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Abstract: Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity 
(°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process 
(Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at 
hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. 
The crystallization of PCC is more dependent on the hydraulic activity of limestone than 
CaO content, a factor commonly used to classify limestone ores according to quality. The 
results could be effectively applied to the determination of polymorphs in synthetic PCC 
for eco-friendly paper manufacture. 
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1. Introduction  
 

Limestone resources have been introduced to various fields along with industrial developments. 
Especially, precipitated calcium carbonate (PCC) manufactured from limestone ore is widely used as a 
raw material in the paper, paint, rubber, and plastic industries [1]. Among those applications, PCC was 
introduced as a mild base filler in the acid-free paper (alkaline paper) making process in the 1950s, and 
in particular, PCC addition to paper is currently necessary for library books [2]. 

In the traditional paper making process based on wood pulp without adding PCC, paper reacted 
with chemicals such as oxygen, carbon dioxide, and salts in the air, and was finally acidified by natural 
acid formation. In addition, the color of acidified paper became yellowish under sunlight, and heat and 
humidity resulted in the rapid breakdown of the molecules holding the fibers together [3,4]. Biological 
attacks by a variety of species including algae, bacteria, and fungi also shortened the life expectancy of 
paper. To address all these problems paper has started to be treated with PCC to neutralize the acids 
formed by the reaction between wood pulp and chemicals [5]. 

The biggest benefit of alkaline paper made by adding PCC is a much longer life expectancy than 
that of traditional paper: more than 1,000 years for the best paper and 500 years for average grades [6]. 
This is a critical reason that PCC should be used in paper for library materials. Besides that, alkaline 
paper has several other advantages. It reduces overall manufacture costs and needs fewer corrosive 
chemicals, thus extending machinery lifetime. Most of all, the process is more environmentally 
friendly due to following reasons: easier recycling of alkaline paper, less wastewater and by-product 
production from the process, and less energy consumption due to shorter refining and drying times [6]. 
Accordingly, the alkaline paper making process using PCC is called an “eco-friendly paper process”. 

The demand of high quality PCC in Korea is gradually increasing along with the introduction of the 
eco-friendly paper process in the paper industry. However, PCC is mostly being imported due to the 
absence of domestic commercial PCC manufacture technology to meet the demand. It is, therefore, 
necessary to develop manufacturing technology for high quality PCC in Korea to foment a higher 
value added industry through the effective utilization of limestone. 

In general, PCC manufacture processes are divided into the three following steps: (1) quicklime 
(calcium oxide, CaO) is obtained by the calcination of limestone ore (calcium carbonate, CaCO3), (2) 
CaO is turned into slaked lime (calcium hydroxide, Ca(OH)2) through its reaction with water, which is 
called “hydraulic process”, and (3) PCC is manufactured by the reaction between Ca(OH)2 and 
carbonate ions (CO3

2-) [1]. Limestone ore mainly consists of CaCO3 and also contains minerals such as 
MgO, Fe2O3, Al2O3, and SiO2, which are considered as impurities in high quality PCC manufacture 
[7,8]. Limestone has many classification factors including formation age, CaO content, fineness, 
crystal particle size, and regional characteristics, etc. [9] and in particular, among these CaO content is 
the most common factor used in limestone classification. 

As mentioned, hydration is one of main processes in PCC synthesis. It is an exothermic reaction as 
shown in the following chemical reaction [1]:  

 CaO + H2O → Ca(OH)2 + 15.59 kcal/mol  

The generated heat from the reaction is called “hydraulic activity” and it can be considered as a 
measure of the degree of hydration of the CaO.  
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As limestone has been widely used in the cement industry for a long time, various studies on its 
calcination mechanism have been carried out [8,10,11]. For instance, Ar and Dogu [8] investigated the 
effects of several conditions such as temperature, residence time, sample size, impurities and amount 
of vapor on the calcination of limestone. Khraisha and Dugwell [11] studied the calcination of 
limestone and cement raw meal in a suspension reactor simulating dynamic and thermal conditions 
within a commercial precalciner [8]. The hydraulic activity of CaO produced from the calcination of 
limestone has also been widely investigated in the cement industry field [12,13]. 

Considering that measuring the hydraulic activity of CaO may provide important data for the 
crystallization of PCC as well as the properties of Ca(OH)2 in the PCC manufacture industry, in this 
study we have focused on the investigation of the relationship between the hydraulic activity of CaO 
and the crystallization of PCC, and also on the possibility of applying hydraulic activity as a new 
factor for classification of limestone  for eco-friendly paper making, different from the view of 
hydraulic activity of CaO used in the cement industry. 

 
2. Experimental   

 
Nine species (A~I) of limestone ore from Danyang and Yeongwol, Korea, were collected for this 

study. Chemical components of each limestone ore were analyzed using X-ray fluorescence (XRF; 
MXF 2000). About 5 kg of each limestone were firstly crushed using a jaw crusher, and were then 
sieved into the particle sizes of 20 to 35 mm. CaO (120 g) was made by calcination of the sieved 
limestone (about 200 g) in an electric furnace at 1,000 °C for 2 hours. The calcined CaO was then 
cooled in a sealed desiccator. 

CaO was reacted with water to synthesize Ca(OH)2 through the hydraulic process. Dried CaO (30 g) 
was put into a reactor for hydration (see Figure 1). The temperature of the reactor was then fixed at  
25 °C in a water bath (Jeio Tech, WB02). Once the temperature of the reactor containing the CaO 
reached a steady state in the water bath, distilled water (120 mL) at 25 °C was added to the reactor, 
stirring at 400 rpm for 30 min. After the reaction, each solution was filtered and the filtered precipitate 
was washed with ethanol three or four times to remove water on its surface. Each precipitate was dried 
at over 80 °C in an oven and then stored in a vacuum bag. In each hydraulic process, the hydraulic 
activity was measured by KS E 3077 (Korean Standard Test) [14] to understand its effect on the 
distribution ratio of the polymorphs (either aragonite or calcite) in synthetic PCC. KS E 3077 describes 
a standard method for testing hydraulic activity of limestone used to PCC synthesis, and a value of 
hydraulic activity can be calculated by the following equation:  

A = T30s – T0 = Δ T 

where   A: Hydraulic activity (°C) of limestone 
T30s: Temperature (°C) at 30 seconds from the start of hydration 
T0: Temperature (°C) before the start of hydration 
Δ T: Value (°C) of temperature change from the start of hydration to 30 seconds 

For aragonite synthesis, dry Ca(OH)2 produced by hydration on each condition was used and the 
synthesis method using Ca(OH)2-NaOH-Na2CO3 solution was introduced. This method was suggested 
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by Kim et al. [15] as an optimal method to synthesize single phase aragonite. To adjust the CO3
2− 

concentration, 150 mL of 0.5 M Na2CO3 was added at a rate of 3 mL/min to a solution with 50 mL 
each of 1.5 M Ca(OH)2 and 5.0 M NaOH. The reaction temperature and stirring speed were  
25 °C and 400 rpm, respectively. The synthesized material under each set of conditions was filtered, 
washed with ethanol three or four times to remove residual ion components, and then dried in an oven 
at 80 °C. The dried precipitates were characterized by X-ray diffraction (XRD; MacScience Co. 
M18XHF-SRA) using CuKα1 radiation. Distribution ratios (wt%) of main components in the synthetic 
PCC were calculated from full width at half maximum of peak on XRD. 

 
Figure 1. Schematic of a hydration reactor. 

 

3. Results and Discussion  
 
Chemical components of the nine limestone ore samples analyzed using XRF are shown in Table 1. 

A common factor in limestone classification is CaO content. According to CaO content, limestone ores 
are classified into the following three groups: high quality (>53 wt%), middle quality (50~53 wt%), 
and low quality (<50 wt%). All of the limestone ore samples belonged to high quality class, except for 
the samples G and E, which belong to middle and low quality group, respectively. In the XRD analysis 
result shown in Figure 2, the main peaks indicate the presence of calcite in the limestone ore samples. 

During the hydraulic process after CaO calcination, hydraulic activity was measured by KS E 3077. 
Overall, higher CaO content tends to show higher hydraulic activity, but some cases were not in 
accord with this tendency. Specifically, in the case of samples C, D, and F, they are high quality 
limestone ores with over 55 wt% CaO, but they showed lower hydraulic activities than those of other 
high quality limestone ore samples. This result indicates that CaO content is a general factor for 
classifying limestone quality, but it does not determine the hydraulic activity of the limestone. 
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Table 1. Chemical components (wt%) of the limestone ore samples (A~I) analyzed using 
X-ray fluorescence (XRF).  

Limestone 
Sample 

Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 L.O.I.

A 0.31 55.22 0.16 0.05 0.80 0.01 <0.01 <0.01 0.56 0.01 43.44

B 0.02 55.87 0.02 <0.01 0.50 0.01 <0.01 <0.01 0.04 <0.01 43.75

C 1.58 55.02 <0.01 <0.01 0.76 <0.01 0.01 <0.01 1.26 0.03 41.31

D 0.27 55.63 0.15 0.03 0.16 <0.01 <0.01 0.01 0.33 0.02 43.55

E 1.07 49.47 0.34 0.46 1.45 <0.01 0.01 0.02 6.27 0.05 40.93

F 0.24 55.88 0.04 0.02 0.15 <0.01 <0.01 <0.01 0.13 0.01 43.58

G 0.27 52.19 0.2 0.03 0.37 0.02 0.01 0.01 4.17 0.02 42.34

H 0.04 53.76 0.04 0.02 1.27 0.01 <0.01 0.01 0.12 <0.01 44.51

I 0.09 54.75 0.04 0.03 0.38 0.01 <0.01 0.01 0.2 0.01 43.73
LOI: loss on ignition. 

 

Figure 2. X-ray diffraction (XRD) patterns of the limestone ore samples (A~I): Main peak 
of each limestone sample presents calcite [● calcite ]. 

 
 

It is well known that aragonite synthesis is very difficult because during its synthesis it can rapidly 
change in solution into calcite, a more stable phase [16]. However, aragonite could be synthesized 
successfully in this study by applying the optimal synthesis method of [15]. XRD patterns of the 
synthetic materials are shown in Figure 3, where the main peaks mostly indicate the presence of calcite 
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and aragonite. Especially, higher aragonite peaks are presented in the analysis of final synthetic 
materials from samples A, B, and I.  

 
Figure 3. X-ray diffraction (XRD) patterns of final products synthesized from the 
limestone ore samples A~I [■  calcite and ●  aragonite]. 

 
 

Percentages (wt%) of aragonite, calcite, and impurities in each sample were calculated from the 
XRD patterns in Figure 3 and the values are shown in Table 2. The distribution of PCC reached 
90~100 wt% (the sum of aragonite and calcite) in all the cases using the samples A~I, and other 
impurities were then only 0~9 wt%. Specifically, final synthetic materials prepared from the samples 
A and B contained more than 90 wt% aragonite, whereas those from the samples C, D, E, and G did 
not contain any aragonite and most were then calcite. As a result, none of the limestone samples 
produced single phase aragonite, and most final products consisted of both aragonite and calcite 
containing some impurities, or single phase calcite (Sample E). 

Based on the results of Tables 1 and 2, the crystallization of PCC (aragonite and calcite) 
synthesized from the samples A~I can be presented as depending on CaO content (wt%). Overall, 
higher CaO content of a limestone ore sample tends to produce more aragonite, but some specific 
cases are not consistent with the tendency, like the relationship between CaO content and hydraulic 
activity. For instance, the samples C, D, and F contained more than 55 wt% CaO, and were thus 
considered to be high quality limestone ores, but the percentages of aragonite polymorph synthesized 
from the samples were very low (0~41 wt%), compared to the aragonite produced from other high 
quality limestone samples (Sample A: 91 wt% and Sample B: 95 wt%). This result therefore implies 
that the crystallization of PCC does not depend on chemical components of limestone ore, especially 
CaO content. 
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Table 2. Quantitative XRD analysis (wt%) of final products synthesized from the 
limestone ore samples A~I.  

 Limestone ore  
 Components (wt%)  

Aragonite Calcite Others (impurity) 

A 91.1 6.3 2.6 

B 94.8 2.7 2.5 

C 0 90.5 9.5 

D 0 91.5 8.5 

E 0 100 0 

F 40.8 55.6 3.6 

G 0 96.9 3.1 

H 59.3 33.8 6.8 

I 70.0 24.6 5.4 
 

From the above investigations, we found that there was no correlation between CaO content of the 
limestone ores and both hydraulic activity and the distribution ratio of polymorphs (aragonite and 
calcite). Accordingly, we also investigated the correlation between hydraulic activity and the 
crystallization of PCC, and a meaningful result shown in Figure 4 was obtained, where it can be 
clearly seen that the percentage of aragonite gradually increases with higher hydraulic activity.  

 
Figure 4. Distribution ratio (wt%) of polymorphs (aragonite and calcite) depending on 
hydraulic activity (°C) of limestone samples A~I: more aragonite is crystallized with 
higher hydraulic activity and more calcite with lower hydraulic activity [■  aragonite and 

●  calcite]. 
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This result can be related to the fact that CaCO3 polymorphs are determined by the supersaturation 
rate which is affected by temperature: aragonite is mainly produced at low supersaturation and calcite 
at high supersaturation [15]. Supersaturation rate is affected by specific surface area (particle size) of 
Ca(OH)2 which depends on the temperature during the hydraulic process. In other words, crystal 
growth rate of Ca(OH)2 becomes fast at high temperature, so that Ca(OH)2 has small specific surface 
area (large particle size). In the PCC synthesis process, the small specific surface area of Ca(OH)2 
induces a slow ionization rate of Ca(OH)2 into Ca2+ in solution, and also causes low supersaturation of 
the solution. As aforementioned, the temperature change generated in the hydraulic process can be 
considered as hydraulic activity, and the distribution ratio of aragonite and calcite are greatly affected 
by hydraulic activity as shown in Figure 4. It is hence concluded that the distribution ratio of aragonite 
and calcite is more related to hydraulic activity than chemical composition (CaO content, wt%) of 
limestones.  

 
4. Conclusions 

 
It was of interest to determine the distribution ratio of CaCO3 polymorphs (aragonite and calcite) in 

synthetic PCC depending on hydraulic activity. No aragonite was crystallized from limestone ore 
samples with hydraulic activity of less than 10 °C. Aragonite constituted 40~70 wt% of the CaCO3 
polymorphs synthesized from limestone samples with hydraulic activity in the range of 10~20 °C. In 
particular, it accounted for more than 90 wt% of the polymorphs from limestone samples with 
hydraulic activity in more than 20 °C. However, single phase aragonite was not crystallized from any 
limestone ore samples. An analysis on the chemical composition (e.g., CaO content) of limestone ore 
has been basically introduced to classify its quality, whereas it is suggested that hydraulic activity 
should be also considered to determine the distribution ratio of polymorphs (aragonite and calcite) in 
PCC synthesis. We expect that the results obtained from the present study could be effectively applied 
to the eco-friendly paper making industry using PCC.  
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