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Abstract: Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide
metabolism. We previously reported that intracellular reactive oxygen species (ROS), including super-
oxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency,
induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes
associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation
for SOD1 knockout (KO) (Sod1−/−) mice, we generated SOD1 and p53 KO (double-knockout (DKO))
mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with
Sod1−/− fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor
to aging-like tissue changes but accelerated tumorigenesis in Sod1−/− mice. Furthermore, p53 loss
failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO
mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis
but not ROS-mediated tissue degeneration in SOD-deficient models.
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1. Introduction

Age-related pathological changes are caused by several genetic and environmental
factors. To analyze the age-related changes in vivo and in vitro, researchers have used sev-
eral genetic and pharmacological manipulations for the induction of redox imbalance [1,2].
Superoxide dismutase (SOD) enzymes play a major role in the intracellular antioxidant
system by catalyzing the conversion of superoxide radicals (O2

•−) to hydrogen perox-
ide and O2 [3]. In mammals, copper/zinc-SOD (SOD1) exists in the cytoplasm, while
manganese-SOD (SOD2) is distributed in the mitochondrial matrix to regulate intracellular
redox balance in cells. Since SOD expression and activity are significantly decreased in
aged osteoporotic, end-stage osteoarthritic, and Alzheimer’s disease individuals [4–6],
redox imbalance caused by SOD decline is considered an important mechanism underlying
the induction of age-related pathological changes.

We previously reported that SOD1-deficient mice showed the accumulation of oxida-
tive molecules and several age-related pathological changes, including macular degenera-
tion [7,8], hemolytic anemia with splenomegaly [9], osteopenia [10,11], skin atrophy [12],
skeletal muscle atrophy [13], hepatic carcinoma [14], and fatty liver [15]. In addition,
SOD1-deficient phenotypes can be improved by antioxidant treatments in vivo [12,16–19].
Therefore, Sod1−/− mice are a useful model for age-related tissue deregulation and inter-
vention strategies. In addition, we previously reported that Sod1−/− fibroblasts showed
the significant presence of intracellular reactive oxygen species (ROS), including O2

•−

accumulation accompanied by p53 upregulation, which resulted in apoptotic cell death [20].
A rescue experiment using antioxidant reagents exhibited effective suppression of p53
activation and cell death in Sod1−/− fibroblasts [20]. These data suggest that p53 plays a
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fundamental role in SOD1 loss-related phenotypes. However, whether or not p53 activation
directly regulates SOD1-deficient phenotypes in vivo and in vitro remains unclear.

In contrast to the above findings, SOD2-deficient mice showed dilated cardiomyopathy
(DCM), steatosis, and metabolic acidosis, which resulted in neonatal lethality [21]. To
analyze the SOD2-deficient phenotypes in adults, we generated and established tissue-
specific SOD2 knockout (KO) mice [2,22]. Several tissue-specific SOD2-deficient mice
showed DCM-type heart failure [23], disturbance of exercise activity [24], spongiform
encephalopathy [25], bone loss [26], and cartilage degeneration [27]. Consequently, we
proposed that tissue-specific SOD2 KO mice were a useful model of age-related pathological
changes caused by mitochondrial dysfunction. In addition, pressure overload, hypoxic
stress, and genotoxic stress-induced p53 upregulation resulted in cardiomyocyte death [28].
Heart failure such as DCM and right ventricular hypertrophy model mice also showed the
accumulation of p53 and cardiomyocyte apoptosis [29–32]. Since suppression of p53 via
pharmacological as well as genetic approaches ameliorated heart failure [29,33,34], p53 is
considered a key molecule involved in heart failure. However, while SOD2 loss induced
DCM in mice, the involvement of p53 in DCM-type heart failure caused by SOD2 loss
remains unclear.

In the present study, in order to clarify the contribution of p53 to the Sod1- or Sod2-
deficient phenotypes in vivo, we generated two types of double-knockout (DKO) mice:
Sod1 and p53 DKO mice, as well as heart-specific Sod2 and p53-deficient mice. We also
discussed the influence of p53 deficiency on the phenotypes of SOD1 or heart-specific
SOD2 KO mice.

2. Results
2.1. p53 Insufficiency Effectively Suppressed Apoptotic Cell Death In Vitro

Previously, we reported that the intrinsic O2
•− accumulation by SOD1 loss promoted

p53 activation and apoptotic cell death in vitro [20]. In addition, antioxidant reagents
effectively attenuated Sod1-deficient phenotypes accompanied by p53 upregulation in
fibroblasts and skin tissues [20]. To clarify the pathological relationship of p53 upregulation
in Sod1-deficient phenotypes in mice, we generated Sod1 and p53 DKO mice. First, we
performed in vitro fertilization of Sod1 KO oocytes with p53 KO frozen sperm to obtain
double-heterozygous mice. Next, we intercrossed double-heterozygous males and females
to generate DKO mice. Unexpectedly, we obtained only a very small number of DKO mice
from cross-fertilization via natural mating as well as in vitro fertilization (Table 1). These
data indicated that the birth rate of DKO mice was not Mendelian.

Table 1. The genotype of births to the cross-breeding between double-heterozygous mice.

Sod1

+/+ +/− −/−

p53
+/+ 12 21 13

+/− 27 44 20

−/− 7 10 2

Next, we assessed the efficiency of p53 loss in Sod1−/− fibroblasts. Although Sod1−/−

fibroblasts died within 3 days under 20% O2 conditions, p53 loss improved the cell number
decline among Sod1−/− cells (Figure 1A). However, DKO cells showed low cell prolifera-
tion as well as significant incrementation of dihydroethidium (DHE)- and CM-H2DCFDA
(DCF)-positive ROS, including O2

•− accumulation, with values similar to those seen in
Sod1−/− cells (Figure 1B–D). Interestingly, DKO cells showed significantly fewer apop-
totic cells than Sod1−/− cells (Figure 1E). In contrast, p53−/− cells exhibited no harmful
phenotypic effect, including with regard to the cell proliferation and ROS accumulation
(Figure 1B–D). These data indicated that p53 impairment suppressed apoptotic cell death,
which resulted in an increase in the cell survival among DKO cells.
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fibroblasts was analyzed by flow cytometry with propidium iodide (PI) and annexin V. Statistical 

analyses were performed using a two-way analysis of variance. The error bars indicate the stand-

ard deviation of three independent experiments (n = 3). * p < 0.05, and ** p < 0.01 vs. WT. # p < 0.05 
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Figure 1. p53 insufficiency suppressed cytoplasmic superoxide dismutase (SOD1) loss-mediated
apoptotic cell death. (A) The cell numbers of wild-type (WT); Sod1−/−, p53−/−; and double-knockout
(DKO) fibroblasts were counted at the times indicated. (B) The cell viabilities of each type of fibroblast
were measured based on the incorporation of bromodeoxyuridine (BrdU) into the fibroblasts. (C,D)
The intracellular superoxide accumulation was measured by flow cytometry with dihydroethidium
(DHE) (C) and CM-H2DCFDA (DCF) (D) in each type of fibroblast. (E) Apoptosis in fibroblasts was
analyzed by flow cytometry with propidium iodide (PI) and annexin V. Statistical analyses were
performed using a two-way analysis of variance. The error bars indicate the standard deviation of
three independent experiments (n = 3). * p < 0.05, and ** p < 0.01 vs. WT. # p < 0.05 vs. Sod1−/−.

2.2. p53 Loss Failed to Attenuate the SOD1-Deficient Phenotypes in Mice

To evaluate the effect of p53 deficiency in Sod1−/− mice, we expanded the inter-
crossing and analyzed organ phenotypes of DKO mice. Sod1−/− mice revealed body
weight reduction, muscle atrophy, and liver weight gain [1], but these were not significant
differences compared with wild-type (WT) mice in this analysis (Figure 2A–C). SOD1
loss significantly induced skin thinning and decrease of red blood cell number but not
splenomegaly (Figure 2D–F). On the other hand, p53−/− mice showed no significant
differences in all parameters (Figure 2A–F). DKO mice showed significant reductions of
muscle weight, skin thickness, and red blood cell number (Figure 2B,D,F). Interestingly,
DKO mice also exhibited exacerbation of splenomegaly compared with Sod1−/− mice (Fig-
ure 2E). Importantly, p53 haploinsufficiency also failed to improve Sod1−/− phenotypes
(Figure 2A–F). Furthermore, Sod1+/−, p53−/− mice were extremely similar to WT and
p53−/− mice (Figure 2A–F). These data indicate that p53 insufficiency did not seriously
influence the organ phenotypes of Sod1−/− mice.

2.3. SOD1 and p53 DKO Mice Showed Early Tumor Progression

About half of p53 KO mice reportedly show tumor progression by six months of
age [35]. In contrast, Sod1 KO mice have been reported to reveal no tumor phenotypes
until six months of age [14]. We therefore monitored the tumor progression phenotypes
in DKO mice until four months of age. A large number of DKO mice showed remarkable
spontaneous tumor progression in the appearance of discriminative by four months of
age (Table 2 and Figure 3A). Whereas p53 KO mice mostly showed thymic lymphoma
or sarcomas [35], DKO mice developed multifarious tumor throughout the whole body,
including in the cervix, abdomen, limbs, and testis (Figure 3A,B). Importantly, Sod1−/−,
p53+/− as well as Sod1+/−, p53−/− mice displayed no tumor progression by four months
of age (Table 2), suggesting that heterozygotic loss of p53 or Sod1 was sufficient to achieve
the suppression of tumor development in DKO mice. These data indicated that systemic
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oxidative damage caused by complete SOD1 loss accelerated the tumor initiation and/or
development in the whole body of p53−/− mice.
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Figure 2. p53 loss had no marked effect on SOD1-decifient phenotypes in mice. (A) The body weight of each mouse (at
four months of age). The genotypes for each mouse were as follows: (1) Wild-type (n = 10); (2) Sod1−/− (n = 7); (3) p53−/−

(n = 5); (4) Sod1−/−, p53−/− (DKO, n = 5); (5) Sod1−/−, p53+/− (n = 10); (6) Sod1+/−, p53−/− (n = 9). (B) The ratio of muscle
weight corrected by body weight. (C) The ratio of liver weight corrected by body weight. (D) Hematoxylin and eosin
staining, the thickness of the back skin, and the skin thickness of each mouse. (E) The ratio of the spleen weight corrected by
the body weight. (F) The number of red blood cells in each mouse. Statistical analyses were performed using a two-way
analysis of variance. The error bars indicate the standard deviation. * p < 0.05. ** p < 0.01 vs. WT. # p < 0.05 vs. Sod1−/−.
The scale bar represents 100 µm.

Table 2. The number of tumor or death to each mouse until 4 months of age.

Genotype Number Tumor Death

WT 10 0 0
Sod1−/− 7 0 0
p53−/− 6 1 (17%) 0

DKO 14 7 (50%) 2 (14%)
Sod1−/−, p53+/− 10 0 0
Sod1+/−, p53−/− 9 0 0

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 3. SOD1 loss accelerated tumor progression in p53 KO mice. (A) Representative DKO mice 

accompanied by a tumor. The red arrows indicate the tumor. (B) Hematoxylin and eosin staining 

of the tumor from DKO mice. 

2.4. p53 Insufficiency Had No Effect on the Heart Failure of Heart-Specific Sod2-Deficient Mice 

We previously found that heart-specific Sod2-deficient (Sod2H/H) mice showed a short 

lifespan associated with DCM [23]. Accumulating evidence has suggested that heart fail-

ure involves the p53 signaling pathway [28]. In vitro studies revealed that Sod2 loss in-

creased mitochondrial ROS and p53 activation in mouse embryonic fibroblasts (Watanabe 

et al., personal communication). In this context, to clarify the contribution of p53 to heart 

failure in Sod2H/H mice, we generated heart-specific Sod2- and p53-deficient mice (Sod2H/H, 

p53H/H). Sod2H/H, p53H/H mice had a similarly short lifespan to Sod2H/H mice (Figure 4A). Fur-

thermore, DCM caused by heart-specific Sod2 loss was also recognized in Sod2H/H, p53H/H 

mice (Figure 4B,C). p53H/H mice showed a normal lifespan and heart tissue structures with 

strong similarity from those of WT mice including Sod2f/f and p53f/f mice (Figure 4A–C). 

Importantly, the pathogenesis of cardiac fibrosis was also not markedly different between 

Sod2 H/H and Sod2H/H, p53H/H mice (Figure 4C). These data indicated that the induction and 

the progression of DCM phenotypes by Sod2 in mice were not influenced by the loss of 

the p53 molecule. 

Figure 3. SOD1 loss accelerated tumor progression in p53 KO mice. (A) Representative DKO mice accompanied by a tumor.
The red arrows indicate the tumor. (B) Hematoxylin and eosin staining of the tumor from DKO mice.
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2.4. p53 Insufficiency Had No Effect on the Heart Failure of Heart-Specific Sod2-Deficient Mice

We previously found that heart-specific Sod2-deficient (Sod2H/H) mice showed a
short lifespan associated with DCM [23]. Accumulating evidence has suggested that
heart failure involves the p53 signaling pathway [28]. In vitro studies revealed that Sod2
loss increased mitochondrial ROS and p53 activation in mouse embryonic fibroblasts
(Watanabe et al., personal communication). In this context, to clarify the contribution of p53
to heart failure in Sod2H/H mice, we generated heart-specific Sod2- and p53-deficient mice
(Sod2H/H, p53H/H). Sod2H/H, p53H/H mice had a similarly short lifespan to Sod2H/H mice
(Figure 4A). Furthermore, DCM caused by heart-specific Sod2 loss was also recognized
in Sod2H/H, p53H/H mice (Figure 4B,C). p53H/H mice showed a normal lifespan and heart
tissue structures with strong similarity from those of WT mice including Sod2f/f and p53f/f

mice (Figure 4A–C). Importantly, the pathogenesis of cardiac fibrosis was also not markedly
different between Sod2 H/H and Sod2H/H, p53H/H mice (Figure 4C). These data indicated
that the induction and the progression of DCM phenotypes by Sod2 in mice were not
influenced by the loss of the p53 molecule.
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Figure 4. The mitochondrial SOD (SOD2)-deficient phenotypes were largely unaffected by p53 loss.
(A) A comparison of the survival curves in each mouse. A Kaplan–Meier analysis was used to
estimate the median lifespan. The numbers of individuals in each group were as follows: Sod2f/f

(n = 8); p53f/f (n = 8); Sod2H/H (n = 7); p53 H/H (n = 6); Sod2 H/H, p53 H/H (n = 11). (B) The ratio of
heart weight corrected by body weight. (C) Hematoxylin and eosin staining as well as Azan staining
of the heart of each mouse. Statistical analyses were performed using a two-way analysis of variance.
The error bars indicate the standard deviation. ** p < 0.05 vs. Sod2f/f , and # p < 0.05 vs. p53f/f . The
scale bars represent 1 mm ((C), upper panel) and 500µm ((C), lower panel).

3. Discussion

It is very well known that p53 is involved in several signaling pathways, including
the DNA damage response (DDR) leading to cellular senescence induction, cell cycle arrest,
DNA repair, autophagy, and cell death [36,37]. Previously, we reported that SOD1 loss
induced the marked intracellular accumulation of ROS (about 40-fold) accompanied by
p53 activation in vitro [1,20], suggesting a close relationship between the induction of
SOD1-decifient phenotypes and p53 activation in vitro. p53 regulates the cell fate, such
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as the transcriptional induction of antioxidant-, cell cycle arrest-, and apoptosis-related
genes, according to the intracellular redox state [34,38]. Low levels of ROS accumulation
induced p53-mediated cytoprotective property and suppressed apoptosis [39]. In addition,
moderate ROS activated cell cycle checkpoint genes, which resulted in cell cycle arrest for
DNA repair [40]. In contrast, excessive ROS stress was shown to lead to apoptosis [39].
Whereas p53 loss remarkably increased the survival of Sod1−/− fibroblasts to a point similar
to that of WT cells, p53 insufficiency did not influence the intracellular ROS accumulation
or cell proliferation caused by SOD1 loss (Figure 1). p53 deficiency is well known to be
incapable of promoting apoptotic cell death caused by ROS in fibroblasts [41,42]. Our data
also indicated that p53 deficiency effectively suppressed apoptosis induction via DDR in
Sod1−/− cells. Therefore, DKO cells can survive despite oxidative damage under normal
atmospheric conditions (Figure 1). These results indicated that p53 mainly regulated apop-
totic cell death rather than cell cycle arrest when excessive intracellular ROS accumulated
in Sod1−/− cells.

However, an in vivo study showed that p53 did not strongly influence SOD1-deficient
phenotypes (Figure 2). Since p53 deficiency influenced erythrocytes turnover and eryptosis
induction [43], DKO mice might show an increased rate of splenomegaly accompanied by a
tendency toward decreased red blood cell numbers (Figure 1D,E). Actually, Sod1−/− mice
showed about 1.5 times the levels of systemic oxidative markers (8-isoprastane, malon-
dialdehyde, 4-hydroxyalkenals, and 8-hydroxy-2′-deoxyguanosine (8-OHdG)) compared
with WT mice [16,18,44,45]. In addition, SOD1-deficient tissues, such as the lacrima gland,
liver, skin, and ovary, also showed relative low levels of oxidative damage [15,16,19,45,46],
indicating that intravital oxidative stress was moderate compared with cellular oxida-
tive stress in vitro. Because the intravital O2 concentration remained low [47], the extent
of oxidative damage caused by SOD1 loss might be too small to induce DDR-mediated
apoptosis in mice. Previously, we reported that SOD1 loss activated the Forkhead box O3
(FoxO3)-metalloproteinase-2 (Mmp2) axis, resulting in skin thinness [17]. This indicated
that the transcriptional factor FOXO3a and not p53 regulated skin atrophy caused by
SOD1 loss.

Since SOD1 enzyme includes copper and zinc ions, SOD1 also acts as a chelator
of copper and zinc ions. Sod1 deficiency might induce an increase in free copper and
zinc ions in cytoplasm. Overdose of copper induced apoptotic cell death in granule
cells, resulting in degeneration and neuronal loss in the central nervous system [48].
Furthermore, excessive zinc induced the disturbance of redox balance, gene expression,
bone metabolism, and alternation of the p53 protein structure [49–51]. Several age-related
chronic diseases also showed increased serum levels of copper and zinc ions [52,53]. In this
context, ion homeostasis failure caused by SOD1 loss might induce age-related pathological
changes in vivo and in vitro. Recently, several studies reported that SOD1 protein induces
post-translational modifications and regulates the expression of antioxidant genes as a
transcriptional factor [54]. In addition to the loss of antioxidant activity, the loss of the
metal chelating ability and transcriptional function might markedly affect Sod1-deficient
phenotypes. Further studies are needed to clarify the molecular mechanisms involved in
Sod1-defcient phenotypes.

In contrast to the above findings, our results showed that Sod1 deficiency exacerbated
tumor progression in p53−/− mice (Table 2). A high percentage (68%) of Sod1−/− mice re-
vealed nodular hyperplasia or hepatocellular carcinoma by 20 months of age [14], whereas
DKO mice showed the early detection of tumor formation (by 4 months) with a high
probability (50%) (Table 2 and Figure 3). Because p53 protects tumorigenesis from ROS-
mediated DNA damage [55], the significant increase in oxidative damage induced by SOD1
insufficiency may accelerate tumorigenesis in p53−/− mice. Furthermore, E2-promoter
binding factor (E2F) transcriptional factor interacted with retinoblastoma susceptibility
genes to regulate cellular proliferation and tumorigenesis [56,57]. Double mutant for the
E2F family of transcription factors, including E2F1 and E2F2, resulted in γH2AX accumula-
tion accompanied by p53 activation, which consequently caused apoptotic cell death in the
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pancreas [58]. Disruption of p53 in E2F1 and E2F2 double-knockout mice caused the sup-
pression of apoptosis induction, which resulted in the progression of thymic lymphomas
and a shortened lifespan [58]. This suggests that p53-dependent apoptosis induced by
SOD1 or E2F1/E2F2 deficiencies is a key mechanism underlying tumor suppression. Ac-
cordingly, p66Shc generates hydrogen peroxide, and p66Shc loss decreases ROS production.
In this context, p66Shc insufficiency significantly increased the lifespan and suppressed
tumor progression in p53 KO mice [59].

Many reports have shown that heart failure as age- or pathology-related phenotypes
is mediated by p53 upregulation [28]. In addition, p53 suppression by pharmacological
and genetic techniques ameliorates the phenotypes in heart failure models [28]. In this
context, we generated Sod2H/H, p53H/H mice to attenuate the DCM phenotypes of Sod2H/H

mice. Unexpectedly, p53 loss failed to improve the short lifespan and DCM phenotypes
in Sod2H/H mice (Figure 4). In general, hypoxic and genotoxic stress induces cardiomy-
ocyte apoptosis through p53 activation, resulting in heart failure [29,30]. However, since
Sod2H/H mice did not show the induction of apoptotic cell death in the heart [23], p53 insuf-
ficiency may not mitigate heart failure in Sod2H/H, p53H/H mice. We previously reported
that antioxidant reagents, such as EUK-8, MnTBAP, manganese porphyrins, and apple
procyanidins, improved DCM accompanied by a reduction in mitochondrial ROS accu-
mulation in Sod2H/H mice [23,60–62]. Recently, Guo et al. reported that a loss-of-function
mutation in extracellular SOD (SOD3) induced chronic kidney disease accompanied by
systolic hypertension and cardiac hypertrophy in a Dahl/salt-sensitive strain of rats [63]. In
addition, SOD3 KO mice also showed hypoxia-induced pulmonary vascular disease [64,65].
These reports suggest that not only intracellular but also extracellular ROS affect cardiac
hypertrophy and cardiovascular diseases.

Taken together, our data indicate that p53 plays a minimal role in the pathogenesis of
SOD1 or heart-specific SOD2 deficiency in mice. Since p53 mainly functions in apoptosis
induction and tumor suppression, it has little involvement in apoptosis-independent tissue
disorders, including adult Sod1−/− mice and Sod2H/H heart. In contrast, the suppression of
apoptosis by p53 loss accelerated tumor initiation/progression in Sod1−/− mice. Likewise,
SOD1 deficiency accelerated tumor progression in p53−/− mice, indicating that apoptosis
induction by p53 as well as intracellular O2

•− metabolism by SOD1 strongly contributed to
tumor suppression. In conclusion, SOD1-deficient mice and tissue-specific SOD2-deficiet
mice were useful model mice for an aging study without tumor progression.

4. Materials and Methods
4.1. Animals

Sod1−/− mice were generated by intercrossing Sod1+/− males and females (Jackson
Laboratory, Bar Harbor, ME, USA). We mated Sod1−/− mice with C57BL-p53+/− mice
(RBRC01361, RIKEN BRC, Ibaraki, Japan) [35] to generate the Sod1 and p53 DKO mice. We
crossed heart-specific Sod2-deficient mice (Sod2H/H) [23] with Trp53 flox mice (Stock no.
008462, Jackson Laboratory) [66] to obtain heart-specific Sod2 and p53 DKO mice (Sod2H/H,
p53H/H). All of the genotypes of Sod1, p53, Cre recombination transgene, Sod2 flox, and
p53 flox mice were assessed by polymerase chain reaction (PCR) using genomic DNA
isolated from the tail tip, as described previously [11,23,35,66]. Primer sequences are given
in Table S1. The animals were housed under a 12-h light/dark cycle and fed ad libitum. The
experimental procedures were approved by the Animal Care and Use Committee of Chiba
University and National Center for Geriatrics and Gerontology.

4.2. Histology

For histological morphology, skin specimens from the back tissue, heart, and tumor
were dissected and fixed in a 20% formalin neutral buffer solution (FUJIFILM Wako, Osaka,
Japan) overnight while embedded in paraffin and then sectioned on a microtome at 4 µm
according to standard techniques. Hematoxylin and eosin staining for the skin morphology
and heart as well as Azan staining for total collagen deposition were performed as described
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previously [15,23,67]. The thickness of the skin tissue was determined using the BZ-X
Analyzer software program (Keyence, Osaka, Japan).

4.3. Cell Culture

The skin tissue specimens were dissected from 5-day-old neonates. The primary
dermal fibroblasts were isolated by dissociation in 0.2% collagenase type 2 (Worthington
Biochemical Corporation, Lakewood, NJ, USA) at 37 ◦C for 60 min. The cells were cultured
in minimum essential medium Eagle, alpha modification (α-MEM; Life Technologies
Corporation, Carlsbad, CA, USA) supplemented with 20% fetal bovine serum (FBS, Thermo
Fisher Scientific, Waltham, MA, USA), 100 unit/mL penicillin, and 0.1 mg/mL streptomycin
at 37 ◦C in a humidified incubator (ASTEC, Fukuoka, Japan) with 5% CO2 and 1% O2 to
expand and maintain Sod1−/− fibroblasts. During experiments, the cells were cultured
under 20% O2 conditions. Cell viability was measured by the cell proliferation enzyme-
linked immunosorbent assay bromodeoxyuridine (BrdU; Roche Diagnostics K.K., Basel,
Switzerland) according to the manufacturer’s instructions. The relative BrdU incorporate
values were calculated by a triplicate analysis.

4.4. Flow Cytometry

The accumulation of intracellular ROS was detected using DHE and DCF (Life Tech-
nologies Corporation). The cells were incubated with 10 µM DHE or 10 µM DCF for
30 min at 37 ◦C. Following incubation, the cells were trypsinized and resuspended in
phosphate-buffered saline. Apoptosis was measured using a fluorescein isothiocyanate
(FITC) Annexin V Apoptosis Detection Kit I (BD Biosciences, San Diego, CA, USA) accord-
ing to the manufacturer’s instructions. The fluorescence intensities were assessed using a
flow cytometer (BD FACSCanto II; BD Biosciences, San Diego, CA, USA).

4.5. Statistical Analyses

Statistical evaluations were performed using a two-way analysis of variance with the
GraphPad Prism9 software program (GraphPad Software, San Diego, CA, USA). Differ-
ences between the data were considered to be significant when the p-values were less than
0.05. The data are represented as the means ± the standard deviation (SD).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22073548/s1: Table S1: List of primers used for genotyping.

Author Contributions: K.W. and T.S. designed the research. K.W. and T.S. wrote the manuscript.
K.W., S.S., Y.O. and T.T. performed research. K.W. analyzed the data. K.W., S.S., Y.O., T.T. and T.S.
discussed the hypothesis and interpreted the data. K.W. and T.S. edited the article. T.S. coordinated
and directed the project. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Research fund of Mitsukoshi Health and Welfare Foundation
(T. Shimizu) and a grant-in-aid (T. Shimizu) from the Ministry of Education, Science, Culture, Sports.

Institutional Review Board Statement: All animal experiments were performed according to the
guidelines for animal experiments of Animal Care and Use Committee of Chiba University (Approval
ID. A28-248, G26-58).and National Center for Geriatrics and Gerontology (Approval ID. A2-28,
G2-28).

Informed Consent Statement: Not applicable for studies not involving humans.

Acknowledgments: We thank Tomoaki Tanaka (Department of Molecular Diagnosis, Graduate
School of Medicine, Chiba University) for providing Trp53 flox mice, and Isao Masuda, Hirohumi
Koyama, and Naotaka Izuo (Department of Endocrinology, Hematology and Gerontology, Chiba
University Graduate School of Medicine, Chiba, Japan) for their helpful discussion.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijms22073548/s1
https://www.mdpi.com/article/10.3390/ijms22073548/s1


Int. J. Mol. Sci. 2021, 22, 3548 9 of 12

Abbreviations

α-MEM Minimum Essential Medium Eagle, Alpha Modification
BrdU 5-bromo-2′-deoxyuridine

DCF
5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate,
acetyl ester, CM-H2DCFDA

DCM dilated cardiomyopathy
DDR DNA damage response
DHE dihydroethidium
DKO double-knockout
E2F E2-promoter binding factor
FITC Fluorescein isothiocyanate
FoxO3 Forkhead box O3
Mmp Metalloproteinase
NQO NAD(P)H: quinone oxidoreductase
PCR Polymerase chain reaction
ROS Reactive oxygen species
SOD Superoxide dismutase
TFAM Mitochondrial transcription factor A
TLR4 Toll like receptor 4
8-OHdG 8-hydroxy-2′-deoxyguanosine
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