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Abstract: Sex pheromone receptors are crucial in insects for mate finding and contribute to species
premating isolation. Many pheromone receptors have been functionally characterized, especially in
moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the
development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone
signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component
of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects
on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of
the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses
of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal
lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main
pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack
of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural
connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of
a moth pheromone receptor in macroglomerulus development and extends our knowledge of the
different functions odorant receptors can have in insect neurodevelopment.

Keywords: pheromone receptor; CRISPR/Cas9; macroglomerular complex; Spodoptera littoralis

1. Introduction

Sex pheromones represent crucial signals in intraspecific communication between
individuals of the opposite sex. They play essential roles in mate finding and thus efficient
reproduction and contribute to species premating isolation and eventually speciation [1,2].
In most moth species, females release a species-specific sex pheromone blend that attracts
males at distance [3]. The different components of the pheromone blend are detected at
the level of the main peripheral olfactory organs, the antennae, by dedicated pheromone-
sensitive olfactory sensory neurons (OSNs) [4]. OSNs are housed in different types of
cuticular structures called sensilla, and in moths, the long trichoid sensilla are dedicated to
pheromone detection [5]. To detect pheromone molecules, the pheromone-sensitive OSNs
express pheromone receptors (PRs) in their dendritic membrane [6]. These PRs constitute
specialized subfamilies of odorant receptors (ORs). As with other ORs, PRs are seven-
transmembrane proteins and are proposed to function as ion channels by forming a complex
with a highly conserved and broadly expressed odorant receptor co-receptor (Orco) [7–10].
Usually, pheromone sensitive OSNs express only one type of PR that determines the OSN
selectivity and specificity [5]. All OSNs expressing the same OR type project their axons in
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the same compartment in the antennal lobe (AL) called glomerulus, where they synapse
with second-order neurons. In male moths, the glomeruli dedicated to sex pheromone
signal integration have a larger volume than ordinary glomeruli and gather in a specific
AL area called the macroglomerular complex (MGC) [11]. These macroglomeruli are easily
identifiable between individuals of the same species and sex due to their shape, size and
location close to the entrance of the antennal nerve [12]. The size of glomeruli within the
antennal lobe is, however, subjected to plasticity as a function of for example age, rearing
conditions and experience [13,14].

Many PRs have been identified and functionally characterized in moths, mainly via
heterologous expression in different systems such as cell cultures, Xenopus oocytes, and
Drosophila OSNs [6]. However, these systems remain heterologous and may not confi-
dently reflect the PR function in vivo. The recent development of genome editing tools and
their application to insects now allows linking gene loss with specific phenotypes [15,16].
For instance, CRISPR-Cas9 has been largely applied to knock-out Orco in different in-
sect species, revealing its primordial function in olfactory transduction, including sex
pheromone sensing in moths [17–19], but also in the development and maintenance of AL
structure, depending on the species. In ants and bees, Orco appears to play a role in OSN
development and glomerulus formation [20–22], whereas in Drosophila, loss of function of
Orco does not affect the glomeruli formation in the AL [7,23].

Yet, there are only very few examples of successful PR knock-out in moths, such as
Bombyx mori, Helicoverpa armigera, and Spodoptera littoralis [24–26]. The resulting effects on
peripheral sensing and mating behavior have been investigated, revealing that deletion of
only one PR could lead to pheromone anosmia and mating disruption, confirming that sex
pheromone detection follows a dedicated labeled line pathway. However, the effect of PR
knock-out on the moth MGC structure has not yet been investigated, and the function of
PRs, if any, in MGC development is not known.

In this study, we took advantage of a PR knock-out line we have generated in the
noctuid moth S. littoralis (pheromone receptor SlitOR5) [26] to investigate the peripheral
effects at the OSN level and the central effects at the macroglomerulus level. We have pre-
viously shown that SlitOR5 knock-out completely abolished the global antennal response
to the main component of the female sex pheromone blend, (Z,E)-9,11-tetradecadienyl
acetate (Z9,E11-14:OAc), and affected all steps of the male courtship behavior [26]. When
heterologously expressed in Drosophila OSNs and Xenopus oocytes, SlitOR5 was specifically
tuned to Z9,E11-14:OAc. However, the effect of SlitOR5 knock-out was not investigated at
the individual OSN level nor at the AL level. Here, we revealed that SlitOR5 loss of function
impacted the activity of only one out of three characterized pheromone-sensitive OSN
classes, allowing us to clearly link one OSN type activity to PR expression. We also showed
that SlitOR5 knock-out led to a reduced size of the glomerulus processing information on
the main pheromone component in the MGC.

2. Materials and Methods
2.1. Animal Rearing, Generation of SlitOR5 Mutants

S. littoralis were reared in the laboratory on a semi-artificial diet [27] at 22 ◦C, 60% rela-
tive humidity, and under a 16 h light:8 h dark cycle. Males and females were sexed as pupae
and further reared separately since it has been shown that smelling the sex pheromone can
impact chemosensory gene expression and macroglomerulus size in this species [14]. The
generation of the CRISPR-Cas9 SlitOR5 knock-out (KO) homozygote individuals has been
described previously [26]. Briefly, freshly laid eggs were injected with a mix of a guide RNA
(AGCATAAATACTGGACCCAG TGG) designed against the first exon of the SlitOr5 gene
and the Cas9 protein. Individuals were genotyped at each generation using PCR on genomic
DNA extracted from larvae pseudopods (Wizard Genomic DNA Purification Kit, Promega,
Madison, WI) using gene-specific primers (Or5_forward: 5′-CCAAAAGGACTTGGACTTTGAA-
3′; Or5_reverse: 5′-CCCGAATCTTTTCAGGATTAGAA-3′) encompassing the target se-
quence. Mutagenic events were detected by sequencing the amplification products (Biofidal,
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Vaulx-en-Velin, France), and G0 individuals carrying a single mutagenic event were crossed
with wild-type individuals. Homozygous G2 KO individuals were obtained by crossing G1
heterozygous males and females.

2.2. Single-Sensillum Recordings

Single-sensillum extracellular recordings (SSRs) on three functionally characterized
types of OSNs from S. littoralis male long trichoid (LT) sensilla (namely LT1a, LT2a, and
LT2b) [28–30] were performed as previously described [30]. Briefly, 1-to-3 day-old males
were restrained in a Styrofoam block, and the antenna was visualized under an MZ16
stereomicroscope (Leica, Wetzlar, Germany). Tungsten electrodes were inserted at the
base of the sensilla using a PatchStar micromanipulator (Scientifica, Uckfield, UK). The
OSNs were stimulated with an air pulse of 200 ms (0.2 L·min−1), odorized using a stimulus
cartridge containing a filter paper loaded with 1 µg of the following pheromone com-
ponents: the S. littoralis major pheromone component (Z,E)-9,11-tetradecadienyl acetate
(Z9,E11-14:OAc), the minor component (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc)
and the behavioral antagonist Z-9-tetradecenol (Z9-14:OH) (diluted at 1 µg/µL in hexane).
Hexane was used as a control, and each assay was repeated 12 times on KO and 13 times on
wild-type males. Pheromone compounds were either synthesized in the lab or purchased
from Pherobank (Wijk bij Duurstede, The Netherlands). Hexane was purchased from Carlo
Erba Reagents (Val de Reuil, France). The electrical signal was amplified, high-pass (1 Hz),
and low-pass (3 kHz) filtered using a CyberAmp 320 (Molecular Devices, Sunnyvale, CA,
USA) and sampled at 10 kHz via a Digidata 1440A acquisition board (Molecular Devices).
Recordings and analyses were performed with pCLAMP™ 10 (Molecular Devices).

2.3. Brain Dissection and Immunostaining

The structure of brain neuropil, and specifically the antennal lobe MGC of S. littoralis
males, was revealed by using immunostaining with an antibody against the Drosophila
vesicle-associated protein synapsin 1 (SYNORF1, Developmental Studies Hybridoma Bank,
University of Iowa, Iowa City, IA, USA). This staining method has been used previously
to reveal AL glomeruli in the same moth species [14,31]. Briefly, brains from 12 wild type
and 12 KO newly emerged virgin and naïve males (non exposed to pheromone, as such
exposure has been shown to lead to an increased size of the corresponding glomerulus
(Guerrieri, 2012 #2564)) were carefully dissected in phosphate buffer saline (PBS) and fixed
overnight in 4% Electron Microscopy-grade formaldehyde solution in PBS at 4 ◦C. After
rinsing in PBS, the brains were pre-incubated in PBS with 2% Normal Goat Serum (NGS)
and 0.5% Triton X 100 and then incubated with the synapsin 1 antibody (1:25 in PBS with
0.5% Triton X and 2% NGS for 5 days at 4 ◦C). After rinsing, brains were incubated with
the secondary antibody (1:250 in PBS with 1% NGS for 3 days at 4 ◦C; Alexa-Fluor-488-
conjugated anti-mouse; Invitrogen, Abingdon, UK). Brains were then rinsed again in PBS,
dehydrated in a graded ethanol series, and mounted in methyl salicylate on aluminum
slides between two microscopic cover glasses.

2.4. Confocal Microscopy

Whole-mount brains were observed and scanned with a Nikon A1 laser confocal
microscope. Images were acquired with a Plan Fluor objective (10×/NA 0.3) with an
additional 3.5 × digital zoom. Fluorescence was detected with a GFP filter, and images
were scanned at 1024 × 1024 pixels, a 4 × frame average, and with a step size of 2 µm.
Nikon files were transformed into tiff stacks in Fiji software (Image J, version 2.0.0, National
Institutes of Health, Bethesda, ML, USA) and imported into Amira 3.1.1 (Visualization
Sciences Group, Mérignac, France).

2.5. Reconstructions and Volume Measurements

Outlines of the three glomeruli that constitute the S. littoralis MGC were manually
traced with the computer mouse in every other section with the “label field” function,
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as earlier described [14,31], and intermediate section surfaces were interpolated. The
“SurfaceGen” tool was used to reconstruct the surface of each glomerulus, and its volume
was calculated using the “Measure” tool.

2.6. Statistical Analysis

In SSR, odorants were considered as active if the response they elicited was statisti-
cally different from the response elicited by the solvent alone (hexane). We tested these
differences using one-way ANOVA followed by Tukey’s post hoc test. Volumes of all
three MGC glomeruli were normally distributed in both WT and KO males according to a
Shapiro-Wilk test (in all cases W > 0.873 and p > 0.07); hence, a two-sample t-test was used
to compare volumes of each MGC glomerulus between KO and WT males using XLSTAT
19.03 (Addinsoft, New York, NY, USA).

3. Results
3.1. SlitOR5 Knock-Out Specifically Abolishes the Responses of LT1a Neurons to Z9,E11-14:OAc

S. littoralis antennae exhibit three types of pheromone sensitive long trichoid (LT)
sensilla named LT1, LT2, and LT3 [28–30] (Figure 1a). They are easily recognizable by their
morphology, and no morphological difference was obvious between WT and KO adults.
LT1 sensilla houses two OSNs, and one of them, LT1a, is tuned to the major pheromone
component (Z9,E11-14:OAc), whereas the ligand for the second OSN is unknown with
very low spontaneous activity [28,29]. LT2 also houses two OSNs, with LT2a tuned to
the minor pheromone component Z9,E12-14:OAc, and LT2b tuned to Z9-14:OH [28]. LT3
has not been considered in this study since it has only been found at the distal part of
the antenna and houses only one OSN tuned to diverse compounds (Z9,E12-14:OAc, Z9-
tetradecadienyl acetate: Z9-14:OAc, and Z9-dodecenyl acetate: Z9-12:OAc) [30]. LT1a,
LT2a and LT2b OSN types were stimulated with their corresponding activating pheromone
components, Z9,E11-14:OAc, Z9,E12-14:OAc, and Z9-14:OH. Recordings showed equal
responses between WT and heterozygote mutant individuals for all the OSNs investigated
(Figure 1). These responses were significantly higher (LT1a: df = 8, F = 43.03, p = 2 × 10−16;
LT2a: df = 5, F = 117.7, p = 2 × 10−16; LT2b: df = 5, F = 110.8, p = 2 × 10−16) compared to
the marginal responses to the solvent, hexane.

Concerning the homozygote mutants, we first noticed that SlitOR5 knock-out com-
pletely abolished the spontaneous activity in LT1a OSNs (Figure 1b,c) but not in other
OSNs. No significant differences were observed between the WT and the KO individuals
for the responses of LT2a and LT2b OSNs to Z9,E12-14:OAc and Z9-14:OH, respectively
(df = 2, F = 0.49, p = 0.617 and df = 2, F = 2.77, p = 0.078) (Figure 1c). On the contrary, LT1a
OSNs of homozygote mutants did not respond at all to the major pheromone component,
Z9,E11-14:OAc (Figure 1a,b), whereas LT1a OSNs of WT and heterozygote individuals
responded with a very high action potential frequency to this component (Figure 1c). The
difference between the homozygotes and WT/heterozygotes was statistically significant
(df = 2, F = 31.48, p = 1.83 × 10−8).

3.2. SlitOR5 Knock-Out Modifies the Size of the Cumulus in the Macroglomerular Complex

S. littoralis AL neuroanatomy has been described in detail [32]. Sixty-two glomeruli
have been identified and their relative sizes described. Three independent studies on
the MGC showed three glomeruli named a, b, and c [33,34] corresponding to 18, 17, and
37, respectively [32]. Glomeruli 17 and 37 have been shown to receive input from the
OSNs tuned to the minor pheromone component Z9,E12-14:OAc, and from the behavioral
antagonist Z9-14:OH, respectively [34]. Glomerulus 18, also named the cumulus, is the
largest one, located at the entrance of the antennal nerve. It has been found to receive input
specifically from OSNs tuned to the major pheromone component Z9,E11-14:OAc, detected
by SlitOR5. When comparing volumes of individual MGC glomeruli, the cumulus was
significantly smaller in KO males than in WT males (t = 4.86, p < 0.0001), whereas the two
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other MGC glomeruli were not significantly different in size between KO and WT (MGC
17: t = −1.27, p = 0.219; MGC 37: t = −1.18, p = 0.253) (Figure 2).
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Figure 1. Effects of SlitOR5 knock-out on pheromone reception. (a) Diagram showing the different
types of long trichoid (LT) sensilla found on S. littoralis male antennae, associated olfactory sen-
sory neurons (OSNs a and b), and pheromone compounds detected when known (?: unknown).
(b) Typical recording traces obtained from LT1a OSNs of wild type (WT) and SlitOR5 homozygous
mutant males (KO) of Spodoptera littoralis when stimulated with Z9,E11-14:OAc. LT1a OSNs exhib-
ited no spontaneous activity in SlitOR5 knock-out (KO) individuals, and the response to the major
pheromone component was completely abolished. (c) Responses to pheromone components (1 µg
in the stimulus cartridge) of different pheromone sensitive OSNs (LT1a, LT2a, and LT2b) from wild
type males (WT, light gray, n = 13), SlitOR5 heterozygous (dark gray, n = 12) and homozygous mu-
tant (purple, n = 12) males. Responses are measured as action potential frequency (spike·s−1)
using SSR. Plotted values represent the mean response ± s.e.m (standard error of the mean).
*** p < 0.001, significantly different from the response of the other genotypes; n.s.: not significantly
different (one-way ANOVA, followed by a Tukey’s post hoc test).
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Figure 2. Effects of SlitOR5 knock-out on the macroglomerular (MGC) complex anatomy. Inset:
Frontal optical section through the right antennal lobe of an S. littoralis mutant (KO) male with
superimposed reconstructions of the three macroglomeruli in color: the cumulus (18) and the two
minor MGC glomeruli (17 and 37). Glomerulus 18, also named the cumulus, receives input from
neurons responding to the major pheromone component, Z9,E11-14:OAc, detected by SlitOR5.
Macrogomerulus volume comparison between wild type (WT, n = 12, white bars) and SlitOR5 knock-
out (KO, n = 12, grey bars) Spodoptera littoralis males. Glomerulus 18 is significantly smaller in KO
individuals. Bars indicate mean volumes ± s.e.m. Scale bar 50 µm; *** p < 0.0001, ns not significant.

4. Discussion

Major advances in our understanding of the molecular basis of odorant detection in
insects were in part propelled by the global interest in moth sex pheromone communication.
Moth PRs were among the very first insect odorant receptors ever characterized, such as
those of Heliothis virescens [35] and B. mori [36,37]. Since then, a large number of moth
PRs have been characterized in a variety of species, and most appear to cluster in a
specific “PR clade” in the Lepidoptera OR phylogeny [6]. Recently, we identified PRs
responsible for the detection of the different components of the S. littoralis sex pheromone
blend [26,30]. Surprisingly, while the PRs tuned to the minor components (SlitOR6 and
SlitOR13) do cluster in the PR clade, SlitOR5—the PR tuned to the main component—
belongs to a separate clade of Lepidoptera ORs. This led us to suggest that moth PRs
tuned to aliphatic pheromone compounds appeared at least twice during Lepidoptera
evolution [26], a suggestion recently confirmed by other studies [38,39]. The functional
characterization of such divergent PRs in vivo in relationship with their sequence analyses
may help understand how they evolved. In that view, we have generated OR5-knocked-out
S. littoralis individuals to investigate the function of SlitOR5 in vivo as a complementary
strategy to heterologous expression.

We first looked at the SlitOR5 loss-of-function effects at the peripheral level within
the antennae. Whereas classical moth PRs could be assigned to trichoid sensilla [5], none
of the divergent PRs characterized to date have been assigned to a sensillum type. Using
SSR on WT and SlitOR5 KO individuals, we could here unequivocally identify the OSNs
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that express SlitOR5 in trichoid sensilla. Indeed, recording the activity of the different
known pheromone sensitive OSNs one by one and comparing responses of WT and mutant
males, we precisely identified LT1a OSNs as responsible for the detection of the main
pheromone component (Z9,E11-14:OAc) via the expression of SlitOR5. Thus, although
moth PRs appeared at least twice during evolution, they all seem to be expressed in the
same sensillum type.

We then investigated if SlitOR5 loss-of-function would have any impact on AL struc-
ture. Indeed, studies on other insects have shown contrasting results on OR/Orco loss-of-
function effects on AL anatomy, suggesting diverse scenarii of OR impact on AL develop-
ment. For instance, the Orco-OR complex plays contrasting roles in glomerulus formation
in Drosophila versus ants and bees. Mutations in Orco do not affect the development of
glomeruli in Drosophila [7,23], while Orco mutant ants lack most of the glomeruli found in
WT and present a two-third reduced volume of the whole AL [20,21]. In bees, Orco mutants
have significantly fewer glomeruli, a smaller volume of the AL, but larger mean individual
glomerulus volumes compared to WT [22]. In the flour beetle Tribolium castaneum, Orco
knock-down via RNAi at the late larval stage resulted in normal AL glomerulization at
adult emergence, but in a heavily reduced glomerulization seven days later, whereas the
OSNs still locate normally in the antennae at both ages [40]. This led the authors to suggest
that Orco is not necessary for the initial formation of AL glomeruli and their maturation
during metamorphosis but that OR/Orco driven olfactory activity is necessary for the AL
maintenance after adult emergence. In the moth M. sexta, Orco disruption resulted in MGC
relative volume reduction [19], but the effects on the whole AL were not investigated.

All these studies focused on Orco, and rare are studies conducted on canonical ORs,
including PRs. Here, we revealed that the knock-out of a moth PR, SlitOR5, did not impact
the number of macroglomeruli in the male MGC but led to the specific volume reduction
in the glomerulus 18, involved in Z9,E11-14:OAc signal integration. This clearly links
glomerulus 18 to SlitOR5-expressing OSNs and indicates reduced MGC growth in the
absence of the normally expressed PR. In the literature, glomerulus size is usually proposed
to be related to OSN activity, OSN axonal branching, and the number of synaptic contacts
with AL neurons [14,31,41,42]. For instance, male S. littoralis pre-exposure to Z9,E11-
14:OAc induces an increased volume of glomerulus 18 [14,31]. The observed SlitOR5
mutant neuroanatomical phenotype may result from reduced neural connectivity between
SlitOR5-expressing OSNs and olfactory neurons in the AL (as a result of SlitOR5-OSNs
failing to develop properly or dying early in development), as a result of a lack of OSN
activity due to the absence of SlitOR5. In B. mori, TALEN-mediated loss of the PR tuned
to bombykol (BmorOR1) had no effect on the projections of bombykol-sensitive OSNs
in the AL [43], suggesting that BmorOR1-KO males develop proper neural connectivity
between OSNs and neurons in the AL. However, the branching of individual OSNs has
not been analyzed, and the precise size of the macroglomerulus has not been measured in
this study. As well, the additional expression of a Plutella xylostella moth PR (PxylOR1) in
the WT bombykol-sensitive OSNs did not change the projection pattern of these OSNs in
the AL [24]. In Anopheles gambiae, ectopic expression of an additional OR in many OSNs
induces a lack of response to the odor of these OSNs, and this was not due to the death
or elimination of neurons [44]. In Drosophila, OSNs still project to the same glomerulus
after OR gene deletion [45,46]. We notably observed no spontaneous activity in S. littoralis
LT1a OSN mutants. Similarly, in H. armigera, knocking out HarmOR16, a receptor for a
pheromone antagonist, led to a reduced spontaneous activity level in the OSNs usually
expressing HarmOR16 compared to WT [25]. In B. mori as well, the level of spontaneous
activity of bombykol-sensitive OSNs was largely reduced in BmorOR1 mutants [43]. Again,
these observations made in moths match with observations in Drosophila: spontaneous
activity was greatly reduced in Or67d Drosophila mutants [46], Or67d being the receptor to
the pheromone cis-vaccenyl acetate.

Taken together, these reports and our data suggest that the observed neuroanatomical
S. littoralis mutant phenotype represents activity-dependent neuroplasticity, but we can
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not rule out the possibility of reduced OSN axon projection. Interestingly, the glomerulus
18 was still quite large in KO males and still larger than the two other glomeruli in the
MGC. One potential explanation comes from Drosophila studies that propose that projection
neurons (PNs) also play a role in the glomerular constitution [47,48]. A second potential
explanation is that synaptic connections with AL neurons in the cumulus after the loss of
SlitOR5 can still occur since Orco is still present in LT1a OSNs. In addition, it is possible
that other chemosensory receptors, such as ionotropic receptors (IRs), are expressed in
the SlitOR5-OSNs. In Drosophila and Aedes aegypti it has been demonstrated recently that
ORs and IRs can co-express in the same OSN [49,50]. However, we have no evidence yet
of such coexpression in other insects. Further experiments, such as the identification of
chemoreceptors possibly co-expressed with SlitOR5, visualization of SlitOR5-expressing
OSNs within the antennae, and their axon projection into the AL of mutants are still needed
to confirm these hypotheses.
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