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Abstract

Fungicide use in the United States to manage soybean diseases has increased in recent

years. The ability of fungicides to reduce disease-associated yield losses varies greatly

depending on multiple factors. Nonetheless, historical data are useful to understand the

broad sense and long-term trends related to fungicide use practices. In the current study,

the relationship between estimated soybean yield losses due to selected foliar diseases

and foliar fungicide use was investigated using annual data from 28 soybean growing

states over the period of 2005 to 2015. For national and regional (southern and northern

United States) scale data, mixed effects modeling was performed considering fungicide

use as a fixed and state and year as random factors to generate generalized R2 values

for marginal (R2
GLMM(m); contains only fixed effects) and conditional (R2

GLMM(c); contains

fixed and random effects) models. Similar analyses were performed considering soybean

production data to see how fungicide use affected production. Analyses at both national

and regional scales showed that R2
GLMM(m) values were significantly smaller compared to

R2
GLMM(c) values. The large difference between R2 values for conditional and marginal

models indicated that the variation of yield loss as well as production were predominantly

explained by the state and year rather than the fungicide use, revealing the general lack

of fit between fungicide use and yield loss/production at national and regional scales.

Therefore, regression models were fitted across states and years to examine their impor-

tance in combination with fungicide use on yield loss or yield. In the majority of cases, the

relationship was nonsignificant. However, the relationship between soybean yield and

fungicide use was significant and positive for majority of the years in the study. Results

suggest that foliar fungicides conferred yield benefits in most of the years in the study.

Furthermore, the year-dependent usefulness of foliar fungicides in mitigating soybean

yield losses suggested the possible influence of temporally fluctuating abiotic factors on
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the effectiveness of foliar fungicides and/or target disease occurrence and associated

loss magnitudes.

Introduction

Soybean [Glycine max (L.) Merrill] is a key agricultural commodity in the United States and

has been cultivated on 34.7 million hectares on average annually between 2015 and 2019

(USDA-NASS). Similar to the production of other economically important crops, numerous

abiotic and biotic stressors like adverse weather, variation in soil characteristics, diseases,

insects, and weeds present enormous challenges to soybean production [1, 2]. Soybean diseases

are detrimental to production due to their deleterious effects on yield. In the U.S., the average

annual disease-associated soybean yield losses are approximately 11% [3]. However, the rela-

tive importance of diseases and concomitant yield losses vary both temporally and spatially.

For example, total yield losses due to diseases in 2012 was estimated to be 10.07 million metric

tons while in 2014 it was 13.94 million metric tons [4]. Among various soybean foliar diseases,

Septoria brown spot, caused by Septoria glycines Hemmi, and frogeye leaf spot, caused by Cer-
cospora sojina Hara, are the most common [1, 5–8] and are also considered to be important

yield limiting diseases in soybean [9]. The losses caused by Septoria brown spot range from

196 to 293 kg ha–1 [6]. Septoria brown spot can cause up to 2,000 kg ha–1 loss in high-yield

soybean production systems (>5,000 kg ha–1) [10]. Frogeye leaf spot can result in yield losses

from 10 to 60% [11] and seed weight reductions up to 29% [12].

Different management strategies are deployed either individually or in an integrated

manner to reduce the losses caused by foliar fungal diseases in soybean production systems.

Among these, the use of foliar-applied fungicides has been an important tactic. Fungicide use

in soybean has risen dramatically since 2005 [13]. Several reasons were given to explain this

increase including: increased availability of fungicides for use on soybean, improved awareness

of soybean diseases, the initial observation of soybean rust in North America and the resultant

production of specific chemistries to manage this disease that were not widely used, increased

soybean commodity price, and promotion of certain fungicides by the manufacturers for their

potential physiological benefits that may increase soybean yield even in the absence of disease,

a phenomenon in which the term “plant health” has been coined [14, 15].

The quinone-outside inhibitor (QoI; strobilurin) class of fungicides (Fungicide Resistance

Action Committee [FRAC] group 11) are commonly used to manage foliar diseases of soybean

and these act by binding with complex III of the mitochondrial respiration pathway [16].

Additionally, the demethylation inhibitor (DMI; triazole) class of fungicides (FRAC group 3)

are also used in soybean and this class of fungicides inhibit ergosterol biosynthesis by fungi

[17]. Recently, active ingredients from the succinate dehydrogenase inhibiting (SDHI; FRAC

group 7) class of fungicides were introduced for management of foliar soybean diseases. Simi-

lar to QoI fungicides, SDHI fungicides are classified as respiration inhibitors. However, instead

of complex III, SDHI fungicides bind at complex II in the mitochondrial respiration pathway

[17]. In general, these fungicide groups possess broad-spectrum activity on foliar fungal soy-

bean diseases including Septoria brown spot and frogeye leaf spot [18]. The fungicides within

these specific chemical classes can generally be purchased as stand-alone fungicides, especially

those products designated as either DMI or QoI. However, stand-alone fungicide products

consisting of SDHIs are currently not available and are included as a pre-mix fungicide that

contains either one of the other classes (either DMI or QoI) or both of the classes as a three-

way fungicide product. The current fungicide production trend from chemical manufacturers

is to provide products that contain multiple modes of action to help reduce the development
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of fungicide resistance. In general, and to more broadly classify the chemical classes as outlined

above, following the initial observation of soybean rust in the contiguous U.S., fungicide prod-

ucts were broadly categorized as either curative (DMI) and preventive (QoI and also SDHI).

Although foliar fungicides have extensively been used for soybean production, the extent

to which yield losses can actually be mitigated with fungicide application and the subsequent

economic return is often questioned. While fungicides are reported to reduce the yield losses

when diseases are present [19, 20], the impact of fungicide application on yield in the absence

of disease, i.e., the plant health scenario, are inconsistent. Several studies have demonstrated

no significant increase in soybean yield with fungicide applications in the absence of disease

[20–23], while other studies suggested that yield increases can occur with foliar fungicide appli-

cation even in the absence of disease [7, 23–25]. Therefore, the economic return following a

fungicide application does not intuitively follow a linear trend due to its apparent dependency

on multiple factors such as disease pressure, class of fungicide being used (i.e., active ingredi-

ent), time of application (growth stage of the plant), and environmental conditions [19, 26, 27].

Widespread fungicide use can ultimately lead to an increased risk of selecting fungicide-

resistant strains out of the targeted pathogen population. Fungicide resistance is an issue

increasing in importance across soybean production areas in the U.S. as a result of automatic

fungicide applications at specific growth stages, as well as fungicide applications with specific

fungicide classes where the goal is a curative response [28–31]. Currently, QoI fungicide resis-

tance has been reported for several soybean pathogens in the U.S., including C. sojina, in Illi-

nois, Tennessee [32], South Dakota [33], and Mississippi [29]. Zhang et al [31] recently

reported QoI resistant C. sojina isolates from 14 states including Alabama, Arkansas, Dela-

ware, Illinois, Indiana, Iowa, Kentucky, Louisiana, Mississippi, Missouri, North Carolina,

Ohio, Tennessee, and Virginia. Additionally, the fungi responsible for causing Cercospora leaf

blight (C. cf. flagellaris, C. kikuchii (Tak. Matsumoto & Tomoy.) M.W. Gardner and C. cf. siges-
beckiae) have been reported to exhibit resistance to QoI fungicides throughout Louisiana [28].

Moreover, additional anecdotal, unpublished reports of resistance within populations of S.

glyinces and Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei, the causal organism of tar-

get spot of soybean have recently been made.

In the current paper, we investigate long-term fungicide use patterns and the relationship

with soybean yield and the resulting foliar diseases that cause losses. Our primary spatial grain

was at the state level, although regional and national level trends were also explored. While

numerous individual experiments have been conducted to address the aforementioned issues, a

more comprehensive analysis with long term historical data (estimated fungicide use and soy-

bean yield losses as a result of diseases) is currently lacking. Thus, our objectives for this study

were to (i) investigate the relationship between foliar fungicide use in the U.S. and estimated

yield losses due to foliar diseases, and (ii) investigate the relationship between foliar fungicide

use in the U.S. and soybean production/yield at national, regional, and state levels. Findings of

this study will aid in informed decision making on spatiotemporally sensitive, economically via-

ble, and environmentally sound use of fungicides to manage soybean fungal diseases in the U.S.

Furthermore, results will also provide useful insights into how research, policy, and educational

efforts should be prioritized in soybean disease management using fungicides.

Materials and methods

Fungicide use data

Annual state-level foliar fungicide use estimates (in Kg of active ingredient) for soybean were

obtained from the Pesticide National Synthesis Project webpage (https://water.usgs.gov/nawqa/

pnsp/usage/maps/county-level/StateLevel/HighEstimate_AgPestU sebyCropGroup92to16.txt).
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Note that these are all actual use estimates but not amounts that were sold. Please see the web-

page earlier cited for detailed information about the methodology used to compute the fungi-

cide use estimates. Foliar fungicides applied to soybean during the period between 2005 and

2015 were considered for this study. The time period was based upon the availability of fungi-

cide use data spanning 28 soybean growing states (AL, AR, DE, FL, GA, IA, IL, IN, KS, KY, LA,

MD, MI, MN, MO, MS, NC, ND, NE, OH, OK, PA, SC, SD, TN, TX, VA, WI). Fungicide use

data were also classified based on each region where northern states considered for this study

included IL, IN, IA, KS, MI, MN, NE, ND, OH, PA, SD, and WI while southern states included

AL, AR, DE, FL, GA, KY, LA, MD, MS, MO, NC, OK, SC, TN, TX, and VA. The classification

of states into regions was based on the two groups of soybean pathologists collecting disease loss

estimate data, NCERA-137 (North Central Extension and Research Activity for Soybean Dis-

eases) and the Southern Soybean Disease Workers.

To compute the fungicide use per unit area within each state (in grams per hectare), the

amount provided in the database (in kg) was first converted to grams (g). The soybean plant-

ing and harvesting area was retrieved from USDA-NASS database (https://quickstats.nass.

usda.gov) for individual states from 2005 to 2015. Fungicide use values (in g) were divided by

respective state-wide total soybean (i) planted number of hectares and (ii) harvested number

of hectares separately to decide the most appropriate type of explanatory variable (g of fungi-

cide per unit hectarage planted versus g of fungicide per unit hectarage harvested) for use in

the study. A simple linear regression analysis showed that two variables were linearly and posi-

tively related to each other (R2 = 0.9987, P< 0.0001, y = 0.965x + 0.211), indicating a high sim-

ilarity between the two variables. As such, for this study, we report the fungicide concentration

in grams of fungicide per harvested hectare (here after mentioned as g/ha).

Yield loss data

Historical soybean yield loss estimates were gathered from soybean Extension specialists and

researchers. We considered the soybean losses for the same periods where foliar fungicide data

were also available. Soybean losses spanned the same 28 soybean growing states as indicated

above. The methodology used to collect and report soybean disease losses have been previously

described [4]. Briefly, a spreadsheet was circulated annually to plant pathologists with soybean

responsibilities and they provided estimates of the losses associated with a defined set of dis-

eases (n = 23). However, for the purposes of this study we focused on the results related to

foliar diseases caused by fungi that could be effectively managed by foliar fungicide applica-

tion. The methods employed within each state differed with regards to the specific method

for estimating losses; however, in general, some of the methods employed were based on each

individual’s evaluation of cultivar trials, fungicide efficacy plots, specific troubleshooting or

field calls, queries of Extension personnel within counties/parishes, statewide plant disease sur-

veys, or plant disease diagnostic laboratory databases.

Given that the historical yield loss data were provided in the form of losses in metric tons

(MT) of production, to calculate the loss per soybean disease, we first calculated the loss as a

percentage based on overall production (in MT) per state and year using USDA-NASS data.

We then calculated the overall loss (as a percentage) due to soybean diseases using Padwick’s

calculation [34], which is:

Loss %ð Þ ¼ 100� 1-
ð100-Y1Þð100-Y2Þð100-Y3Þ . . . ð100-YnÞ

100n

� �

;

where
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Y1, Y2, Y3, Yn, represent the percentage loss due to disease 1, 2, 3, through n, respectively.

To estimate the loss due to diseases in terms of yield, we used the average soybean yield per

state and year, from which we estimated the yield in the absence of diseases (the percentage

loss estimated using Padwick’s calculation). The difference between the state average yield and

the estimated yield in the absence of diseases was considered as the loss.

Fungicides and their targeted diseases considered

Based on data available in the fungicide and yield loss databases combined with soybean fungi-

cide efficacy summarized by Extension plant pathologists on an annual basis, we concentrated

on specific diseases for this study. Foliar fungicides (n = 15) included the following active ingre-

dients within several specific chemical classes as defined by the FRAC: QoIs (FRAC code 11) =

azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin; DMIs (FRAC code

3) = cyproconazole, difenoconazole, flutriafol, propiconazole, prothioconazole, tebuconazole,

tetraconazole; chloronitrile (FRAC code M 05) = chlorothalonil; SDHI (FRAC code 7) = fluxa-

pyroxad; and methyl benzimidazole carbamate (MBC) (FRAC code 1) = thiophanate-methyl.

Although azoxystrobin, pyraclostrobin, and trifloxystrobin have uses as seed-applied fungicides,

they were considered as foliar fungicides for this study as they are predominantly used to manage

foliar diseases of soybean. The targeted diseases for the foliar fungicides listed above included

anthracnose (caused by Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore and several

related species), Cercospora leaf blight (purple seed stain: Cercospora flagellaris, C. kikuchii, C.

sigesbeckiae), frogeye leaf spot (Cercospora sojina), Rhizoctonia aerial blight (Rhizoctonia solani
J.G. Kühn), Sclerotinia stem rot (White mold: Sclerotinia sclerotiorum (Lib.) de Bary), Septoria

brown spot (Septoria glycines), and soybean rust (Phakopsora pachyrhizi Syd. & P. Syd.).

Determination of the relationship between fungicide use and yield losses

due to diseases at national and regional scales

As the fungicide use data and yield loss data were classified by states and years, a generalized lin-

ear mixed model approach was used to model the data at national and regional scales using a

gaussian distribution. Both null (intercept/empty) and full models were fitted. All models con-

tained ‘state’ and ‘year’ as random factors while full linear model contained ‘fungicide use’ as a

fixed factor. In addition, full quadratic model was also fitted by incorporating the square term

of fungicide use as a fixed factor to the model. Following the methods in Nakagawa and Schiel-

zeth [35], marginal R2 [R2GLMM(m); fixed effects] and conditional R2 [R2GLMM(c); fixed and ran-

dom effects] values were computed for the full model to compare the relative contribution of

fixed and fixed + random factors to the observed variation of yield loss. Information criterions

(AIC and BIC) were calculated using maximum likelihood (ML) specification while all other

parameters were generated using restricted maximum likelihood (REML) specification. Analy-

ses were conducted to examine total fungicide use (MT) and total production loss (1,000 MT),

as well as total fungicide use per unit harvest area (g/ha) and total yield loss per unit area (kg/

ha). Similar analyses were performed considering soybean production data to see how fungicide

use affect production. The packages arm (version 1.10–1) [36], lme4 (version 1.1–21) [37], and

MuMIn (version 1.43.15) [38] in R (version 3.5.1) were used for mixed effect modeling.

Determination of the relationship between fungicide use and yield losses

due to diseases for individual state and year

The objective in this section was to explore the relationships between fungicide use and yield

losses due to diseases considering years and states as additional explanatory factors. Regression
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analysis was conducted in R (version 3.5.1). The model form for this analysis:

Yij ¼ b0 þ b1Aij þ b2Bi þ b3Cj þ b12AiBi þ b13AiCj

where, Yij = soybean yield loss from ith state in jth year; Aij = foliar fungicide use from ith state

in jth year; Bi = ith state; Cj = jth year.

Analyses were conducted to examine total fungicide use (MT) and total yield loss (1,000

MT), as well as total fungicide use per unit harvest area (g/ha) and total yield loss per unit area

(kg/ha). In addition, similar analyses (as indicated above) were also performed to investigate

the relationship between fungicide use and soybean production/yield.

Derivation of soybean yield, harvest, and production zones

One of our objectives in the current study was to explore whether the mean per hectare foliar

fungicide use vary by the levels of yield/harvest/production zones. Further, we wanted to per-

form an exploratory multivariate analysis (see below) by incorporating yield/harvest/produc-

tion zones and per hectare foliar fungicide use. Therefore, we first derived the said zone types

as mention below: (i) Yield zone (1 to 4), based on USDA-NASS estimates at the state level

comparing yield (MT/HA) with all state by year combinations, (ii) Harvest zone (1 to 4), based

upon USDA-NASS estimates at the state level comparing harvested area (HA) with all state by

year combinations, and (iii) Production zone (1 to 4), based upon USDA-NASS estimates at

the state level comparing total production (MT) with all state by year combinations. Data

points within the minimum to first quartile were classified as Zone 1. Similarly, data points

from the first quartile to median, median to third quartile, and> third quartile were classified

as zones 2, 3, and 4, respectively. Note that the zones were not solely defined based on geogra-

phy, in this case state, and are a function of time (temporal scale). As such, the zone of a given

data point was relative to the other data points (in terms of yield, harvest area, or total produc-

tion) within the database. As yield, harvest area, and production within a given state fluctuated

over time, the zone classification for a given state varied based on the year. The yield, harvest,

and production zones corresponding to foliar fungicide data were therefore derived using soy-

bean yield, harvest, and production data from 2005 to 2015. As these zones do not physically

exist, we were not interested in incorporating zones into our mixed model regression analysis.

Factor Analysis of Mixed Data (FAMD)

The objective of this analysis was to explore the clustering patterns of individual data points in

the variance maximizing factor map space based upon the levels of qualitative variables (zones

in particular, see above). FAMD is a principal component method to analyze a data set con-

taining both quantitative and qualitative variables [39]. FAMD makes it possible to analyze the

similarity between individuals (individual data points) by taking into account mixed-variable

types. With this analysis, quantitative and qualitative variables are normalized in order to bal-

ance the impact of each set of variables. The packages FactoMineR version 1.41 (for the analy-

sis) and factoextra (for data visualization) in R (version 3.5.1) were used for FAMD analysis.

Here, total foliar fungicide use in grams of active ingredient (on a per hectare (ha) basis) was

used as a quantitative variable while the year, state, region, soybean yield zone, harvest zone,

and production zones, were incorporated as qualitative variables.

Analysis of variance (ANOVA)

The objective with this analysis was to see whether the mean foliar fungicide use vary based on

the levels of yield, harvest, or production zones. As such, we investigated the main effects of
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yield, harvest, and production zones on total fungicide use (per ha basis) using the PROC

GLIMMIX procedure in SAS (version 9.4, SAS Institute, Cary, NC) at the 5% significance

level. Data used to create zones were classified by years and states. We hypothesized that obser-

vations (yield/harvest area/production) made in the same year but from different states were

correlated, which was a similar hypothesis for observations made in the same state but from

different years. Therefore, year and state were considered in the model as random effects. The

full linear model that was fitted with yield zone was:

Yijkl ¼ mþ Ai þ Bj þ Ck þ eijkl

where, Yijkl is the observed total fungicide use (in grams per hectare) for the lth zone entity

(l = 1–77) from the ith yield zone (i = 1–4), jth state (j = 1–28), and kth year (k = 1–11); μ is the

overall mean fungicide use common to all yield zones; Ai is the fixed effect of ith yield zone; Bj

is the random effect of the jth state; Ck is the random effect of the kth year; eijkl is the residual

term for the ijklth observation. The same model structure was used for harvest and production

zones.

Restricted maximum likelihood (REML) was used to compute the variance components.

Degrees of freedom for the denominator of F tests were computed using the Kenward-Roger

option. Studentized residual plots and Q-Q plots were respectively used to assess the assump-

tions of identical and independent distribution of residuals, and their normality. Appropriate

heterogeneous variance models were fitted whenever heteroskedasticity was observed by specify-

ing a "random residual/group = x " statement (where x = fixed factor under consideration, ex:

harvest zone). The Bayesian information criterion (model with the lowest BIC) was used to select

the best fitting model (between homogenous variance vs heterogeneous variance). Mean separa-

tion was performed with adjustments for multiple comparisons using the Tukey-Kramer test.

Results

Temporal fluctuation of soybean fungicide use in the United States

Considering total fungicide use (in both MT and g/ha) across 28 soybean growing states, the

greatest foliar fungicide use was recorded in 2007 with the lowest recorded use in 2006 (Fig 1A).

A 63.5% decrease in foliar fungicide use on a per ha basis was evident from 2007 to 2008. The

percentage use increment from 2006 to 2015 was 317% for total fungicide use in MT and 252%

for total fungicide use in g/ha, respectively. Despite the annual variation, the total concentration

of foliar fungicides used in 28 states showed a general increasing trend from 2005 to 2015.

Spatial fluctuation of soybean fungicide use in the United States

Over an 11-year period, between 2005 and 2015 on a per hectare basis, Louisiana reported the

greatest foliar fungicide use (2,309 g) while Kansas reported the lowest (114 g) (Fig 1B). In

terms of the total foliar fungicide use (in MT), Florida recorded the lowest (9.7 MT) while

Arkansas reported the greatest (1,103.7 MT).

When considered regionally, the total use (MT) of foliar fungicides was 18.7% greater in the

southern states (6,451.3 MT) compared to northern states (5,431.2 MT) (Fig 2). Similarly, per

hectare total use (g/ha) of foliar fungicides was 521% greater in the southern states (17,437.2 g/

ha) compared to the northern states (2,805.7 g/ha) (Fig 2).

Preventive vs curative fungicides

In general, the QoI class of fungicides, commonly referred to as strobilurins are used as pre-

ventative fungicides while DMI (or triazoles) are used as curative fungicides. Temporal
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Fig 1. Spatiotemporal foliar fungicide use patterns in the United States. Temporal fluctuation for foliar fungicide

use during 2005 to 2015 across all states considered (A) and state-wide use of cumulative foliar fungicides from 2005 to

2015 (B). Fungicides included: quinone outside inhibitors = azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin,

trifloxystrobin; demethylation inhibitors = cyproconazole, difenoconazole, flutriafol, propiconazole, prothioconazole,

tebuconazole, tetraconazole; methyl benzimidazole carbamates = thiophanate-methyl; multi-site mode of

action = chlorothalonil; and succinate dehydrogenase inhibitors = fluxapyroxad.

https://doi.org/10.1371/journal.pone.0234390.g001

PLOS ONE Foliar fungicide use and soybean yield losses

PLOS ONE | https://doi.org/10.1371/journal.pone.0234390 June 11, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0234390.g001
https://doi.org/10.1371/journal.pone.0234390


fluctuations (summed across states) showed that the use of both types of fungicides increased

from 2005 to 2015 (Fig 3A). The amount of preventive and curative fungicides used in 2015

were 3.34 and 4.2-fold greater compared to their use in 2005. The use of QoI fungicides, repre-

senting = ∑ azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, and trifloxystrobin,

was greater compared to curative fungicides representing = ∑ cyproconazole, difenoconazole,

propiconazole, prothioconazole, tebuconazole, and tetraconazole for any given year. Spatially,

the greatest and lowest QoI fungicide use, summed across years, was recorded in Iowa and

Florida, respectively, while the greatest and lowest DMI fungicide use was recorded in Illinois

and Florida, respectively (Fig 3B). In general, QoI fungicide use was greater compared to DMI

fungicides except in a few states (Alabama, Delaware, Georgia, South Carolina, and South

Dakota).

Mixed effect modeling of annual soybean production/yield losses and

annual fungicide use at national and regional levels

At the national scale, where annual total fungicide use and annual total production loss were

considered in MT and 1,000 MT, respectively, the marginal model had a very small R2 (=

R2
GLMM(m)) value compared to that of conditional model (= R2

GLMM(c)) (Table 1). Adding a

quadratic term for fungicide use (full quadratic model) did not appear to significantly increase

the R2
GLMM(m). The variance component was larger for state compared to year. Results were

similar when annual total fungicide use and yield loss were considered in g/ha and kg/ha,

respectively (Table 1).

Mixed modeling at regional scales (considering Northern and Southern United States sepa-

rately) also showed that R2
GLMM(c) >> R2

GLMM(m) (S1 and S2 Tables). Adding a quadratic

term for fungicide use (full quadratic model) did not result in improved R2
GLMM(m).

Fig 2. Total foliar fungicide use (from 2005 to 2015) by region. Northern states = IL, IN, IA, KS, MI, MN, NE, ND,

OH, PA, SD, and WI; Southern states = AL, AR, DE, FL, GA, KY, LA, MD, MO, MS, NC, OK, SC, TN, TX, and VA.

Fungicides included: quinone outside inhibitors = azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin,

trifloxystrobin; demethylation inhibitors = cyproconazole, difenoconazole, flutriafol, propiconazole, prothioconazole,

tebuconazole, tetraconazole; methyl benzimidazole carbamates = thiophanate-methyl; multi-site mode of

action = chlorothalonil; and succinate dehydrogenase inhibitors = fluxapyroxad.

https://doi.org/10.1371/journal.pone.0234390.g002
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Fig 3. Temporal fluctuation (A) and state-wide variation (B) in the amount of preventive and curative foliar

fungicide application use in the United States. Preventive fungicides = quinone outside inhibitors (QoIs) = ∑
azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, and trifloxystrobin. Curative fungicides = demethylation

inhibitors (DMIs) = ∑ cyproconazole, difenoconazole, flutriafol, propiconazole, prothioconazole, tebuconazole, and

tetraconazole.

https://doi.org/10.1371/journal.pone.0234390.g003
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Relationship between annual soybean yield losses and annual fungicide use

at the state level and across years

Regression analysis indicated that there was no interaction (α = 0.05) between total fungicide

use (MT) and state, meaning that the relationship between soybean production loss due to dis-

eases (1,000 MT) and total fungicide use (MT) did not vary between states (S3 Table). When

losses (kg) and fungicide use (g) were considered on a per hectare basis, a significant relation-

ship was only observed for Pennsylvania (S3 Table). However, the parameter estimate associ-

ated with fungicide use (g) for Pennsylvania was positive (S3 Table).

The relationship between soybean production loss due to diseases (1,000 MT) and total fun-

gicide use (MT) was significant in years 2006, 2007, 2009, 2014, and 2015 (S3 Table). Nonethe-

less, the parameter estimates associated with fungicide use (g) for each of these years were

positive (S3 Table). When losses (kg) and fungicide use (g) were considered on a per hectare

basis, a significant relationship was only observed for years 2011 and 2015 (S3 Table). For both

cases, the parameter estimates associated with fungicide use (g) was negative (S3 Table).

Mixed effect modeling of the relationship between annual soybean

production/yield and annual fungicide use at national and regional levels

At the national scale, when annual total fungicide use and annual total production were con-

sidered in MT and 1,000 MT, respectively, the R2 for marginal model (= R2
GLMM(m)) was very

small compared to that of conditional model (= R2
GLMM(c)) (Table 2). In fact, the conditional

model explained almost entire (98%) variation observed in soybean production at national

scale. Incorporation of the quadratic term for fungicide use (full quadratic model) did not

improve the R2
GLMM(m). The state variance component was larger than that of year. Results

were similar when annual total fungicide use and yield were considered in g/ha and kg/ha,

respectively (Table 2).

Table 1. Mixed-effects modelling of the effect of foliar fungicide use on soybean yield losses due to foliar diseases from soybean growing states in the United States

during 2005–2015 period at national scale. A = annual total fungicide use in MT and annual total production loss in 1,000 MT. B = annual total fungicide use in g/ha

and annual yield loss in kg/ha. States considered for this study included IL, IN, IA, KS, MI, MN, NE, ND, OH, PA, SD, WI,AL, AR, DE, FL, GA, KY, LA, MD, MS, MO,

NC, OK, SC, TN, TX, and VA.

A B

Model name Null model Full model (L) Full model (Q) Null model Full model (L) Full model (Q)

Fixed effect a ± SE a ± SE a ± SE a ± SE a ± SE a ± SE

Intercept 68.6 ± 19.2 68.6 ± 18.8 68.6 ± 18.2 72.9 ± 14.5 72.9 ± 14.8 72.9 ± 14.8

Fungicide use - 96.7 ± 111.3 169.1 ± 119.6 - 131.4 ± 94.3 123.8 ± 97.9

Fungicide use2 - - -153.1 ± 103.1 - - 25.5 ± 87.2

Random effects VC VC VC VC VC VC

State 7,370 7,104 6,509 4,492 4,711 4,706

Year 938 868 836 344 350 363

Residuals 6,575 6,619 6,651 5,389 5,365 5,379

R2
GLMM(m) - 0.002 0.012 - 0.005 0.005

R2
GLMM(c) - 0.547 0.530 - 0.488 0.488

AIC 3,677.5 3,678.8 3,678.6 3,603.8 3,603.8 3,605.8

BIC 3,692.5 3,697.4 3,701.0 3,618.7 3,622.5 3,628.1

L = linear; Q = quadratic; SE = standard error; VC = variance components. R2GLMM(m) = generalized R2 for marginal model; R2GLMM(c) = generalized R2 for conditional

model; AIC = Akaike Information Criterion; BIC = Bayesian information criterion.

https://doi.org/10.1371/journal.pone.0234390.t001
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Mixed modeling at regional scale (considering Northern and Southern United States sepa-

rately) also showed that R2
GLMM(c) >> R2

GLMM(m) (S4 and S5 Tables). Inclusion of the qua-

dratic term for fungicide use (full quadratic model) did not result in improved R2
GLMM(m).

Relationship between annual soybean production/yield and annual

fungicide use at state level and across years

Regression analysis showed that there was no interaction (α = 0.05) between total fungicide

use (MT) and state. Therefore, the relationship between soybean production (1,000 MT) and

total fungicide use (MT) did not vary between states (S6 Table). When soybean yield (kg) and

fungicide use (g) were considered on a per hectare basis, a significant relationship was only

observed for Texas and Wisconsin (S6 Table). For both states, the parameter estimate associ-

ated with fungicide use (g) was negative (S6 Table).

The relationship between soybean production (1,000 MT) and total fungicide use (MT) was

significant in years 2007, 2008, 2011, 2012, and 2013 (S6 Table). The parameter estimates asso-

ciated with fungicide use (g) for each of these years were negative (S6 Table). When yield (kg)

and fungicide use (g) were considered on a per hectare basis, a significant relationship was

observed for years 2008, 2009, 2012, 2013, and 2014 (S6 Table). For all of these years, the

parameter estimates associated with fungicide use (g) were positive (S6 Table).

Factor Analysis of Mixed Data (FAMD)

When FAMD was performed for foliar fungicide use, the variance maximizing data point dis-

tribution in the factor map did not show a clear clustering pattern based upon state, year, and

yield zone. However, a clear clustering was observed based upon region, harvest zone, and pro-

duction zone (Fig 4). Factor maps for both harvest and production zones showed that harvest/

production zone 1 distantly clusters from harvest/production zone 4 while harvest/production

zones 1 and 2 clustered in close proximity in the factor map.

Table 2. Mixed-effects modelling of the effect of foliar fungicide use on soybean production/yield from soybean growing states in the United States during 2005–

2015 period at national scale. A = annual total fungicide use in MT and annual total production in 1,000 MT. B = annual total fungicide use in g/ha and annual yield in

kg/ha. States considered for this study included IL, IN, IA, KS, MI, MN, NE, ND, OH, PA, SD, WI,AL, AR, DE, FL, GA, KY, LA, MD, MS, MO, NC, OK, SC, TN, TX, and

VA.

A B

Model name Null model Full model (L) Full model (Q) Null model Full model (L) Full model (Q)

Fixed effect a ± SE a ± SE a ± SE a ± SE a ± SE a ± SE

Intercept 3,153 ± 685 3,153 ± 673 3153 ± 659 2563 ± 110 2563 ± 110 2563 ± 110

Fungicide use - 2,658 ± 731 3740 ± 801 - -11.9 ± 414 157 ± 432

Fungicide use2 - - -2068 ± 670 - - -474 ± 379

Random effects VC VC VC VC VC VC

State 12,790,225 12,386,051 11,870,689 187,404 187,424 196,392

Year 133,425 105,890 99,484 56,493 56,571 53,200

Residuals 269,348 260,729 254,349 95,081 95,426 95,023

R2
GLMM(m) - 0.002 0.005 - 0.000 0.002

R2
GLMM(c) - 0.980 0.979 - 0.718 0.725

AIC 4,934.5 4,923.7 4,916.2 4,528.1 4,530.1 4,530.6

BIC 4,949.4 4,942.3 4,938.6 4,543.1 4,548.8 4,553.0

L = linear; Q = quadratic; SE = standard error; VC = variance components. R2GLMM(m) = generalized R2 for marginal model; R2GLMM(c) = generalized R2 for conditional

model; AIC = Akaike Information Criterion; BIC = Bayesian information criterion.

https://doi.org/10.1371/journal.pone.0234390.t002
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Analysis of variance (ANOVA)

ANOVA indicated a significant main effect of harvest zone (P = 0.0219), while no differences

were observed for yield zone (P = 0.1904) and production zone (P = 0.1127) on foliar fungicide

use. With respect to harvest zone, the foliar fungicide use (g/ha) in harvest zone 1 was signifi-

cantly greater than that of harvest zone 4 (Fig 5).

Discussion

Use of foliar fungicides has been a major strategy to manage fungal pathogens in agricultural

cropping systems following the green revolution. Fungicide usage has increased over the past

Fig 4. FAMD factor maps obtained from the factor analysis with mixed data approach (FAMD analysis), showing the variance maximizing

distribution pattern of data points (n = 308, each data point represent foliar fungicide use in g/ha) in the map space with their clustering patterns

based upon state (n = 28), year (n = 11), region (n = 2), and yield/harvest/production zones (n = 4 in each case). Yield/Harvest/Production

zones = represent four levels (zone 1 to 4) based on the quartiles within a database containing 308 yield (kg/ha)/harvest area (ha)/production (MT) data

points (308 = 11 years × 28 states). Within this database, data points from the minimum to the first quartile were classified as zone 1. Similarly, data

points from the first quartile to median, median to the third quartile, and> third quartile were respectively classified as zones 2, 3, and 4. Foliar

fungicides included: quinone outside inhibitors = azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin; demethylation

inhibitors = cyproconazole, difenoconazole, flutriafol, propiconazole, prothioconazole, tebuconazole, tetraconazole; methyl benzimidazole

carbamates = thiophanate-methyl; multi-site mode of action = chlorothalonil; and succinate dehydrogenase inhibitors = fluxapyroxad (effective against

anthracnose, Cercospora leaf blight (purple seed stain), frogeye leaf spot, Rhizoctonia aerial blight, Sclerotinia stem rot (White mold), Septoria brown

spot, and soybean rust).

https://doi.org/10.1371/journal.pone.0234390.g004
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decade especially in soybean production systems. Findings of the current study revealed that

the foliar fungicide usage in the U.S. increased by 116% (on a per unit area basis: g/ha) and

260% (on a total usage basis: MT) from 2005 to 2015. Fungicide use was greatest in 2007,

which was a year with more widespread soybean rust outbreaks on a national level and the

first year that soybean rust moved into the upper Midwest through Texas to Iowa [40]. Fur-

thermore, 2007 was the only year to date that Iowa reported observing the disease [40]. A

similar situation occurred in 2009, where an increased incidence of soybean rust was reported.

For example, Alabama, Georgia, Mississippi, and Tennessee reported the greatest number of

counties with soybean rust [40]. Moreover, on a national basis, more counties/parishes were

observed to contain soybean rust during 2009 than any other year [40]. Additionally, 2009 was

an exceptionally wet year particularly in the southern U.S., leading to more foliar diseases [40].

All these factors could have specifically contributed to the greater foliar fungicide use in 2009.

The regional level data revealed that foliar fungicide use (total in MT as well and per hectare

basis in g) was greater in the southern states compared to the northern states despite the

greater land use for soybean production in the northern states. The greater per hectare fungi-

cide use in the south may be due to several reasons. In general, this region has an extended

period of soybean planting (March to June) and a prolonged period of disease conducive con-

ditions (warmer and wetter for a longer period of time) compared to the northern U.S. Along

with that, soybean rust was first detected in the contiguous U.S. in November 2004 [41] and

fungicides were the main method of managing the disease. Even though soybean rust has not

posed a major yield loss threat since the initial observation [42], fungicide applications in spe-

cific years have likely been driven by the presence of the disease. Lastly, based on observations

by Extension specialists, a greater percentage (60–65%) of southern U.S. acres likely receives at

Fig 5. Comparison of the mean per hectare foliar fungicide use (in g) among yield/harvest/production zones.

Within each zone type, means followed by a common letter are not significantly different after adjustment for multiple

comparisons using Tukey-Kramer test at the 5% level of significance. Error bars represent standard errors. Foliar

fungicides included: quinone outside inhibitors = azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin,

trifloxystrobin; demethylation inhibitors = cyproconazole, difenoconazole, flutriafol, propiconazole, prothioconazole,

tebuconazole, tetraconazole; methyl benzimidazole carbamates = thiophanate-methyl; multi-site mode of

action = chlorothalonil; and succinate dehydrogenase inhibitors = fluxapyroxad (effective against anthracnose,

Cercospora leaf blight (purple seed stain), frogeye leaf spot, Rhizoctonia aerial blight, Sclerotinia stem rot (White

mold), Septoria brown spot, and soybean rust).

https://doi.org/10.1371/journal.pone.0234390.g005
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least one fungicide application at a specific growth stage as an automatic application in the

absence of diseases.

Prophylactic application of foliar fungicides can significantly increase production costs,

and subsequently suppress profitability particularly when diseases are absent or are present at

low levels [43]. In the current study, we observed that the vast majority of the states have used

a greater amount of preventive fungicides as compared to curative fungicide over time. If the

application of a preventive fungicide was not made at the suggested growth stage based on

plant phenology, such applications may not provide a scenario whereby a reduction in the

potential yield losses associated with a given disease were met. Poor fungicide application prac-

tices may contribute to a positive relationship between fungicide use and yield losses. For

example, the fungicide application timing greatly affects the effectiveness of a fungicide in

terms of its ability to suppress the severity of a disease and associated yield losses [19, 26, 44,

45]. Application of labeled fungicides after the establishment frogeye leaf spot [44] and soy-

bean rust [46] could still result in significant yield losses.

Additionally, reduced fungicide efficiency due to a variety of factors such as unfavorable

environmental conditions and automatic fungicide application on disease-resistant soybean

cultivars can result in a positive relationship between fungicide use and yield losses. For exam-

ple, compared to the control, application of benomyl at different application timings based on

growth stage did not significantly reduce frogeye leaf spot severity or associated grain yield

loss on resistant soybean genotypes, although significant disease severity and yield loss reduc-

tions were observed with susceptible soybean genotypes [44]. Resistance within the targeted

pathogen population to the active ingredient contained in the applied fungicide/s could also

contribute to a positive relationship between fungicide use and yield losses [28, 29, 31–33].

Furthermore, fungicides are applied with self-propelled, pull type, or aerial spray applicators in

the U.S. Ground applicators create wheel-tracks in the soybean crop, which reduce yield par-

ticularly when made during the reproductive growth stages [47]. This also can contribute to

positive relationship between fungicide use and soybean yield losses.

One of the major objectives of this study was to investigate the relationship between fungi-

cide use and soybean production/yield loss due to selected foliar diseases using data from dif-

ferent soybean growing states years. Given that fungicide use data and soybean production/

yield loss data were classified by state and year, we employed generalized linear mixed model

approach to model the effect of foliar fungicide use on soybean yield losses due to selected

foliar diseases at national and regional scale by specifying state and year as random effects. The

difference of generalized R2 between marginal (only fixed effects; fungicide use = R2
GLMM(m))

and conditional (fixed and random effects; fungicide use + state + year = R2
GLMM(c)) models

were large, with R2
GLMM(m) ⋘ R2

GLMM(c). Given the relatively strong effects of state and year

in terms of the overall observed variation, there was not a strong relationship between foliar

fungicide use and soybean production/yield loss due to foliar diseases at national and regional

scales. As such, we focused modeling efforts to look at the state and year trends.

We did not observe strong, negative relationships between yield losses and fungicide use at

the state level. The general lack of model fit between soybean production/yield loss and fungi-

cide use can be contributed by the type of data that we used for this study. For instance,

although the fungicide use data available in the Pesticide National Synthesis Project webpage is

not sales data but actual use data, they are still estimated values. The methods applied in the

Pesticide National Synthesis Project are robust but still may differ from the actual use. Further-

more, the yield losses considered in this study were all estimated values based on data provided

by soybean disease experts. While the loss computations incorporated those expert’s estima-

tions, along with the use of Padwick’s calculation to calculate the overall loss due to diseases, it

is still possible that the computed yield losses are different from actual yield losses. Therefore,
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we recognize that there may be some differences between the observed between soybean yield

losses and fungicide use may different from actual trends.

Analyses conducted at the state level showed no significant relationship between soybean

production/yield losses and foliar fungicide use for a vast majority of the states. Although a sig-

nificant relationship between per hectare total yield losses (kg) due to foliar diseases and per

hectare total foliar fungicide use (g) was observed for Pennsylvania, the relationship was posi-

tive. Therefore, at the state level, our findings do not provide strong statistical evidence to sup-

port the usefulness of foliar fungicide application to mitigate foliar disease-associated soybean

production/yield losses. The regression analysis considering temporal aspect showed signifi-

cant relationship between soybean yield loss (kg/ha) and foliar fungicide use (g/ha) for years

2011 and 2015. The negative parameter estimates for fungicide use in these two years indicated

that fungicide application was related to yield losses due to foliar disease in a manner sugges-

tive that fungicides reduced the impact of diseases. Furthermore, the observed positive coeffi-

cients for soybean yield (kg/ha) and foliar fungicide use (g/ha) for years 2008, 2009, 2012,

2013, and 2014 was suggestive of a positive benefit of foliar fungicides.

Results from the factor analysis with mixed data (FAMD) showed clear distinction

between yield/harvest/production zone 1 and 4 based on foliar fungicide use, suggesting con-

trasting fungicide use differences between these zones. In general, the mean per hectare foliar

fungicide use was greater in low yield/harvest/production zones while the use was lower in

high yield/harvest/production zones. However, it may be possible that soybean farmers in

low yield/harvest/production zones tend to apply foliar fungicides based on a perceived yield

benefit as the result of an application made at a specific growth stage, rather than based upon

disease observations or soybean cultivar disease tolerance. In fact, previous studies suggested

that yield increases can occur following foliar fungicide application irrespective of the pres-

ence/absence of diseases [7, 15, 23–25, 48–51]. The yield response in the absence of disease

has been partly attributed to the physiological changes that have been reported to occur in

the plants following fungicide application with certain chemistries [14]. Increased yield in

response to some fungicides such as QoIs have been observed even in the absence of foliar

diseases due to their non-fungicidal physiological changes in, for example, soybean [22, 52,

53], wheat, and barley [53–55]. Some of these plant physiological changes include increased

leaf greenness, chlorophyll content, photosynthetic rates, and water use efficiency, as well as

delayed senescence [48, 50, 53, 54, 56]. Previous studies also reported that foliar application

of pyraclostrobin enhance the growth, nitrogen assimilation, and yield of soybean [57] and

wheat [58, 59]. Therefore, as revealed by the current study, it appeared that the farmers in

the historically low yield/harvest/production zones tend to use foliar fungicide applications

with the expectation of a yield increase.

In the current study, it was not possible to determine the relationship between yield losses

caused by a single disease and the amount of a labeled fungicide used to control that disease.

This was because each fungicide considered in this study may effectively control more than

one disease. For instance, QoI fungicides can be used to manage anthracnose (Colletotrichum
truncatum), Cercospora leaf blight (Cercospora kikuchii), frogeye leaf spot; pod and stem blight

(Diaporthe phaseolorum); Rhizoctonia aerial blight (Rhizoctonia solani), and Septoria brown

spot [6, 7, 60, 61]. Based on the manner in which the information in the fungicide use database

is provided, there is no way to tell what the fungicide specifically targeted. Therefore, relation-

ships between total yield losses caused by all foliar diseases and total concentration of foliar

fungicide used were considered for this study.

Although we have previously estimated soybean yield losses due to various diseases for

the period between 1996 and 2015 [62], the corresponding annual state-level foliar fungi-

cide use estimates were not available for the entire period in the Pesticide National Synthesis
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Project database (https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/StateLevel/

HighEstimate_AgPestU sebyCropGroup92to16.txt). Therefore, the foliar fungicides used

between 2005 and 2015 were considered for the current study. With the data used for this

study, it was not possible to conduct a realistic economic analysis to determine whether fun-

gicide application was cost effective. Unless there is an appropriate control for comparison,

one could not determine the economic yield savings as a result of fungicides applied. More-

over, it is likely that the physical yield losses could have potentially been greater if fungicides

were not applied. In addition, the fungicide database only contains information regarding

the use of active ingredients and does not include such information as to whether or not a

particular active ingredient was applied as a stand-alone fungicide product or in the form of

a pre-mixture of more than one chemical. Based on the commercial product and company,

the same active ingredient can be marketed under several different trade names and in

some cases the products can be priced differently depending on retail outfit. Annual fluctua-

tions as well as locational variations in fungicide application cost (i.e., aerial application ver-

sus ground application) and soybean commodity price also are contributing factors as to

why a comprehensive economic analysis is less realistic.

In summary, our paper focused on understanding the patterns of foliar fungicide use and

its relationship with soybean yield losses due to fungal pathogens (targets of fungicides consid-

ered in the study) at broader geographic (national/regional/state) and temporal scales. The

trends that we see at such scales may or may not necessarily reflect/represent what each indi-

vidual soybean farmer would have experienced at a farm scale. In other words, we cannot sim-

ply extrapolate the individual farm-level response in relation to his fungicide use and yield

losses profiles. Our goal was not to facilitate the fungicide application decision making at the

individual farm level, rather we focused on understanding fungicide use patterns and their

degree of utility in terms of reducing foliar disease associated yield losses at a broader geo-

graphic scale. Nonetheless, our results do provide some guidance in that we suggest that farm-

ers should not rely on fungicides as the sole management strategy to manage foliar diseases

in soybean. Instead, location specific best management practices such as optimum maturity

group, planting date, seeding rate, row spacing, crop rotation, fertilizer, field history as it

relates to disease incidence, and irrigation regime as well as use of genetic resistance should be

emphasized to decrease the probability of disease incidence. When necessary, farmers should

make informed decisions as to the use of foliar fungicides with special emphasis on application

timing (disease susceptible plant growth stage). In conclusion, rather than using fungicides as

a routine practice, farmers should treat foliar fungicides as an integral component of a sound

integrated pest management system.
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