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Abstract: The stochastic bond stress-slip behavior is an essential topic for the rebar-concrete interface.
However, few theoretical models incorporating stochastic behavior in current literature can be
traced. In this paper, a stochastic damage model based on micro-mechanical approach for bond
stress-slip relationship of the interface under monotonic loading was proposed. In order to describe
the mechanical behaviors of the rebar-concrete interface, a microscopic damage model was proposed.
By introducing a micro-element consists of parallel spring element, friction element and a switch
element, the model is formulated. In order to reflect the randomness of the bond stress-slip behavior
contributed by the micro-fracture in the interface, a series of paralleled micro-elements are adopted
with the failure threshold of individual spring element is set as a random variable. The expression of
both mean and variance for the bond stress-slip relationship was derived based on statistical damage
mechanics. Furthermore, by utilizing a search heuristic global optimization algorithm (i.e., a genetic
algorithm), parameters of the proposed model are able to be identified from experimental results,
which a lognormal distribution has adopted. The prediction was verified against experimental
results, and it reveals that the proposed model is capable of capturing the random nature of the
micro-structure and characterizing the stochastic behavior.

Keywords: rebar-concrete interface; bond stress-slip relationship; stochastic behavior; damage model;
genetic algorithm; variance

1. Introduction

Although concrete is the most widely material in construction field around world, the bond
stress-slip behavior of the rebar-concrete interface has not been fully understood. Among the several
focused topics towards the bond stress-slip behavior, the damage of the interface is an essential issue,
which has been found in conclusion to be the main reason for degradation of concrete structures [1,2].
Thus, misestimating could be occurred regarding safety and economic design/analysis of relevant
structures when consideration of such behavior is absent.

The complexity of bond stress-slip behavior for rebar-concrete interface commonly originated
from two essential characteristics; that is, the nonlinearity and randomness. In recent decades,
the nonlinearity for bond stress-slip behavior is treated as a fundamental problem, which the constitutive
relationship has drawn intensified study and several celebrated works have been conducted by
researchers. However, referring to the randomness, research on stochastic properties of relevant
material is comparatively blank. In detail, the causes for such behavior can be mainly attributed to
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the complex inhomogeneous microstructure of the interface, due to the irregular shape, random size
and distribution of aggregates, the sedimentation of cement particles, the accumulation of pore water,
the curing conditions-induced undetermined hydration, the random corrosion of the rebar, the random
size of the ribs, the different location of the concrete and rebar in the structures, and the varied skill of
the workers.

Presently, unlike the concrete materials, research on the mechanical behaviors of bond stress-slip to
the rebar-concrete interface is relatively rare. Besides, few literature evolved with the theoretical model
regarding stochastic behavior can be traced. From a summary standpoint, currently, the researches refer
to the theoretical model of the mechanical behaviors of bond stress-slip are able to be classified into
three main categories: empirical models, theoretical analysis models and macro-mechanical models.

In detail, the empirical models are usually developed based on the observation of the experimental
results, and could also be sub-divided into two types: the segmental function model and continuous
function model. Precisely, the most representative contributions of the segmental function models listed
in this work were conducted by Alsiwat, et al. [3], Haraji, et al. [4], Eligehausen, et al. [1], Xu [5] and
Wang, et al. [6]. For example, Xu [5] divided the bond stress-slip curves into five sections: micro-slip
section, slip section, splitting section, descending section and residual section, and thus, the segmental
function model of the corresponding sections was proposed. In addition, the representative works of
continuous function models were developed by Lutz and Gergely [7], Nilson [8], Mirza and Houde [9],
Kankam [10], Di [11], Jin, et al. [12] and Teng, et al. [13]. Although most of the empirical models are able
to describe the bond stress-slip behavior, the comprehensive micro-damage mechanism in a physical
sense was absence to some extent.

Although aforementioned empirical models may have the advantage of simplifying relative
design/analysis process towards certain problems, such formulated equations can be only used for
representing specific observed phenomenon. Therefore, a number of theoretical attempts have also
been devoted to the modelling of the bond stress-slip behaviors. For instance, considering the force
balance of the interface under loading, the stress-strain relationship of the steel bars and concrete and
the relationship between slip and strains, Somayaji and Shah [14] proposed the differential equations,
corrected the solution of these equations, and obtained the relation model between the local slip
and the buried rebar length. Yankelevsky [15] developed a model for interface between un-cracked
concrete and deformed steel bars, derived the second-order differential equations dependent on
the tensile force of the steel bar, combined the equations with the boundary conditions, further the
relationship between bond stress and distance in the longitudinal direction of steel bars was predicted.
Zhao and Xiao [16] developed a bond stress-slip model before peak bond stress, formulated based on
a wedge-shaped model and mechanism for the interface. Song and Zhao [17] proposed a model based
on the stress balance, deformation coordination, and physical conditions by considering the influence
of material characteristics, concrete layer thickness, crack spacing, and distance from the crack section.
The theoretical analysis models [14–18] considered the micro mechanisms of the interface behaviors,
however, they are too complex to apply to engineering including finite element analysis. Nevertheless,
there are a number of certain conditional assumptions for the model development. Unfortunately,
these assumptions generally did not consider the random nature of the interface micro-structures.

Besides the above-mentioned two categories of theoretical models, the establishment of macroscopic
mechanicalmodelswerealsoattractingextensiveattentions fromresearchers. For instance, Alfano, et al. [19,20]
established a thermodynamic-based cohesive zone model considering the damage-friction evolution with
unilateral contact, which can be used for analysis of rebar-concrete interfaces and cracks in concrete-rock
foundation interfaces of concrete dams, etc. Based on continuum damage mechanics and considering
the accumulation of interfacial damage of reinforced concrete, Soh, et al. [21] developed a bond stress-slip
constitutivemodelbyadoptingWeibulldistributionfunction. Inviewofaboveintroducedmodels, macroscopic
mechanical models, especially the continuum damage mechanical models have been gradually focused by
relevant researchers in recent. These models have considered different mechanisms for interface deterioration
of reinforced concrete (e.g., damage, friction and interlocking mechanism) based on thermodynamics.
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However, even though the nonlinearity was effectively addressing and modelling by such models, they are
still in deficiency of describing the stochastic properties exhibited in the bond stress-slip behavior.

Therefore, this work aims at developing a stochastic damage constitutive model for bond stress-slip
relationship of the rebar-concrete interface in order to capture the random nature of the interface and
characterize the stochastic constitutive behaviors. The outline is listed as follows, the characteristics of
the microscopic element model of rebar-concrete interface is first introduced, and then a stochastic
damage model is proposed based on such microscopic model. Afterward, the expressions of mean
and variance of bond stress-slip relationship is derived in Section 2. In addition, random variable
parameter identification is conducted by adopting a search heuristic global optimization algorithm
(i.e., a genetic algorithm), which the detailed illustration is listed in Section 3. In Section 4, the proposed
model is verified against experimental results. Our conclusions are finally given in Section 5.

2. Stochastic Damage Model of Bond Stress-Slip Relationship

2.1. Microscopic Element Model

For the purpose of mimicking the mechanical properties of the interface between the rebars and
concrete evolved with the interclocking, damage (cracking) and friction, a new bond stress-slip model
was proposed based on microscopic elements (see Figure 1). Concretely, the single microscopic element
consists of a spring element and a friction element. Therefore, the elastic deformation, debonding and
damage (cracking) is able to be modelled by the spring element and the mutual friction and slipping
behavior can be characterized by the friction element.

It is assumed that when external load is applied on the interface, the spring element initially
undergoes an elastic deformation process, and then breaks (debonding) when the deformation
reaches its fracture threshold. As a result, the friction element then experiences a slipping process,
which represents the friction between the rebar and concrete. A switch element was also introduced
for controlling the work of the spring element and friction element. During the elastic deformation
process, the switch element is in opening state, which reveals that the friction element was isolated.
After the failure of the spring element, the switch element was closed and caused the friction element
began to slide. Therefore, the entire response of the interface are able to be characterized when subject
to external loading. Physically, it is worthy of note that such a switch element is not a mechanical
element and the aim for introducing it is only for purpose of demonstrating the transformation process
from debonding to the frictional sliding in microscopic scale.
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Figure 1. Microscopic element model.

Specifically, in this work, in order to describe the randomness of micro-fracture behaviors in the
interface between the rebar and concrete, the random variable theory is applied. By presuming the
fracture threshold ∆ of spring elements obey certain probability densities, the randomness of the
failure events are able to be depicted. Therefore, the state of the switch element (open or close) can be
determined by comparison between the value of relative displacement between the rebars and concrete
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s and the fracture threshold ∆. That is, when s < ∆, the switch element is in an open state, otherwise it
is closed.

Hence, the control function of the switch element can be expressed as

SWITCH = H(s− ∆) =
{

1 s ≥ ∆, switch on
0 s < ∆, switch off

(1)

where H (x) is the Heaviside function, s is the slip.

2.2. Mechanical Behavior of Individual Microscopic Element

Thus, the bond stress-slip relationship for individual microscopic element is able to be divided
into two phases:

i. Before the failure of the spring element,

τe = Gs, s < ∆ (2)

where G is the stiffness of the bond-slip relationship.
ii. After the failure of the spring element,

τr = βτu = βG∆, s ≥ ∆ (3)

where β is the coefficient of friction and τu is the failure stress of the spring τu = G∆.
Therefore, the entire bond stress-slip relationship of individual microscopic element can be

expressed as follows (see Figure 2):

τ = H(∆ − s)Gs + βG∆H(s− ∆) (4)
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2.3. Mechanical Behavior of Parallel System of Microscopic Elements

In order to mimic the corresponded relationship of the rebar-concrete interface, a representative
interface element (RIE) in mesoscale was firstly introduced in this work, which consists of a parallel
system of microscopic elements (see Figure 3). In detail, based on Equation (4), the bond stress of the
k-th microscopic element was defined such that (k = 1, 2, 3, ···, N)

τk = H[∆(xk) − s]Gks + H[s− ∆(xk)]βkGk∆ (5)

where xk denotes the location of the k-th microscopic element in the coordinate.
By assuming that the stiffness G and the coefficient of friction β of individual element is equal,

the average bond stress for parallel system is obtained as follows:

τ =
1
N

N∑
k=1

H[∆(xk) − s]Gs +
1
N

N∑
k=1

H[s− ∆(xk)]βG∆(xk) (6)

Taking the limit of Equation (6) as N approaches infinity, one obtains

τ =

∫ 1

0
H[∆(x) − s]Gsdx +

∫ 1

0
βG∆H[∆(x) − s]dx (7)
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In addition, the fracture threshold ∆ is set as a random variable, with density function f (∆) and
distribution function F(∆) = S0

+hf (∆)d∆, as illustrated in Figure 4.
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Since the failures of spring element represent the damage of the interface, the damage variable
can be defined as the ratio of damage area to total area of the parallel system [22,23] as follows:

d =
Ad

A
=

1
N

N∑
k=1

H[s− ∆(xk)] (8)

When N approaches to infinity, the damage variable is able to be obtained as follows,

d(s) =
∫ 1

0
H[s− ∆(x)]dx (9)

By substituting Equation (9) to Equation (7), a damage model for the bond stress-slip relationship
is derived such that

τ = (1− d)Gs + βG
∫ 1

0
∆H(s− ∆)dx (10)

especially if the damage variable d = 0 implies the interface is in a non-damage state and τ = Gs.
When the damage variable d = 1, it represents that the interface is completely damaged and only
residual frictional stress is existed, that is, τ =βG

∫
0

1 ∆(x)dx.
Hence, the mean value of the damage variable d can be expressed as follows:

E[d(s)] =
∫
∞

0

∫ 1

0
H[s− ∆(x)] f (∆)dxd∆ =

∫ 1

0

∫ s

0
f (∆)dxd∆ =

∫ 1

0
F(s)dx = F∆(s) (11)

The square of the mean value of the damage variable is derived such that,

E[d2(s)] =
∫
∞

0

∫
∞

0

[∫ 1
0

∫ 1
0 H(s− ∆1)H(s− ∆2)dx1dx2

]
f∆(∆1, ∆2)d∆1d∆2

=
∫ 1

0

∫ 1
0

[∫ s
0

∫ s
0 f∆(∆1, ∆2)d∆1d∆2

]
dx1dx2

=
∫ s

0

∫ s
0 f∆(∆1, ∆2)d∆1d∆2

(12)

where f ∆(∆1, ∆2) is the two-dimensional joint probability density function of the fracture threshold for
spring elements.

2.4. Mean Value of Stochastic Mechanical Responses

Considering the properties between the expected operator and the integral operator, the following
results can be obtained:

µτ(s) = µ[
∫ 1

0 H(∆ − s)Gsdx +
∫ 1

0 βG∆H(s− ∆)dx]

= µ
[∫ 1

0 H(∆ − s)Gsdx
]
+ µ

[∫ 1
0 βG∆H(s− ∆)dx

]
=

∫ 1
0 µ[H(∆ − s)Gs]dx +

∫ 1
0 µ[βG∆H(s− ∆)] dx

(13)

where
µ
{
H[s− ∆(x)]

}
= 1× P[H(s− ∆(x)) = 1] + 0× P[H(s− ∆(x)) = 0]
= P[H(s− ∆(x)) = 1]
= P[s− ∆(x) ≥ 0] = P[∆(x) ≤ s]
=

∫ s
0 f (∆)d∆ = F(s)

(14)

µ
{
H[∆(x) − s]

}
= 1−

∫ s

0
f (∆)d∆ = 1− F(s) (15)

P denotes the probability.
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Therefore, the mean function of bond stress can be expressed as

µτ(s) =
∫ 1

0 µ[H(∆ − s)Gs]dx +
∫ 1

0 µ[βG∆H(s− ∆)]dx

= Gs
∫ 1

0

(
1−

∫ s
0 f (∆)d∆

)
dx + βG

∫ 1
0

∫ s
0 ∆ f (∆)d∆dx

(16)

2.5. Variance Value of Stochastic Mechanical Responses

The variance function of stochastic mechanical responses of the parallel system is expressed
as follows,

V2(τ) = E
(
τ2

)
− E2(τ) (17)

By combining Equations (9) and (10), it is able to obtain E(τ2) such that,

E
(
τ2

)
= E

{
(1− d)2G2s2 + β2G2

[∫ 1
0 ∆H(s− ∆)dx

]2
+ 2βG2s(1− d)

∫ 1
0 ∆H(s− ∆)dx

}
= G2s2

[
1 + E

(
d2

)
− 2E(d)

]
+ β2G2

∫
∞

0

∫
∞

0

[∫ 1
0 ∆1H(s− ∆1)dx1

∫ 1
0 ∆2H(s− ∆2)dx2

]
f∆(∆1, ∆2)d∆1d∆2

= 2βG2s
{∫
∞

0

∫ 1
0 ∆H(s− ∆) f (∆)dxd∆ −

∫
∞

0

∫
∞

0

[∫ 1
0 ∆H1(s− ∆1)dx1

∫ 1
0 H(s− ∆2)dx2

]
f∆(∆1, ∆2)d∆1d∆2

} (18)

By substituting Equations (11) and (12) to Equation (18), E(τ2) is able to be derived as follows

E(τ2) = G2s2
[
1 +

∫ s
0

∫ s
0 f∆(∆1, ∆2)d∆1d∆2 − 2

∫ s
0 f (∆)d∆

]
+ β2G2

∫ s
0

∫ s
0 ∆1∆2 f∆(∆1, ∆2)d∆1d∆2

+2βG2s
∫ s

0 ∆ f (∆)d∆ − 2βG2s
∫ s

0

∫ s
0 ∆1 f∆(∆1, ∆2)d∆1d∆2

(19)

Therefore, by substituting Equations (16) and (19) to Equation (17), the variance value of the
stochastic mechanical responses is able to be obtained as follows,

V2(τ) = G2s2
[
1 +

∫ s
0

∫ s
0 f∆(∆1, ∆2)d∆1d∆2 − 2

∫ s
0 f (∆)d∆

]
+ β2G2

∫ s
0

∫ s
0 ∆1∆2 f∆(∆1, ∆2)d∆1d∆2

+2βG2s
∫ s

0 ∆ f (∆)d∆ − 2βG2s
∫ s

0

∫ s
0 ∆1 f∆(∆1, ∆2)d∆1d∆2 −

[
Gs

∫ 1
0

(
1−

∫ s
0 f (∆)d∆

)
dx + βG

∫ 1
0

∫ s
0 ∆ f (∆)d∆dx

]2 (20)

By presuming the fracture threshold ∆ of obeys the lognormal distribution [22,24] and defining
the mean and the variance of the fracture threshold as µ∆ and σ∆, let Z(x) be a homogeneous normal
function with the mean value and standard deviation (λ, ζ2), it is derived that

Z(x) = ln ∆(x) (21)

λ = E[ln ∆(x)] = ln

 µ√
1 + σ2

∆/µ2
∆

 (22)

ζ2 = var[ln ∆(x)] = ln
(
1 + σ2

∆/µ2
∆

)
(23)

Therefore, the distributions can be obtained respectively as follows,

f (∆) =
1

√
2π∆ζ

exp
[
−1/2

( ln ∆ − λ
ζ

)2]
(24)

f∆(∆1, ∆2) =
1

2πζ1ζ2
√

1−ρ2∆1∆2
exp

{
−1

2(1−ρ2)

[
(ln ∆1−λ1)

2

ζ2
1

− 2ρ (ln ∆1−λ1)(ln ∆2−λ2)
ζ1ζ2

+
(ln ∆2−λ2)

2

ζ2
2

]}
(25)

Consequently, the properties of the fracture threshold can be described by the parameters λ, ζ, λ1,
λ2, ζ1, ζ2 and ρ.
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3. Random Variable Parameter Identification Based on Genetic Algorithm

To verify the foregoing analytical model proposed in this work, a random variable parameter
identification process is developed based on genetic algorithm. Genetic algorithms (GAs) is a search
method relative to the theory of evolution, including the processes of reproduction, crossover, mutation,
and selection, create populations of solutions for optimizing an objective function. The applicability of
GAs was widely accepted by relevant researchers for dealing with the problems of optimizing analysis.

In detail, by observing the τ- s relationship from a group of pullout tests, the mean and variance
of τ- s curves are able to be determined. Secondly, by discretizing the mean and variance of τ- s curves
into ith intervals, corresponded points (si,µ(τi

o)) and (si,v(τi
o)) are selected. At last, by calculating the

corresponded points (si,µ(τi)) and (si,v(τi)) from the proposed model, an objective function R is able to
be constructed, which is illustrated as follows:

Rµ =
N∑

i=1

[µ(τi) − µ(τ
o
i )]

2 approach
→ min (26)

RV2 =
N∑

i=1

[V2(τi) −V2(τo
i )]

2 approach
→ min (27)

Specifically, an optimization criterion is introduced for determining the applicability of the
objective function R, that is, the value of R is approaching minimum. The identification flow chart is
listed in Figure 5.

1 

 

 

Figure 5. Flow chart of algorithm for parameter identification of random variable. (a) Main program
module of genetic algorithm; (b) Main program module of the objective function
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4. Model Validation and Discussion

4.1. Bond Stress-Slip Behaviors in the Sense of Mean Value

To validate the effectiveness of the proposed model for the mean τ- s curve in this work,
the experimental results of bond stress-slip relationship under monotonic loading [25,26] were used
in this section. The parameters of the proposed model were determined by using the above-mentioned
random identification process (i.e., a genetic algorithm), and the results were shown in Table 1 and
Figure 6, Table 2 and Figure 7, respectively. It is observed from Figures 6 and 7 that the predicted
results agrees well with the experimental results.

Table 1. Identification results of random variable parameters. Experimental results were obtained
from literature [26].

λ ζ β G(MPa) R

6.11 1.08 0.07 0.09 12.86
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4.2. Stochastic Bond Stress-Slip Behaviors

In order to verify the effectiveness of the proposed model for characterizing the stochastic
behaviors, the experimental results of a series of pull-out tests [23,27,28] were examined in this section
(see Figure 8).
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By using the proposed identification process, the parameters and predicted results were shown
in Tables 3 and 4 and Figures 9 and 10.
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Table 3. Identification results of random variable parameters of the mean value.

λ ζ β G(MPa) R

5.076 1.328 0.102 0.099 2.03

Table 4. Identification results of random variable parameters of the variance value.

λ1. λ2 ζ1 ζ2 ρ R

5.049 4.96 1.292 1.358 0.022 3.3
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Specifically, Figure 10 illustrates the effectiveness of the proposed model for characterizing the
stochastic mechanical behaviors of the interface. It shows that the proposed model enable us to capture
the random nature of the interface by the derived expression of the variance, based on the micro
mechanics and random variable theory [22,24]. In detail, the proposed model is able to describe both
the mean and variance value of the bond stress-slip behaviors (see Figures 6 and 7, Figures 9 and 10)
and promotes the development and application of statistical mechanics and random variable theory by
deriving the expression of variance in Sections 2–5. Moreover, the literature [24] has considered that
this expression is very difficult to be obtained and further study is needed in the future, due to the
complexity of related theoretical analysis.

4.3. The Comparison between the Proposed Model with a Non-Stochastic Model

A comparison between the predicted mean τ–ѕ curve by using the proposed model and
a non-stochastic model obtained by literature [27] is listed in Figure 11. The observation shows
that the predicted τ–s curve generated by proposed model was closer to the experimental results,
while an underestimation of the stress in most load region is found from the prediction obtained by
the non-stochastic model. Additionally, by considering a lack of the capability of characterizing the
stochastic behaviors (variance), the applicability of the proposed model is more widely to some extent
compared with the non-stochastic model mentioned in this work.
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5. Conclusions

In this paper, a stochastic damage model for bond stress-slip relationship of rebar-concrete interface
was proposed based on the micro mechanical method and random variable theory. The conclusions
can be drawn as follows:

A microscopic damage model was proposed to mimic the micro-damage mechanical behaviors
of rebar-concrete interface under monotonic loading. The model consisted of a spring element
and a friction element in parallel, and the failure/friction behavior of the elements was proposed
to be controlled by a switching function. When the slip of the spring element reached a certain
threshold, failures occurred and resulted in the friction element slipping instantly. In spite of the
conventional theoretical model, by setting the fracture threshold of the spring element as a random
variable, the stochastic properties were able to be depicted. More precisely, based on the introduced
methodology in this work, the derivation of the expressions for the mean and variance of the bond
stress-slip relationship were obtained through the help of statistical mechanics.

A search heuristic global optimization algorithm (i.e., genetic algorithm) was adopted to identify
the random variable parameters evolved in the proposed model based on the experimental results,
and the lognormal distribution was utilized.

The validation of the proposed model was performed by comparison between the predictions
and the experimental results. It has been revealed that the proposed model can effectively describe
the stochastic constitutive relationship of the bond stress-slip of rebar-concrete interface under
monotonic loading.

This work may be of significance for studying and modelling the stochastic constitutive
relationship of bond stress-slip relationship of rebar-concrete interface under uniaxial monotonic
loading, as well as providing a better understanding and awareness of its uncertain effects on relevant
engineering applications.
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