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Abstract

Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate
recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical
communication systems progress through natural variation within the organism generating the signal as well as the
responding individuals. A promising yet poorly understood system with which to probe the importance of this variation
exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector
for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent
model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and
to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We
have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block
design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for
phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for
volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend
differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory
receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our
data point clear ways forward for behavioral assays aimed at understanding the implications of this variation.
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Introduction

A requisite condition for evolutionary change is heritable

variation segregating within a population. In order to understand

the forces governing the change, evolutionary biology is preoccu-

pied with quantifying patterns of variation in order to measure and

test for the effects of selection. Evolutionary biology has a rich

history describing organismal phenotypic and genetic diversity

over varying geographies and physical distances, and increasingly

sophisticated methods to infer the evolutionary processes that have

led to patterns of diversity continue to develop rapidly [1–9].

Traditionally, genetic variation has been treated in isolation from

the extensive web of ecological connections within which the

organism is embedded. However, there has been growing

attention, as well as increased technological feasibility, to combine

genetic variation with ecologically relevant phenotypic data. This

effort has been referenced by terms such as ‘‘community and

ecosystem genetics’’ or ‘‘landscape genetics’’, and aims to provide

a more detailed understanding of how a population or species

affects, or is affected by, the larger ecological network to which it

belongs [10–12].

A particular area of research that holds remarkable promise

towards bridging ecology and genetics is the study of chemical

signaling between hosts and their visitors. Host-visitor systems

occur ubiquitously, and many of the best studied systems involve

insects and their hosts (most often plants) [13–17]. These systems

benefit from their suitability for detailed lab and field-based

behavioral studies, and are amenable to precise characterization of

the chemical makeup of the cues that elicit the behavioral

response(s) that mediate their interactions (e.g. oviposition or

proboscis extention). An outstanding example of such a system is

the apple (Malus pumila)-infesting and hawthorn (Crataegus spp) flies

of the Rhagoletis pomonella (Diptera; Tephritidae) species group. In

the mid 1800s it was noted that a N. American Rhagoletis

population experienced a host shift away from the native

hawthorn host towards introduced apple trees [18], and it was

subsequently suggested that the shift had occurred sympatrically

[19]. Through a combination of chemical, behavioral, and

electrophysiological studies, it has been demonstrated that

differences in chemical cues emitted from the fruits of these trees

have significantly contributed to the host shift [20,21].

Additional layers of community interactions can be considered

through the recognition of the micro-organisms that inhabit the

fruits, flowers, and surfaces of host plants. By feeding on, or from,

these substrates, insects often serve as dispersal agents for the

micro-organisms. Intriguingly, because these micro-organisms

often produce their own volatile compounds, or can induce a

plant to emit variations in its own volatiles [22,23], it is an open
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question to what extent host plant signals involve the chemical (or

physical) contribution of the microbes they carry. With respect to

microbe-plant-insect interactions, Drosophila systems have made

notable contributions. There have been ongoing efforts to

understand host-visitor relations among Drosophila flies and yeasts

dating back to the mid 20th century [24–30]. It has long been

established that Drosophila larvae rely on yeasts for nutritional

contributions [31] as well as for their role in aiding to detoxifying

otherwise toxic plant material that the flies ingest [32]. In addition,

adult Drosophila have been shown to be important vectors for yeast

cells, assisting in the dispersal and outbreeding rate of this

microbial fungus [33]. Evidence for this proximal relationship

between Drosophila and yeasts was recently strengthened through

an experimental study demonstrating that Drosophila melanogaster,

which is attracted to – and mates upon – decaying fruit, is

primarily drawn to the fruit through the volatiles generated by the

yeast (Saccharomyces cerevisiae) fermenting upon them [34].

The Drosophila-yeast pair is a particularly promising model

system for investigating ecological interaction and coadaptation,

due both to the historical background on the relationships across

multiple species of flies and yeast, and also because the specific

species pair D. melanogaster-S. cerevisiae present two of the most

powerful molecular genetic and genomic models available. In

particular, efforts to investigate the sensory preferences of D.

melanogaster in relation to its ecology should significantly benefit

from the fact that D. melanogaster is one of the best understood

systems regarding the molecular and neurological foundations of

olfaction and gustation [35–43]. Moreover, both species have high

quality genome assemblies available, with population genomic

resequencing efforts continuously expanding [44–47]. These

resources are providing a detailed understanding of subtle genetic

differences across geographic localities, and are beginning to be

related to higher-level phenotypes [46,48].

A necessary first step in testing for population variability in the

ecological interactions between D. melanogaster and S. cerevisiae (or

between any other insect that interacts with S. cerevisiae) is to

explore the potential for population variability in yeast signaling.

To do this, we set up a series of common garden experiments using

geographically and genetically distinct strains of S. cerevisiae from

which we collected metabolic headspace volatiles for extensive

chemical analyses. We reasoned that given the important

contribution of yeast volatiles to fly-fruit interactions [39], the

results of such a study should be informative to both present and

future fly-yeast-fruit ecological studies, and should help to further

develop these model organisms as a powerful ‘‘ecological genetics’’

system-pair.

Recently, several S. cerevisiae whole genome resequencing efforts

were completed in which accessions from around the world,

isolated from diverse substrates, were sampled [45,47]. Population

genetic analyses demonstrated considerable population structure

(up to 5 genetic groupings), especially between strains domesticat-

ed for distinct fermenting purposes (sake, wine) and strains used in

scientific laboratories. In parallel to the genomic analyses, Liti et

al. (2009) also carried out extensive phenotypic measurements

related to growth. Surprisingly, they found that clustering of these

phenotypes could qualitatively recapitulate the topology of the

genetic clusters, and that the most discrete phenotypic separation

existed for rapid growth between the wine, European, and mosaic

(admixed) strains and the remaining North American, Malaysian,

and African strains [45]. Drawing from these studies, we predicted

that if we subsampled from the diverse genetic clusters observed in

these previous studies, we would be able to capture variation in

volatile chemical composition across this species if it exists. In

addition, although our sample size is necessarily smaller than Liti

et al.’s, the data would allow for tests of correlations between the

volatile clusters and genetic clusters. Our results revealed

considerable plasticity in metabolic volatiles within strains, but

still we observed significant differences between several strains of S.

cerevisiae, and were able to attribute most of the between-accession

variation to particular compounds. Intriguingly, most of the

differentiated compounds are known ligands for D. melanogaster

chemosensory receptors, and have been shown to be related to

sensory behavior. The genomic sequence analyses indicated that

our volatile phenotyping spans a broad genetic panel, as supported

by comparable genetic clusters in our study and those in the larger

population surverys [45,47]. However, attempts to identify

correlations between the volatile data and genomic data were

unsuccessful, most likely due to our relatively small sample sizes

and the inherent noise of volatile sampling. We conclude with

considerations over the implications of our common garden design

on estimating variation in metabolic volatiles, and on the general

need to improve methodological approaches and throughput

aimed at addressing population structure in the ‘‘invisible

phenotypes’’ of interest to chemical ecologists.

Results

Sampled Strains Are From Distinct Genetic Clusters
Based on a subset of overlapping DNA sequences collected from

previous genome sequencing projects (Table 1; see Methods), the

Neighbor Joining Tree (Fig. 1) shows a long branch separating the

two Malaysian strains (1911, 1897) and the single Sake strain

(1903), and is in general agreement the branch placement

previously observed [45] (see their Fig. 1C). The addition of the

two samples from the study of Schacherer et al. (2009) make no

impact on Malaysian/Sake-split, but does alter the tree topology

by creating a well supported additional clade that includes

reference lab strain 1876 and the baking strain 1893. The

remaining 4 strains form a third clade with weaker support for the

branch placement, consistent with the pattern seen for these

mosaic strains along the long branch between the Wine/European

strains and North American strains [45]. Analyses of structure

results indicate that the samples in our study contain varying

proportions of shared ancestry. Prior probabilities computed from

the three runs with K = 1:6 generally increase from K = 1 to K = 5

and then quickly drop off at K = 6. The highest prior for each run

was with K = 5 (Fig. S1).

Yeast Volatile Analysis: non-polar GC-MS screen reveals
strain-specific volatile ratios

Thirty two volatile compounds were identified from yeast

headspace using the non-polar GC column. The identities and

relative abundances of these compounds, and their relative

contributions to the total volatile blend of each yeast accession,

are summarized in Table S1. Volatile compounds common to all

samples included the dominant component 3-methyl butanol and

a number of short-chain alcohols, acids and esters. Twelve

additional yeast volatile compounds resulted from the apparent

esterification of ethanol, 3-methyl butanol and 2-phenylethanol –

three of the most abundant alcohols present in yeast headspace –

with different organic acids present in grape juice (e.g. hexanoic,

octanoic and decanoic acid). Finally, we detected low amounts of

two unique compounds without obvious biosynthetic affinity to the

more typical fermentation volatiles, including nerolidol (a sesqui-

terpene alcohol) and dihydro-2-methyl-thiophenone (an S-bearing

heterocyclic compound).

Principal Component Analysis (PCA) of the 8 most consistent

volatiles identified by TD-GC-MS on the non-polar GC column

Polymorphic Yeast Volatiles
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resulted in three factors (PCs) with eigenvalues greater than unity,

explaining roughly 75% of the variance in the data set (Table 2).

Component score coefficients indicated unambiguous loading

relationships between PC 1 and ethyl esters, PC 2 and 2-

phenylethanol, 3-methyl butanol and 3-methyl butyl acetate, and

PC 3 and acetoin and isobutyric acid (Table 2). Examination of

the factor loadings for all samples identified some accessions with

high loadings on one factor (2097 for PC1, 1885 for PC2, 1893 for

PC3), others with distinctive loading patterns (1888 low for PC1

and PC2 but high for PC3; 2094 high for PC1 but low for PC2;

2106 low for PC1 but high for PC2), and one (1876) with

especially low loadings for PC2 (Table 2). Based on their

distinctive loading patterns, these seven accessions were chosen

for the second round of analyses on the polar GC column (see

below).

Multidimensional Scaling (MDS) analysis was performed on the

full blend of 32 volatile compounds identified using TD-GC-MS

on the non-polar GC column. Further exploration of differences

Figure 1. Genetic relationships between the 11 yeast accessions for which genomic sequence is available. Left: Inferred proportion of
ancestry estimated for 2–5 genetic clusters. Right: A Neighbor Joining tree for the same yeast accessions. All branches have bootstrap values greater
than 95% except for the two marked with red lines (upper branch = 55.8, lower branch = 74.9). Color-coding on tree tips indicate the grouping of the
strains according to Table 1.
doi:10.1371/journal.pone.0070219.g001

Table 1. Summary information for the 14 yeast accessions used in this study.

Strain OS Location Source Group Genomic Data
NJ Tree Color
Coding

YS2 1893 Australia baker strain baking Liti et al. red

Y12 1903 Africa palm wine strain fermenting Liti et al. green

DBVPG6040 1889 Netherlands fermenting fruit juice fermenting Liti et al. green

YIIc17.E5 1888 Sauternes, France wine fermenting Liti et al. green

S288c 1876 California rotting fig lab Liti et al. orange

UWOPS83.787.3 1911 Bahamas Fruit, opuntia stricta wild Liti et al. blue

UWOPS03.461.4 1897 Malysia Nectar, Bertam palm wild Liti et al. blue

273614N 1885 RVI, Newcastle clinical isolate (fecal) lab Liti et al. orange

DBVPG1853 1902 Etheopia White Teff wild Liti et al. blue

YpS163 2097 USA Oak exudates wild Liti et al. blue

UC8 2093 South Africa wine fermenting Schacherer et al. green

SB (S. boulardii) 2094 Indonesia lychee fruit wild N/A N/A

UCD612 2100 Pennsylvania, US oak exudate fruit wild N/A N/A

Y4 2106 Indonesia fruit wild N/A N/A

doi:10.1371/journal.pone.0070219.t001
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between yeast strains was justified because ordination of the Bray-

Curtis index produced a significantly structured data set

(ANOSIM global R = 0.515, p = 0.0001) with relatively low stress

(3-D = 0.09; 2-D = 0.13). The three dimensional MDS ordination

of the Bray-Curtis index generated by the full volatile blend is

shown in Fig. 2 (panel B). Although the replicates of several strains

show overlapping distributions in MDS, some strains show clear

separation along specific MDS axes. SIMPER analysis was used to

explore which specific volatiles might be associated with these

axes. SIMPER indicated high average similarity in scent

composition within strains (grand mean = 84.29%). Comparisons

between strains using SIMPER revealed that quantitative differ-

ences between compounds common to all strains (including the 8

compounds used in PCA) were largely responsible for distribu-

tional differences in MDS, and that topological differences

between strains in volatile phenotype space are largely explained

by the compounds that loaded most strongly on PC1, 2 and 3 (see

Table 2). Specifically, there were no low-abundance or unique

volatiles that contributed to the upper 60% of cumulative

differences between strains; these differences were nearly always

driven by 3-methyl butanol, the dominant yeast volatile in our

analyses, as is summarized in Table S2. Strains that differed

primarily along MD1, including the fermenting strains 1888

(YIIc17.ES from Sauternes, France) and 1889 (DBVPG6040 from

the Netherlands) did so largely due to different amounts of

isobutyric acid and acetoin (2 MD1 values; see PC3 in Table 2).

In contrast, strains that differed primarily along MD2, such as

1889 and wild strain 1911 (UWOPS83.787.3, from cactus fruit in

the Bahamas) partitioned greater emissions of ethyl esters (+ MD2

values; see PC1 in Table 2) vs. 3-methyl butanol and 3-methyl

butyl acetate (2 MD2 values; see PC2 in Table 2). Finally, strains

that differed primarily along MD3, such as strains 1911 and 1885

(273614N, a clinical fecal isolate from the UK) were typified by

marked differences in emissions of 2-phenylethanol (- values).

Yeast Volatile Analysis: follow-up polar GC-MS screen
resolves volatile alcohols, but increases noise

Thirty six total volatiles were identified from TD-GC-MS

analysis of strains 1876, 1885, 1888, 1893, 2094, 2097, 2106 (see

Table S1). All compounds identified from the previous analysis

were resolved on the polar GC column except for the S volatile

dihydro-2-methyl thiophenone. Eight small volatiles that were

either not detected or not well resolved by the non-polar GC

column were consistently detected using the polar column,

including ethanol, ethyl acetate, propanol, isobutanol, butanol

and pentanol (Table S2). Isobutanol was the most abundant of

these compounds, constituting from 11 to 34% of total emissions

on average. Otherwise, 3-methyl butanol (combined in these

analyses with small amounts of 2-methyl butanol) remained the

dominant scent component, accounting for 50–70% of total

emissions from different strains. Two yeast volatiles known to

attract Drosophila flies – acetic acid and acetoin – were consistently

well-resolved in all replicate samples using the polar column.

However, ethanol and ethyl acetate eluted during the isothermal

phase of the GC temperature program and had large, square

peaks that we did not integrate due to their shapes.

Principal Component Analysis (PCA) of the same 8 volatiles on

the polar GC column resulted in PCs with eigenvalues greater

than unity, explaining roughly 80% of the variance in the data set

(Table 2). Component score coefficients indicated the same

loading relationships between PC 1 and ethyl esters, but this time

3-methyl butanol, its acetate and isobutyric acid loaded positively

on PC2, whereas 2-phenylethanol and acetoin loaded positively on

PC3 (Table 2). Surprisingly, the factor loadings for all samples

revealed inconsistent results between the two analyses, in terms of

patterns associated with specific yeast strains. For example, ethyl

esters were high in strains 2094 and 2097 and low in strains 1888

and 1885 in the nonpolar column analysis, but were high in strains

2097 and 1885 and low in strains 1888 and 2094 in the polar

column analysis. Strain 2106 had been high for 2PE in the original

analysis (Table 2), but was low in the subsequent analysis, whereas

the converse pattern was observed for strain 1876. When PCA was

restricted to the four volatiles from the behaviorally active blend

(acetoin, acetic acid, 3-methylbutanol, 2-phenylethanol) identified

by Becher et al. (2012), only one PC factor was identified with an

eigenvalue greater than unity, explaining 54% of total variance.

MDS was performed on all VOCs from the 7 yeast strains. The

Bray-Curtis similarity index produced from these data was

analyzed using ANOSIM as before, revealing a global

Table 2. Principle component analyses and loading summaries for yeast volatile data.

A B C

Factor 1 2 3 1 2 3 1 2 3

Eigenvalue 3.029 1.753 1.245 3.005 2.498 1.047 3.496 1.531 1.397

% Variance Explained 37.86 21.91 15.56 37.56 31.22 13.09 43.7 19.14 17.46

Cumulative 75.34 81.87 80.3

acetoin 0.114 20.017 0.639 0.177 0.038 0.731 20.128 0.081 0.584

3-methyl butanol 0.073 0.361 0.111 0.11 0.394 0.121 20.017 0.37 0.019

isobutyric acid 20.081 20.053 0.496 20.008 0.038 0.468 20.215 0.46 0.066

3-methyl butyl acetate 20.082 0.441 20.224 20.057 0.343 20.114 0.081 0.322 20.163

ethyl hexanoate 0.37 20.036 0.056 0.405 0.038 0.174 0.366 0.014 20.164

2-phenylethanol 20.155 0.444 0.037 20.023 0.369 0.079 0.054 20.11 0.503

ethyl octanoate 0.348 0.006 0.032 0.391 0.036 0.082 0.405 20.103 20.002

ethyl decanoate 0.333 20.17 20.015 0.281 20.057 20.05 0.3 20.137 0.204

A: Full data set, 14 accessions, non-polar column.
B: Subset of data, 7 accessions chosen for follow-up, non-polar column.
C: Follow-up study, 7 accessions, polar column.
doi:10.1371/journal.pone.0070219.t002
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R = 0.117, p = 0.022, suggesting less strain-specific structure than

was observed with the full 14 strains. Accordingly, the 2-D MDS

(Strain 0.08) plot revealed no obvious clusters by strain, and

SIMPER showed that average similarity within strains was

substantially lower in this analysis (grand mean = 66.13%) than

was observed in the initial analysis (grand mean = 84.29%). Thus,

further exploration of differences between strains was not justified.

Instead, we explored the sources of high variance within strains

by considering the biosynthetic origins of certain compounds. We

used linear regression on ln-transformed, normalized, summed

peak areas for esters derived from 2-phenylethanol and 3-

methylbutanol as dependent variables, with the abundance of

their respective alcohols as independent variables. The pooled

abundance of all 2-phenethyl esters was significantly correlated

with the amount of 2-phenylethanol (R2 = 0.515, F = 44.61,

p.0.001), and similarly, the total amount of all isoamyl esters

was significantly correlated with the amount of 3-methylbutanol

(R2 = 0.337, F = 21.35, p.0.001; see discussion).

No Correlation Between Genetic Clustering and Volatile
Clustering

Despite observing structure in our volatile data that separates

particular yeast accessions in our MDS and PC plots, we did not

observe significant correlations between distance matrices gener-

ated from these data and the 11/14 strains for which we have

genomic SNP data (Centroid-based Mantel Test p-value = 0.58;

Mantel Tests over replicates p-value.0.5). The non-significant

Mantel test results are qualitatively consistent with the conflicting

genetic trees generated by hierarchically clustering and the trees

generated by volatile-genetic distance matrices (data not shown).

Similarly, we did not observe statistically significant improvements

in predictive power with any of our models using the Structure-

defined clusters (K = 3) used as categorical response variables or

when using the continuous proportion of ancestry matrix for the

K = 2 scenario (p-values.0.3).

Discussion

Natural Selection acts on variation segregating within a

population and can lead to geographical differences for fitness-

related phenotypes. Chemical signaling represents a dynamic

ecological trait that can vary over vastly different scales, and it is

expected that natural variation in this phenotype carries significant

evolutionary costs or benefits related to, for example, pollination

and dispersal [49,50]. Variation in chemical signaling can also

impact the population dynamics of the organism(s) that target the

signal(s). This can potentially result in changes in the modes of

attraction and population subdivision [20,51,52]. Because they are

amenable to experimentation, and due to their outstanding

diversity, insect-plant systems have provided enormously produc-

tive research angles for understanding chemical signaling and its

evolution [53].

Motivated by the importance of D. melanogaster as a model for

sensory biology, and the recent clarification that yeast - another

outstanding genetic model - provides a primary food source and

emits highly attractive chemical signals targeted by flies [34], we

set out to ask whether geographically diverse S. cerevisiae are

capable of producing polymorphic signals, presumably through

natural variation segregating at loci governing volatile biosynthe-

sis. To our knowledge, this is the first exploration of population-

level variation in yeast volatile emissions. As is clear from the

provenance of the accessions studied here, S. cerevisiae is capable of

colonizing a great diversity of substrates, from fruit to feces (see

Table 1). Thus, in an effort to simplify potentially complex

genotype x environment interactions, and to establish the extent to

which metabolic volatile variation is genetically determined, we

carried out our experiments under a common garden paradigm,

on a standardized substrate (grape juice).

Tapping into genetically variable model systems
By combining available genomic sequence data and scent

chemistry, we were able to robustly access the genetic diversity of

Figure 2. Summaries for the ordination of non-polar GC-MS volatile data for all 14 yeast accessions (see legend inset). A) Principal
Components Analysis (PCA) on the 8 core volatiles, showing the compounds that loaded most highly on the first three significant factors (PC1-3). B)
Multidimensional Scaling (MDS) of all 32 volatiles, showing the compounds that frequently explained differences between the accessions showing
greatest differences along specific axes (MD1-3) in Cartesian scent space (e.g. accessions 1888 vs. 2094 along MDS2, explained largely by acetoin and
isobutyric acid); see also Table S2. Note the similarity between compounds annotated with MDS axes in panel B and PC factors in panel A.
doi:10.1371/journal.pone.0070219.g002
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our sampling, and also to investigate the ability to uncover

phylogenic signal available in the yeast’s chemical signals. Our

volatile analyses have provided quantification for each yeast’s

signal profile under the standardized growth conditions, and have

allowed us to identify particular accessions as outliers for specific

compounds. Encouragingly, nearly all volatile compounds under-

lying our observed between-accession differences are active ligands

for known D. melanogaster sensory receptors, which, in turn, have

been associated with sensory-related behaviors (Table 3).

We first determined the extent of genetic relatedness of the yeast

accessions that we have phenotyped by utilizing the available

genomic sequences for 11 of the 14 accessions [45,47]. The results

of our model-based inference of genetic clustering indicate that we

sampled from a representatively diverse range of populations,

despite having phenotyped a relatively small number of strains

compared with the sample sizes in the two studies from which we

mined the data. Analysis of Structure output suggests 2–5 clusters

within our sample, with the highest posterior probability indicating

five for the triplicate runs we executed (Fig. 1; Fig. S1). This

finding is consistent with the 5 clusters reported previously [45,47].

The topology of the neighbor joining tree also remains qualita-

tively consistent despite pooling across studies (Results). Overall,

the genetic data indicate that the S. cerevisiae accessions that we

have phenotyped are both geographically and genetically diverse,

and that our chemical studies should not suffer from over-sampling

closely related genotypes and should instead be informative as to

the extent that their volatiles can vary across populations.

Tracking the variance of invisible phenotypes
We made every effort to produce unbiased volatile data sets

from these diverse strains, from the use of a standardized substrate

in a common garden setting to the randomized block design of

data collection over 21 days, and the double-blind manner in

which data were coded and analyzed by our research team. We

chose a highly sensitive, state-of-the-art direct thermal desorption

(TD) GC-MS device to analyze yeast volatiles because we knew

that many of the behaviorally important compounds with relation

to Drosophila attraction are small, highly volatile molecules that

would be masked by solvents (e.g. methylene chloride, hexane) in

conventional solvent-eluted GC-MS sample analysis, and because

SPME, a solvent-free alternative for GC-MS volatile analysis, is an

equilibrium-based method that is ill-suited for rigorous quantita-

tive analyses such as PCA [54].

TD-GC-MS generates headspace samples that are completely

consumed during a single GC injection. It can be challenging to

calibrate such samples (e.g. through the use of an internal

standard), especially when volatiles are collected from a liquid

matrix, as was the case in our study (grape juice). For that reason,

we took especial care to standardize all aspects of headspace

collection, including glassware volume, yeast densities and

substrate concentrations, temperature and duration of incubation,

Table 3. Relating olfactory receptors to significant compounds resulting from the PCA analysis.

PC 1

Compound OR receptors
OR Sensilla
Classes

Citations for functional properties of receptors & D.
melanogaster olfactory-related behavior

ethyl hexanoate OR22a, OR7a{, OR10a{, OR35a, OR47a, OR47b{,
OR67a, OR67c{, OR85a{, OR85b, OR98a{

ac1, ac2{,
ac3, ac4

Richgels and Rollmann (2012); Silbering et al. (2011); Hallem et
al. (2006)

ethyl acetate OR42b, OR22a, OR 43b, OR47a, OR59b, OR85a ac1{, ac2{,
ac3, ac4{

Root et al. (2011); Silbering et al. (2011); Hallem et al. (2006)

ethyl benzoate OR67a,OR98a, OR7a{, OR10a, OR23a{, OR35a{,
OR43a{, OR49b{, OR67c{, OR85a{

ac1, ac2{,
ac3, ac4{

Silbering et al. (2011); Hallem et al. (2006)

ethyl lactate OR67c,OR9a, OR22a, OR43b, OR47b{, OR59b,
OR85b, OR85f, OR98a

– Hallem et al. (2006)

ethyl 3-hydroxybutyrate OR85a, OR7a{, OR9a, OR10a, OR22a, OR35a,
OR43b, aOR47b{, OR67a, OR67c, OR85b, OR85f,
OR88a{, OR98a

ac1, ac2{,
ac3, ac4{

Silbering et al. (2011); Hallem et al. (2006); Stensmyr et al.
(2003)

PC 2

Compound OR receptors OR Sensilla
Classes

Citations for functional properties of receptors & D.
melanogaster olfactory-related behavior

2-Phenylethanol OR67a, OR10a, OR35a, OR49b, OR67a, OR98a{ ac1, ac2{,
ac3{, ac4{

Becher et al. (2012); Silbering et al. (2011); Hallem et al. (2006);
Zhu et al. (2003)

3-Methyl-1-butanol OR7a, OR9a, OR1a9, OR22a, OR35a, OR43a,
OR47b{, OR67a, OR67c, OR82a, OR85a{

ac1, ac2{,
ac3{, ac4{

Becher et al. (2012); Silbering et al. (2011); Hallem et al. (2006)

3-methyl butyl acetate/
isopentyl acetate

OR2a, OR7a{, OR9a, OR10a, OR19a, OR22a, OR43b,
OR47a, OR47b{, OR67a, OR85a{, OR85b, OR98a

ac1{, ac2{,
ac3, ac4{

Silbering et al. (2011); Hallem et al. (2006); Stensmyr et al.
(2003)

PC 3

Compound OR receptors OR Sensilla
Classes

Citations for functional properties of receptors & D.
melanogaster olfactory-related behavior

acetoin OR92a, Or7a{, OR19a{, OR23a{, OR43a{, OR59b,
OR67c{

ac1{, ac2,
ac3, ac4{

Becher at a.l (2012); Silbering et al. (2011); Becher et al. (2010);
Hallem et al. (2006); Stensmyr et al. (2003)

isobutyric acid IR64a ac1{, ac2,
ac3, ac4

Silbering et al. (2011); Ai et al. (2010)

{inhibotory response.
doi:10.1371/journal.pone.0070219.t003
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vacuum pump flow rates and amount of Tenax sorbent in each

volatile trapping filter. In addition, we chose methyl anthranilate,

the character-bearing note of grape juice [55] and a compound

that was not chemically modified by yeast fermentation, as the

internal standard for our samples.

Our GC-MS analyses of scent chemistry using all 14 yeast

accessions and a standard non-polar GC column revealed

reproducible variation associated with several of the strains

included in this study, as well as a data set full of compounds

previously documented from yeast volatile analyses (Table 2)

[34,56–58]. When we extended our multivariate analyses to

include the full data set of volatiles, we expected variable, low

abundance compounds (e.g. 2-phenethyl esters) to contribute more

structure to overall differences between strains in volatile

phenotype space, especially given that such esters were strongly

correlated with large amounts of their putative substrate, 2-

phenylethanol (see Results). Instead, the compounds most

responsible for clustering differences among strains in MDS

(Fig. 2) were, by and large, the same compounds identified with

strong loadings on the three significant PCA factors (see Table 2).

We repeated our common garden, randomized block headspace

collection and TD-GC-MS analysis on additional replicates of the

7 most chemically divergent yeast strains with a polar GC column,

in order to better resolve the small, highly volatile compounds (e.g.

acetic acid, acetoin) known to function as fly attractants. To this

end, we successfully and consistently resolved these compounds,

plus 5 additional short chain alcohols too small to have been

resolved on the non-polar GC column (Table S2). With this

second data set in hand, we were curious as to whether the same

strain-specific patterns identified from all 14 yeast accessions on

the non-polar GC column would be observed using the polar

column. Indeed, the same volatile compounds were found to load

heavily on PC factors (Table 2), but with subtle differences from

the previous analysis (Table 2). However, in this data set the

significant quantitative variation associated with these volatiles was

distributed within strains, and the previously observed clustering

patterns were not conserved in either PCA or MDS analyses.

The inconsistencies between the polar and non-polar GC-MS

data sets do not appear to be artifacts of sampling effort. When the

non-polar GC-MS data are resampled including only the 7 yeast

accessions used in the polar GC-MS analysis, the results are quite

similar to those of the full 14 accession analysis, both in terms of

specific compound loadings on PC1-3, and also in terms of the

robustness of accession specific patterns (see Table 2). Nor do these

inconsistencies appear to be artifacts of experimental date, as

ANOSIM revealed a non-significant interaction between date and

strain (R = 20.023, p = 0.54) for the polar column samples.

Instead, these samples simply appear to be more variable across

the experiment than those that were analyzed a year earlier on the

non-polar GC column. The coefficients of variance (CV) were

more than twice as large for peak normalized total odor

(CV = 1.23) and methyl anthranilate peak areas (CV = 0.90) for

the polar column samples (n = 37) as they were for non-polar

column samples (n = 73), either for all 14 yeast accessions (total

peak areas CV = 0.50, methyl anthranilate peak areas CV = 0.40)

or for the same 7 accessions used in the repeated analyses (CVs are

the same). Finally, only 3 of 73 non-polar samples showed

evidence of excessive fermentation due to the presence of glycerol

(and thus were omitted from further analysis), whereas 7 of 44

polar column samples were omitted due to the presence of large

glycerol peaks. In summary, for reasons that remain unclear, our

polar column analyses provided a more comprehensive view of the

diversity of small volatile alcohols in yeast headspace, at the cost of

greater non-biological variation between samples. Further proto-

col refinement will be necessary to better understand and eliminate

the sources of experimental noise.

Nevertheless, the quality of our non-polar column data set is

strongly borne out by two observations. First, we observed

consistent clustering and high overall chemical similarity (cf.

84%) on average among replicates of most strains (Fig. 2). Second,

the observed degree of differentiation actually exceeds that of

population-level studies of geographic variation in floral volatiles

conducted in our laboratory [52,59].

Methodological Considerations
Using a unique metabolomic approach to phenotype genetically

defined yeast accessions, we were successful in quantifying volatile

differences between accesssions. Unfortunately, these results were

not consistently structured in a way that linked genetic and

phenotypic volatile differences with each other. The emergence of

significant clustering in scent space (Fig. 2) from data collected

using a randomized block design in a common garden indicates

that there are genetic components contributing to inter-accession

differences. However, whether we apply Mantel Tests using

genotype and volatile-based distance matrices, or fit models using

the volatile-based measures as the response variable and the

Structure-defined genetic clusters as predictors, we were unsuc-

cessful in uncovering phylogenetic signal (see Results).

Our data highlight a central challenge in bridging the rapidly

growing fields of population genomics and chemical ecology: the

need to accomplish high-throughput, unbiased sampling of large

populations with diverse chemical phenotypes and simultaneously

reduce or eliminate non-biological sources of noise in the data sets

[60,61]. The small sample sizes typical of GC-MS studies,

combined with analytical noise, dilutes the strength of clustering

observed in MDS and PCA analyses (Fig. 2). Similar factors likely

placed limits on the Mantel Tests we performed, which can suffer

from low power [62,63], as well as for the models we fit, for which

we have a narrow range of categories to treat as predictors

(Structure-defined genetic clusters) due to the few number of

genotypes assigned to each category (as the number of genetic

clusters increases there are fewer accessions per cluster).

The inability to detect phylogentic signal between our genetic

and phenotypic data contrasts with the positive correlation

between the growth-related phenotypic data and the yeast’s

topology that was observed by Liti et al. (2009). We investigated

this further by asking if the accessions that were fast or slow

growers in the Liti et al. (2009) study corresponded to the high and

low emitters of volatiles in our data set (total scent, peak

normalized). Again, we observed no correlation between our

study and theirs (Grand mean +/2 SEM for predicted fast

strains = 6252.98+/2631/64 (n = 10); for predicted slow

strains = 7177.11+/21543.35 (n = 4), T = 20.674, DF = 12, 1

tailed p = 0.26), suggesting that growth on grape juice as a

substrate may not parallel that observed on standard SC growth

media. Additionally, experiments by Liti et al (2009) utilized

considerably more yeast accessions and replicates than we were

able to accommodate in this study. The sampling density,

combined with their use of a highly precise chemostat environ-

ment, likely reduced non-biological variation in their data and

provided increased power to discriminate inter-accession differ-

ences. In particular, additional control to our sampling design

could be made by employing more sophisticated growth condi-

tions that maintained constant cell densities across accessions, as

well as a steady sugar source (grape juice). Though our simplified

growth conditions are limited in their ability to remove all non-

biologically relevant variation from the study, our analyses
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demonstrate that appreciable and consistent differences persist

between strains across replicates.

The volatile data and the genetic topology of the
accessions are informative given what is known about
the fly olfactory system

Despite the lack of correlation between our volatile data and the

accessions genetic topology, the fact that the PCA and MDS

analyses of volatile data are significantly structured among

accessions remains informative for future behavioral experiments

(Fig. 2). In particular, all compounds that are represented by the 3

significant PC loadings (Table 2) are known to be active ligands for

D. melanogaster’s chemosensory receptor [36,41,43,64,65]. Further-

more, there is additional experimental evidence that relates several

of the receptors for these compounds to behavior (Table 3). For

example, recent work is beginning to associate polymorphism

within olfactory receptors genes with differences in odor-mediated

behavior, including OR22a in relation to ethyl esters [66].

Another olfactory receptor, OR42b, which detects ethyl acetate,

has been shown to be within a neural circuit that underlies food-

searching behavior in response to starvation [67]. And IR64a,

which has been shown to detect isobutyric acid, is important for

for avoidance response to acid [68]. That these varying yeast

volatile compounds are central fruit fly attractants suggests that

behavioral choice assays conducted with the most divergent yeast

strains from our data set could be used to test how flexible fly

attraction is to varying ratios of these key volatiles. Candidate pairs

that would likely present insightful tests would include 1889 and

1888, both of which have been selected for fermentation purposes

but which significantly differ in amounts of isobutyric acid and

acetoin, or 2094 and 2106, both of which are wild accessions, but

significantly differ in amounts of 2-phenylethanol as well as ethyl

esters and 3-methyl butanol and 3-methyl butyl acetate. More

complicated multi-accession preference experiments could be

envisioned utilizing additional tools such as 4-arm olfactometers

[69] or higher throughput preference/sensitivity assays (for

example [70]).

Finally, the common garden design we utilized almost certainly

underestimates the amount of metabolic volatile variation that

these accessions are capable of generating. An obvious follow-up

study would be to investigate the genotype by substrate interaction

for these yeast accessions. Because they were isolated from

discretely different substrates (Table 1), and that several were

domesticated for particular anthropocentric aims (fermentation), it

would not be surprising if artificial selection has optimized

particular strains for the use of specific sugars or by-products

(e.g. ethanol), and otherwise resulted in differentiation within the

underlying metabolic networks. Such patterns are emerging from

recent research on the unintended effects of artificial selection on

floral volatile composition in domesticated snapdragon, rose and

other flowers [71]. We expect that headspace samples collected

from our yeast accessions grown on different substrates would

provide additional variation for both the main components we

detect here, but potentially also for novel compounds not observed

when grape juice or sucrose solutions are used as substrates [58].

Materials and Methods

Yeast accessions and culture
Fourteen strains of Saccharomyces cerevisiae that had previously

been isolated from around the world on diverse substrates

(including rotting fruit, feces and alcoholic beverages) were

included in this study (see Table 1). Different strains were assigned

code numbers that revealed no information about their origins and

were cultured blindly by JRA and CS (June–July 2010) in

preparation for volatile collection and GC-MS analysis using a

non-polar GC column (see below). The 14 strains were

haphazardly assigned to two groups of seven and were cultured

in a ‘‘common garden’’ as described below. Seven accessions with

highly divergent volatile profiles were cultured using the same

protocols and analyses were repeated on a polar GC column (see

below) by JRA and Y-RL (Oct.–Nov. 2011).

For each yeast strain, colonies were grown on standard YPD

plates overnight at 37uC. Colonies from the same plate were

picked in the morning and combined into a stock sample of

950 ml of 1:10 solution of grape juice (Cascadian Farm 100%

juice) to water. The number of cells within the stock sample

volume was estimated using a hemocytometer (Hausser Scientific),

and was kept at approximately 106. To grow small yeast samples

for headspace sampling, 2 ml of well-mixed stock solution was

placed into autoclaved 5 ml glass tubes and grown overnight

(18 hrs) at 30uC in a shaker incubator (cf. 20 hrs. by Becher et al.

2012 [34]). This procedure controlled the number of cells at the

start of each experiment, however because the vials were not

subject to modification over their growth (as done with chemostat

equipment), the cell count was not kept constant over the growth

period.

Volatile Collections
Volatiles were collected using micro thermal adsorbent traps

constructed from cut glass capillary tubes (1.6 mm OD, 1.3 mm

ID, 25 mm long) filled with 5 mg of Tenax TA (60/80 mesh size)

absorbent (Supelco, Inc.) packed between plugs of silanized quartz

wool (Restek, Inc.). This method was used in order to avoid co-

elution of small, highly volatile fermentation products with the

solvents (e.g. hexane, methylene chloride) typically used to desorb

trapped volatiles (see [34]). Tenax traps were hand constructed,

cleaned with methanol and oven dried at 50uC before use. Clean

traps were attached to 9V battery-operated PAS-500 vacuum

pumps (Spectrex, Inc.) using an adapter constructed from glass

Pasteur pipettes, silicone tubing and Teflon tape. Pump flow rates

were calibrated to 200 ml air/min each day using a bubble flow

meter (Gilmont, Inc.) to standardize collection protocol across all

replicates.

Yeast volatiles were sampled in a randomized block design each

day, for each group of seven accessions, until at least five replicates

for each accession had been collected. Sampling included an

ambient control (empty glassware) and a negative control (non-

inoculated grape juice substrate). Samples incubated prepared

overnight as described above, and at 10:00 hrs the following

morning, each vial was capped with a gasket of nalophan oven

bagging (Toppits, Inc), placed into a water bath in a 10 ml glass

beaker and moved to a hot plate at 30uC for volatile collection. A

small hole was cut into each gasket, through which the Tenax trap

could be inserted, with its associated vacuum pump suspended

above the yeast culture using a vertical ring stand and clamps.

Volatile samples were collected for 5 min, placed into labeled

1.5 ml amber glass autoinjector vials (National Scientific, Inc.) and

stored at room temperature until GC-MS analysis.

Chemical Analysis of Volatiles
Volatiles were collected (independently by CS and Y-RL) and

peak areas were integrated (by RAR) blindly, without full

knowledge of accession identity or history. Trapped volatiles were

analyzed using direct thermal desorption (TD) coupled with gas

chromatography-mass spectrometry (GC-MS), by placing Tenax

traps into removable injection port liners and purging for two

minutes with the split valve open to bleed ambient gas from the
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injection port (Optic 3 high performance GC injector, ATAS GL,

International BV). Volatiles were desorbed from the Tenax traps

using ballistic heating (from 30 to 200uC at 15uC/sec), through the

Optic 3 external flow control system coupled with GC-MS.

Desorbed volatiles were swept into a Shimadzu GC2010+ by a

mobile phase of ultra-pure helium gas during a 1 min splitless

injection, thereafter maintaining a constant column flow of 1 ml/

min at a 20:1 split ratio. Yeast volatiles were separated on a non-

polar (RXI-5MS [5% diphenyl/95% dimethyl polysiloxane,

comparable to DB-5], 30 m, 0.25 mm ID, 0.25 m film thickness;

Restek, Inc) GC column using a temperature program increasing

from 30uC (after a 2 min hold) at 10uC/min to 275uC, then

holding for 6.5 min. A second round of analyses were conducted

using a polar (Stabilwax [polyethylene glycol, comparable to DB-

wax], 30 m, 0.25 mm ID, 0.25 m film thickness; Restek, Inc.) GC

column, held 1 min at 30uC, increased 6uC/min until 105uC, then

heated at 15uC/min to 230uC and held for 9.17 min. The GC was

coupled to an electron-impact, quadrupole MS with an EI scan

sensitivity of 1 pg octafluoronaphthalene (signal: noise .200) in

single ion mode (SIM, m/z = 272). Eluting volatiles were subjected

to 70 eV of ionizing energy and were scanned at 5 scans per sec

from m/z 40–350 daltons. N-alkane standard compounds were

injected under the same chromatographic conditions in order to

render all retention times as Kovats indices [72]. Identification of

unknowns proceeded by comparison with mass spectral libraries

[73], co-injection with authentic standards, and comparison with

published volatile data for bakers yeast [34,57].

For each day’s yeast samples, we determined which GC peaks

were legitimate yeast fermentation products by overlaying

chromatograms with those of ambient and grape juice controls

and subtracting common peaks. In particular, grape juice

headspace contained small amounts of many straight chain

organic acids, so we omitted these acids from consideration as

yeast volatiles unless their peak areas were 46 greater than those

present in controls (e.g. acetic acid). For all volatiles specific to

yeast, GC peaks were hand-integrated using GC-MS Solutions

1.2a software (Shimadzu Scientific Instruments, Inc.). Because

some compounds were present at the threshold of detection in

total ion chromatograms (TIC), we searched below baseline using

single ion mode (SIM) by identifying m/z 91 and 104 (phenylethyl

derivatives), m/z 88 (aliphatic ethyl esters), m/z 70 (aliphatic esters

of 3methylbutanol) m/z 73 and 60 (aliphatic acids) at 1006
sensitivity. Thus, volatile compounds scored as absent from

specific samples were not detected using these methods. It is not

straightforward to add internal standards to samples collected by

TD-GC-MS, especially when the volatiles are being emitted from

a fluid matrix through fermentation. Instead, we reasoned that an

appropriate internal standard would be a volatile present in grape

juice that was unlikely to be metabolized by yeast. For these

purposes, the most reliable compound present in grape juice was

the definitive flavor component methyl anthranilate [55,74]. We

normalized all integrated yeast volatile peaks in each sample by

dividing their peak areas by that of methyl anthranilate in the

same sample, to control for unintended variation in trap capacity

and the injection-desorption process. These normalized peak areas

represent the raw chromatographic data used in subsequent

statistical analyses. Replicates in which large peaks of glycerol were

detected were omitted from analysis, as yeast is known to ferment

ethanol into glycerol [75]. We interpreted these cases to represent

replicates in which fermentation had proceeded too far.

Mass spectra and chromatographic data have been archived

digitally at the eCommons site at Cornell University (http://

ecommons.library.cornell.edu).

GC-MS Data extraction and Statistical Analysis
Once volatiles were confidently attributed to yeast (not to grape

juice or ambient contaminants) and were identified to the fullest

extent possible, two multivariate methods were used to explore

accession-related variation in volatile composition. The first

method, Principal Components Analysis (PCA), was used to

identify correlated quantitative variation amongst the 8 volatile

compounds that were detected consistently in all accessions and

replicates using our TD-GC-MS protocols. These compounds

were 3-OH-2-butanone ( = acetoin), 3-methyl butanol, isobutyric

acid, 3-methyl butyl acetate, 2-phenylethanol, and the esters ethyl-

hexanoate, -octanoate and -decanoate. Ethanol, acetic acid and

2,3-butanediol were omitted from this PCA because of poor

resolution on the non-polar GC column, due to overshadowing by

the dominant peak of 3-methyl butanol, which constituted 87–

95% of all yeast volatile emissions by peak area (Table S2). We

ordinated a correlation matrix of normalized, untransformed GC-

MS peak areas for each volatile compound over 4–7 replicates of

all 14 accessions, using varimax rotation, identifying as principal

components all factors with eigenvalues greater than or equal to

unity (SPSS 11.5 for Windows).

The second method, Multidimensional Scaling (MDS), was used

to explore variation in the chemical composition of volatile blends

including compounds not present in all samples, to determine

whether rare or unique volatiles might contribute to accession-

specific novel blends. To perform MDS with our data set, we used

the PRIMER v6 program [76]. Normalized peak area data for all

detected compounds were square root transformed [77] and then

were used to calculate a Bray–Curtis similarity index and an

associated stress value, such that stress values approaching zero

indicate a closer fit between the reproduced ordination and the

observed matrix (Clarke 1993). The significance of differences in

scent composition between yeast accessions was measured using

analysis of similarity (ANOSIM; [76]. ANOSIM is a multivariate

procedure analogous to ANOVA, which calculates the test statistic

R (ranging from 0 to 1) and its p-value. R is a relative measure of

separation between groups; an R-value of zero indicates random

grouping, whereas values closer to unity indicate that samples

within defined groups are more similar to each other than to those

of different groups [76]. The significance of the R statistic was

determined by 10,000 random permutations of the grouping

vector to generate an empirical distribution of R under the null

model. A significant R value justifies further exploration of group-

level differences, as visualized by plotting Bray-Curtis ordination

coefficients through MDS. When samples cluster to some extent

with pre-defined groups, it is appropriate to explore the

contributions of specific compounds to such patterns using a

post-hoc test of contributions to similarity (SIMPER) [78]. To

indicate associations between specific volatile compounds and

different coordinates in 3 dimensional Cartesian scent space via

MDS, we identified the accessions with the largest and smallest

mean coefficients for each dimension, then determined via

SIMPER which compounds largely explained their differences

(see Table S2). Thus, we were able to assign chemical landmarks

within MDS as one might associate specific principal components

with factor loadings for such compounds [77].

Genomic Data Collection
Genome-wide SNP datasets exist for 11 of the 14 of the yeast

accessions with which we carried out the above chemical

phenotyping (1885, 1902, 1889, 1897, 1911, 1903, 1888, 1893,

2093, 2097 and the reference genome 1876). These resources were

generated by two separate efforts (Liti et al. 2009; Schacherer et al.

2009). The Liti et al. resequencing effort used primarily ABI 370
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and Illumina sequencing technologies. The Schacherer effort used

tilling microarrays to identify polymorphisms.

Nine of the 11 yeast accessions used in our analyses were

analyzed by Liti et al (2009), and the remaining two (2093, 2097)

by Schacherer et al. (2009). Previously, Schacherer et al. (2009)

compared their SNP calls with those of Liti et al. (2009) and

estimated a low false-positive rate (92% correspondence between

SNPs called between platforms), and high coverage when

comparing SNP calls with quality scores .30 (a median of 72%

of the SNPs per strain). Based on these measures, and the fact that

only two strains exist within the data set of Schacherer et al.

(2009), we reasoned that for our particular analyses intersecting

data for all 11 accessions would be little effected by potential

ascertainment biases.

Data sets were combined by first creating SNP tables for the Liti

et al. (2009) data, and then extracting the overlapping SNPs from

the set of Schacherer et al. (2009). To do this we used the

‘‘alicat.pl’’ utility [79] to output only polymorphic sites from the 9

overlapping accessions, and thresholded on Phred Quality Scores

.30. Liti et al. (2009) employed an imputation approach to infer

missing data, and it is from these data sets that we extracted the

SNPs for our study [45,79]. We further filtered our SNP table

based on per-site missing data, discarding all sites that had .4

accessions without a base called, as well as requiring that at each

site the subset of 9 samples had polymorphism segregating within

it. In total, this filtered dataset had 112,188 SNPs across the 16

chromosomes.

The coordinates of the SNPs were initially outputted relative to

the complete alignment of the genomes sequenced by Liti et al

(2009). To ensure that we converted these coordinates to the

correct reference position, we BLASTed [80] (v2.2.26) a

chromosome segment of .150 bp centered on the SNPs against

the reference genome using BLAST’s default settings. Only SNPs

with unambiguous positions were analyzed in this study. Based on

the reference SNP positions, the orthologous bases from the two

additional accessions in the Schacherer et al. (2009) study were

extracted using their ‘‘all_SNPs.txt’’ file, converting the binary

coding in this file into nucleotides based on the segregating bases

observed in the first 9 strains. We manually checked bases and

alignments to ensure that they were coherent across position

labels. After combining datasets, we had a total of 5,227

intersecting SNPs across the 16 chromosomes (File S1).

Neighbor-joining tree construction
A fasta file was written from the intersecting SNP table

generated from above. SplitsTree [81] (v4.12.6) was used to

generate the Neighbor Joining tree and to compute the bootstrap

values (n = 10000) for Fig. 1. Additional grouping annotations on

the tree were added subsequently according to the Table S2

published by Liti et al (2009) and S1 in Schacherer et al. (2009).

Population Structure Analysis
Structure [82,83] (v2.3.4) was used to infer the number of

genetic clusters within our data set of 5,227 SNPs across the 11

accessions. The linkage model (Falush et al 2003) was used over

values of K = 1,2,3,4,5,6. Each run at these 6 values was carried

out in triplicate to ensure consistent results, using 70,000 iterations

(the first 25,000 used as burn-ins). Investigation of MCMC

convergence was accomplished through plots generated by

Structure’s front end. The ancestry estimate plots (Fig. 1) were

generated using distruct1.1 [84].

Tests of Correlation Between Volatile and Genetic Data
We tested for correlation between the clustering observed within

our yeast volatile data and the clustering of the genomic SNP data

by carrying out Mantel tests and regression testing. The first type

of Mantel test was carried out between a Euclidean distance

matrix constructed from the centroid MDS values for the non-

polar GC-MS experiment accessions and a Euclidean genetic

distance matrix generated from the yeast SNP data. Significance

was determined using 10,000 permutations. The second type of

Mantel test utilized our replicate experiments in order to

propagate error, and resulted in a distribution of p-values against

which to compare our empirical value. To do this, Euclidean

distances matrices between MDS points were ‘‘regenerated’’ by

randomly filling each cell by sampling from the same cell across

our replicate data. At each iteration, the regenerated matrix was

correlated to the fixed genetic distance matrix. For each individual

test, significance was determined using 1000 permutations, and a

total of 5000 iterations were carried out. The ‘‘mantel.rtest’’

function within R’s [85] ade4 library [86] were used.

The initial regression approach was to treat the genetic clusters

that were inferred from Structure (above) as categorical response

variables and ask if the clustering of the chemical data was

predictive of these genetic categories. Restricting the number of

Structure-defined clusters to three (K = 3; an attempt to maintain

the largest number of yeast accessions per cluster as possible while

simultaneously not allowing for arbitrary assignment to genetic

clusters when K = 2 and inferred ancestry is close to 50/50), we fit

categorical logistic regression using PC’s as predictors, with and

without an interaction term. Model fitting was carried out using

the R package VGAM (using the Multinomial logit model,

‘‘family = multinomial’’; [87,88]). To further accommodate the

K = 2 Structure partition (above), we carried out a linear

regression with the matrix of proportions of ancestry (inferred by

Structure) as the response variables and the chemical PC’s as the

predictor variables. The linear regression was carried out in R

using the ‘‘lm’’ function in the Stats package [85].
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