarsBar (http://marsbar.sourceforge.net/) and compared among patients, FDRs,

and healthy control subjects using an analysis of variance (ANOVA) in SPSS for Windows sta-

tistical software, version 16.0 (SPSS, Inc., Chicago, IL). We anatomically identified regions

using automated anatomical labeling via WFU PickAtlas version 2.4 (http://www.fmri.

wfubmc.edu/download.html).

Second, another whole brain analysis was carried out in SPM8 using a factorial design with

the condition having two factors (patients vs. FDRs) and diagnosis having two factors (BD vs.

MDD) to determine whether there was an interaction between condition and diagnosis.

TMT. We used the Kruskal–Wallis test for TMT Parts A, B, and B-A among the five

groups. The Mann–Whitney U test was also used to compare differences between the two

groups. Statistical significance was set at p< 0.05.

Medication effect. To examine the effects of medication load on brain volume, we calcu-

lated the dosage of psychiatric medications. Antipsychotic doses were estimated using chlor-

promazine dose equivalents. Antidepressant doses were estimated using imipramine dose

equivalents. Mood-stabilizer medication was coded as absent (0), taking lithium (1), or taking

lithium and valproate (2).

Correlation analysis. A correlation analysis was applied to determine the relationship

between significant results on the VBM and TMT. We also performed correlation analysis of the

following clinical variables: age of illness onset; duration of illness; numbers of depressed, manic,

and total episodes; scores on the HDRS and YMRS; medication load, and suicide history.

Results

Demographics

There was no significant difference in mean age, premorbid IQ, handedness, and years of educa-

tion among the patients, FDRs, and healthy control subjects (Table 1). The distribution of sex

among patients with MDD, FDRs of individuals with MDD, and healthy control subjects was

significantly different. The mean age of onset in patients with BD was earlier than that of patients

with MDD (U = 45.5, p = 0.05 by Mann–Whitney U test). No significant difference was observed

between patients with BD and MDD in terms of illness duration (U = 80.0, p = 0.82) or in use of

antipsychotics and antidepressants (U = 12.5, p = 0.072; U = 22.0, p = 0.25, respectively). Patients

with BD had more mood episodes than patients with MDD (U = 9.0, p< 0.001). Eight of 10

patients with BD took lithium.

VBM

For the BD group, a significant main effect of condition was found in the GM volume of the left

medial prefrontal cortex adjacent to the ACC (coordinates of the voxel of maximum statistical
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significance: x = -1.5, y = 48, z = -7.5, F = 22.96, k = 13, pFWE-corr = 0.01; Fig 1) and left insula

(x = -39, y = 19.5, z = -1.5, F = 29.34, k = 103, pFWE-corr< 0.01; Fig 2(A)) in the whole brain analy-

sis. In a post hoc analysis, patients with BD and FDRs of individuals with BD showed significantly

smaller GM volumes in the left ACC than healthy control subjects (p< 0.01, 95% confidence

interval, 95%CI [0.03, 0.13]; p< .05, 95% CI [0.002, 0.11], respectively). Moreover, patients with

BD showed significantly smaller GM volumes in the left insula than did healthy control subjects,

p< .01, 95% CI [0.05, 0.21]. There was no significant correlation between any medication load

and left ACC or left insular GM volume in patients with BD (antipsychotics; r = -0.66, p = 0.076;

r = -0.36, p = 0.93, respectively, antidepressants; r = -0.32, p = 0.68; r = -0.32, p = 0.68, respectively,

and mood stabilizers; r = 0.23, p = 0.52; r = 0.23, p = 0.52, respectively).

For the MDD group, there was a significant main effect of condition in the GM volume

of the left and right inferior frontal gyrus adjacent to the insula (x = -42, y = 42, z = 7.5,

F = 12.53, k = 347, uncorrected p = .05 × 10−4; x = 45, y = 52.5, z = 9, F = 14.18, k = 248, uncor-

rected p< .01 × 10−4, respectively) in the whole brain analysis (Fig 2(B) and 2(C)), although nei-

ther of these were significant after FWE correction. We overlaid the results of the whole-brain

analysis of the BD group with those of the MDD group and found that the ACC was a region that

was identified specifically in the BD group, while the insula was a shared region that was high-

lighted in both groups (Fig 3).

Fig 1. Anterior cingulate GM volumes among the BD group in the whole brain analysis. The patients

with BD and FDRs of individuals with BD showed significantly smaller volumes compared to healthy control

subjects. FDR first-degree relatives; HC healthy subjects.

doi:10.1371/journal.pone.0168493.g001
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A two-by-two ANOVA of the whole brain revealed that there was no significant main effect

of condition (patients vs. FDRs) or diagnosis (BD vs. MDD). Furthermore, there was no inter-

action between condition and diagnosis.

TMT

Patients with BD took a significantly longer time to complete Part B, and had higher scores for

the B-A of the TMT than did healthy control subjects (U = 76.0, p = 0.044; U = 66.0, p = 0.017,

respectively). Patients with MDD took a significantly longer time to complete Part A and Part B

than did the FDRs of individuals with MDD (U = 12.5, p< 0.001; U = 53.5, p = 0.001, respec-

tively) and healthy control subjects (U = 91.0, p = 0.001; U = 80.0, p< 0.001, respectively)

(Table 2).

Correlations

The BD group showed a significantly inverse correlation between GM volumes of the left

insula and the time it took patients to complete Part A of the TMT (r = -0.31, p< 0.05 by

Spearman’s rho test; Fig 4). When excluding the subject with a TMT score of 160, who

appeared to be an outlier, the result was still significant (r = -0.46, p< 0.05).

In patients with BD, the severity of suicide history was also inversely correlated with GM

volumes of the left insula (r = -0.76, p = 0.011 by Spearman’s rho test). No other significant

correlations were found between VBM and TMT data and any clinical variables in the BD or

MDD groups.

Fig 2. Comparisons of GM volumes in the left and right insula of patients in BD and MDD groups. Patients

with BD showed significantly smaller GM volumes in the left (a) and insular cortex compared to healthy control

subjects. There was a trend of a main effect of diagnosis in the GM volume of the left (b) and right (c) insular cortex

in the MDD group.

doi:10.1371/journal.pone.0168493.g002
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Discussion

Our current study revealed a reduction in the GM volume in the ACC of patients with BD and

FDRs of individuals with BD, but not in patients with MDD or in FDRs of individuals with

MDD. A whole brain analysis revealed a significant main effect of condition in the GM volume

of the insula in patients with BD and MDD, as well as a reduced insular GM volume in patients

with BD. We further found delayed TMT performance in patients with BD and MDD, but not

Fig 3. A superimposed image of results from the whole-brain analysis. Areas in red represent regional GM

volumes that showed a significant main effect of diagnosis in the BD group. Areas in green represent regional GM

volumes that showed a main effect of diagnosis in the MDD group. Areas in yellow represent shared results of a

main effect of diagnosis in BD and MDD groups.

doi:10.1371/journal.pone.0168493.g003

Table 2. The results of behavioral performance and statistics in the score of TMT.

TMT scale Behavioral performance (sec), M (SD) p

BD group MDD group HC

patients FDRs patients FDRs

A 55.2 (43.4) 35.3 (14.6) 49.8 (13.2) 27.5 (5.9) 33.4 (13.7) < 0.01

B 126.5 (90.0) 98.1 (65.3) 126.1 (78.8) 67.4 (25.9) 67.4 (24.3) < 0.01

B-A 71.3 (57.4) 62.8 (51.1) 76.3 (72.4) 39.9 (23.5) 34.0 (16.7) 0.12

BD Bipolar disorder; MDD Major depressive disorder; FDR First degree relatives; HC Healthy control subjects.

doi:10.1371/journal.pone.0168493.t002
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in the FDRs of individuals with BD or MDD. Finally, we found that the smaller insular GM

volumes were associated with poor performance on the TMT-A as well as a severe suicide his-

tory in patients with BD. These findings suggest that the ACC GM volume could represent a

distinct endophenotype of BD and that the insular GM volume could be a shared endopheno-

type of BD and MDD. Further, these findings suggest that insular GM volume may indicate

cognitive decline and poor outcome in individuals with BD, and moreover, that performance

on the TMT cannot distinguish between BD and MDD.

The ACC plays a key role in the regulation of emotion and executive function [41], and dis-

ruption to this region is involved in the pathophysiology of BD. Some meta-analytical studies

have supported the evidence that patients with BD have small GM volumes in the ACC [2, 42–

44]; however, other studies have not reported this reduction [3, 45–47]. For example, previous

VBM studies on relatives of individuals with BD have shown that genetic risk for BD is associ-

ated with a reduced ACC GM volume [48]. Moreover, it has been shown that FDRs of individ-

uals with BD have smaller medial white matter volumes near the ACC than do healthy subjects

[20]. In contrast, a manual-tracing study showed that unaffected offspring of parents with BD

do not have statistically significantly different subgenual ACC volumes when compared to

healthy control subjects [49]. The negative findings of the latter study may be due to the use of

different imaging analyses from the former two studies. Moreover, the latter study tested youn-

ger participants (mean age, 19−20 y); thus, the unaffected offspring of individuals with BD

may potentially include individuals with BD before onset. Our findings support the evidence

that the ACC volume may be a candidate endophenotype of BD and that the ACC may be

involved in the morphometric pathophysiology related to the genetic liability for BD.

Fig 4. The correlation between GM volumes of the left insula and the time it took patients to complete Part

A of the TMT. The left insular GM volume was negatively correlated with scores of the TMT-A in the BD group.

doi:10.1371/journal.pone.0168493.g004
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Another interesting finding of this study was that individuals in the BD and MDD groups

exhibited decreased insular GM volumes. The insular cortex plays a crucial role in emotional

arousal and feeling [50, 51], and is assumed to be involved in a network model of higher-level

cognitive control and emotional processing [52]. Three previous meta-analyses of VBM find-

ings have revealed that patients with BD show smaller insular GM volumes than do healthy

control subjects [2,3,53]. Two family studies of BD have also supported evidence of a change

in insular volume, with one study on patients with BD and FDRs of individuals with BD show-

ing a smaller left anterior insular GM volume than seen in healthy control subjects [20] and

the other study showing an association between increased volume of the left insula and a

genetic predisposition to BD [23]. Although more family studies of BD are required to confirm

whether increases or decreases in GM volume are indicative of BD predisposition, the findings

of the present study, together with those of prior studies, indicate that insular GM volume is

associated with the genetic liability for BD.

The present study also demonstrated that insular GM volume was associated with a severe

history of suicide in patients with BD, as well as scores for the TMT-A in patients with BD and

FDRs of individuals with BD. In previous studies, it has been reported that individuals with

BD that have attempted suicide have smaller insular GM volumes than do individuals with BD

that have not attempted suicide [54] and patients with BD with a history of psychotic episodes

and psychotic spectrum disorders [55]. It has also been reported that patients with depression

and a history of attempted suicide take a significantly longer time to complete the TMT-A

than do healthy control subjects, whereas no significant differences have been found between

the time it takes patients with depression without a history of attempted suicide to complete

the TMT-A and healthy control subjects [56]. The results of the present study therefore further

support the hypothesis that the insula may play a role in mediating suicidal ideation and the

execution of suicidal behavior in individuals with BD. Previous reports have indicated an asso-

ciation between the insular cortex and TMT performance in healthy control subjects [57, 58].

In addition, the insula is reported to be part of a frontal–striatal attention network [59]. These

finding suggest that the insula may be involved in executive function as measured on the

TMT.

In terms of patients in the MDD group, we also found smaller GM volumes in the insula,

but this finding was not statistically significant after correction for multiple comparisons. The

evidence of the relationship between the insular volume and MDD has been controversial.

Although some VBM and manual-tracing studies have reported reduced insular volumes in

patients with MDD as compared to healthy control subjects [60,61], meta-analytical volumet-

ric studies have failed to show reductions in this region in patients with MDD [6,62,63]. Fur-

thermore, previous VBM family studies have not shown significant differences in the insular

GM volume among the FDRs of individuals with MDD, patients with MDD, and healthy sub-

jects [25,64]. The limited evidence of changes in insular volume in individuals with MDD may

be partly due to the low genetic liability for MDD as compared to that for BD [15,16]. More

familial neuroimaging studies of MDD across larger samples are required to evaluate the asso-

ciation between the genetic liability for MD and brain volume. Nonetheless, the results of the

current study suggest that reduced insular GM volume may be involved in the shared patho-

physiology of BD and MDD, and moreover, that this is associated with cognitive dysfunction

and the grave outcome of individuals with BD.

In terms of executive function on the TMT, we found that patients with BD and MDD, but

not FDRs of individuals with BD or MDD, showed significantly poorer results than did healthy

control subjects. Previous reports have demonstrated that patients with BD and MDD exhibit

cognitive impairments on the TMT-A [65–67] and TMT-B [65,66,68,69] as compared to

healthy control subjects. These findings are consistent with our results. However, our findings
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on the cognitive function of the FDRs of individuals with BD and MDD are inconsistent with

several previous reports. For instance, it has been reported that the FDRs of individuals with

BD show deficits in response inhibition but not in working memory or cognitive set-shifting

as compared to healthy control subjects [70]. Another study has reported that the FDRs of

individuals with BD show impairments in verbal working memory, but not in psychomotor

performance as compared to healthy control subjects [71]. Additionally, a meta-analysis on

neuropsychological tests has reported that cognitive impairments in response inhibition, set-

shifting, and sustained attention are observed in patients with BD and the FDRs of individuals

with BD, while processing speed, verbal working memory, and visual memory are affected in

patients with BD, but not in the FDRs of individuals with BD [72]. These results suggest that,

although impaired executive functioning may be one promising endophenotype of mood dis-

orders, deficits in the FDRs of individuals with mood disorders may be restricted to a certain

domain of executive function.

The current study had several limitations. Fist, the small sample size may have limited our

statistical power. Second, all patients with BD and MDD that participated in the study were

taking psychiatric medications. Some reports have demonstrated that antidepressant adminis-

tration increases the GM volume of the dorsolateral prefrontal cortex [73] and hippocampus

[74,75] in patients with MDD, and that lithium impacts cortical GM density [76]. One review

has suggested that medicated patients with BD show no significant effects of psychotropic

medications in terms of structural and functional neuroimaging measures [77]. Due to this

finding, and despite the lack of significant correlations between medication load and volumet-

ric changes in the patients with BD in the present study, we cannot exclude the possibility that

medication may have masked our results.

In conclusion, this is the first study to compare candidate endophenotypes related to

changes in brain volume between BD and MDD. Our results suggest that the volumetric

changes in the ACC represent a distinct endophenotype of BD and that the changes in insular

volume constitute a shared endophenotype between BD and MDD. Furthermore, changes in

these regions may be associated with the prognosis of BD, indicating that these findings may

be used as biomarkers for distinguishing between BD and MDD. Although there were no dif-

ferences on performance of the TMT between the FDRs of individuals with mood disorders

and healthy control subjects, GM volumes in the left insula were significantly inversely corre-

lated with TMT-A scores in patients with BD and FDRs of patients with BD, but not in MDD

patients and FDRs of patients with MDD. Future studies should evaluate both volumetric and

cognitive changes in order to reveal characteristics specific to BD. For instance, Almeida et al.

have indicated that combined dimensional approaches, including neuroimaging and cognitive

function studies, may be useful to identify individuals at future risk for BD versus MDD [78].

Thus, further studies are required to identify biomarkers that can be used for the early diagno-

sis of BD.
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66. Bourne C, Aydemir Ö, Balanzá-Martı́nez V, Bora E, Brissos S, Cavanagh JT, et al. Neuropsychological

testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis.

Acta Psychiatr Scand. 2013; 128:149–162. doi: 10.1111/acps.12133 PMID: 23617548

67. Gohier B, Ferracci L, Surguladze SA, Lawrence E, El Hage W, Kefi MZ, et al. Cognitive inhibition and

working memory in unipolar depression. J Affect Disord. 2009; 116:100–105. doi: 10.1016/j.jad.2008.

10.028 PMID: 19042027

68. Wagner S, Doering B, Helmreich I, Lieb K, Tadić A. A meta-analysis of executive dysfunctions in unipo-

lar major depressive disorder without psychotic symptoms and their changes during antidepressant

treatment. Acta Psychiatr Scand. 2012; 125:281–292. doi: 10.1111/j.1600-0447.2011.01762.x PMID:

22007857

69. Preiss M, Kucerova H, Lukavsky J, Stepankova H, Sos P, Kawaciukova R. Cognitive deficits in the

euthymic phase of unipolar depression. Psychiatry Res. 2009; 169:235–239. doi: 10.1016/j.psychres.

2008.06.042 PMID: 19765829

70. Schulze KK, Walshe M, Stahl D, Hall MH, Kravariti E, Morris R, et al. Executive functioning in familial

bipolar I disorder patients and their unaffected relatives. Bipolar Disord. 2011; 13:208–216. doi: 10.

1111/j.1399-5618.2011.00901.x PMID: 21443575

71. Bora E, Vahip S, Akdeniz F, Ilerisoy H, Aldemir E, Alkan M. Executive and verbal working memory dys-

function in first-degree relatives of patients with bipolar disorder. Psychiatry Res. 2008; 161:318–324.

doi: 10.1016/j.psychres.2007.09.002 PMID: 18977035

72. Bora E, Yucel M, Pantelis CJ. Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuro-

psychological deficits in euthymic patients and their first-degree relatives. Affect Disord. 2009; 113:1–

20.

Neural Substrates of Mood Disorders

PLOS ONE | DOI:10.1371/journal.pone.0168493 December 28, 2016 15 / 16

http://dx.doi.org/10.1016/j.jad.2011.07.006
http://dx.doi.org/10.1016/j.jad.2011.07.006
http://www.ncbi.nlm.nih.gov/pubmed/21807414
http://dx.doi.org/10.1016/j.jpsychires.2013.06.011
http://www.ncbi.nlm.nih.gov/pubmed/23866739
http://dx.doi.org/10.1016/j.jad.2012.03.006
http://www.ncbi.nlm.nih.gov/pubmed/22464009
http://dx.doi.org/10.1016/j.neuropsychologia.2005.03.013
http://www.ncbi.nlm.nih.gov/pubmed/16168730
http://dx.doi.org/10.1016/j.schres.2010.08.026
http://www.ncbi.nlm.nih.gov/pubmed/20826078
http://dx.doi.org/10.1016/j.biopsych.2005.06.007
http://www.ncbi.nlm.nih.gov/pubmed/16140278
http://dx.doi.org/10.1016/j.neuroscience.2013.12.058
http://dx.doi.org/10.1016/j.neuroscience.2013.12.058
http://www.ncbi.nlm.nih.gov/pubmed/24406440
http://dx.doi.org/10.1016/j.jad.2009.06.003
http://www.ncbi.nlm.nih.gov/pubmed/19540599
http://dx.doi.org/10.1001/archgenpsychiatry.2011.60
http://www.ncbi.nlm.nih.gov/pubmed/21727252
http://dx.doi.org/10.1016/j.jad.2011.08.001
http://www.ncbi.nlm.nih.gov/pubmed/21890211
http://dx.doi.org/10.1016/j.nicl.2014.05.015
http://www.ncbi.nlm.nih.gov/pubmed/25003028
http://dx.doi.org/10.1111/j.1399-5618.2012.01032.x
http://www.ncbi.nlm.nih.gov/pubmed/22834461
http://dx.doi.org/10.1111/acps.12133
http://www.ncbi.nlm.nih.gov/pubmed/23617548
http://dx.doi.org/10.1016/j.jad.2008.10.028
http://dx.doi.org/10.1016/j.jad.2008.10.028
http://www.ncbi.nlm.nih.gov/pubmed/19042027
http://dx.doi.org/10.1111/j.1600-0447.2011.01762.x
http://www.ncbi.nlm.nih.gov/pubmed/22007857
http://dx.doi.org/10.1016/j.psychres.2008.06.042
http://dx.doi.org/10.1016/j.psychres.2008.06.042
http://www.ncbi.nlm.nih.gov/pubmed/19765829
http://dx.doi.org/10.1111/j.1399-5618.2011.00901.x
http://dx.doi.org/10.1111/j.1399-5618.2011.00901.x
http://www.ncbi.nlm.nih.gov/pubmed/21443575
http://dx.doi.org/10.1016/j.psychres.2007.09.002
http://www.ncbi.nlm.nih.gov/pubmed/18977035


73. Smith R, Chen K, Baxter L, Fort C, Lane RD. Antidepressant effects of sertraline associated with vol-

ume increases in dorsolateral prefrontal cortex. J Affect Disord. 2013; 146:414–419. doi: 10.1016/j.jad.

2012.07.029 PMID: 23017544

74. Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D, et al. State-dependent changes in hip-

pocampal grey matter in depression. Mol Psychiatry. 2013; 18:1265–1272. doi: 10.1038/mp.2012.150

PMID: 23128153

75. Schermuly I, Wolf D, Lieb K, Stoeter P, Fellgiebel A. State dependent posterior hippocampal volume

increases in patients with major depressive disorder. J Affect Disord. 2011; 135:405–409. doi: 10.1016/

j.jad.2011.07.017 PMID: 21849213

76. Bearden CE, Thompson PM, Dalwani M, Hayashi KM, Lee AD, Nicoletti M, et al. Greater cortical gray

matter density in lithium-treated patients with bipolar disorder. Biol Psychiatry. 2007; 62:7–16. doi: 10.

1016/j.biopsych.2006.10.027 PMID: 17240360

77. Phillips ML, Travis MJ, Fagiolini A, Kupfer DJ. Medication effects in neuroimaging studies of bipolar dis-

order. Am J Psychiatry. 2008; 165:313–320. doi: 10.1176/appi.ajp.2007.07071066 PMID: 18245175

78. Cardoso de Almeida JR, Phillips ML. Distinguishing between unipolar depression and bipolar depres-

sion: current and future clinical and neuroimaging perspectives. Biol Psychiatry. 2013; 73:111–118.

doi: 10.1016/j.biopsych.2012.06.010 PMID: 22784485

Neural Substrates of Mood Disorders

PLOS ONE | DOI:10.1371/journal.pone.0168493 December 28, 2016 16 / 16

http://dx.doi.org/10.1016/j.jad.2012.07.029
http://dx.doi.org/10.1016/j.jad.2012.07.029
http://www.ncbi.nlm.nih.gov/pubmed/23017544
http://dx.doi.org/10.1038/mp.2012.150
http://www.ncbi.nlm.nih.gov/pubmed/23128153
http://dx.doi.org/10.1016/j.jad.2011.07.017
http://dx.doi.org/10.1016/j.jad.2011.07.017
http://www.ncbi.nlm.nih.gov/pubmed/21849213
http://dx.doi.org/10.1016/j.biopsych.2006.10.027
http://dx.doi.org/10.1016/j.biopsych.2006.10.027
http://www.ncbi.nlm.nih.gov/pubmed/17240360
http://dx.doi.org/10.1176/appi.ajp.2007.07071066
http://www.ncbi.nlm.nih.gov/pubmed/18245175
http://dx.doi.org/10.1016/j.biopsych.2012.06.010
http://www.ncbi.nlm.nih.gov/pubmed/22784485

