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Abstract

In mammalian early embryos, the transition from maternal to embryonic control of gene expression requires timely
degradation of a subset of maternal mRNAs (MRD). Recently, zygotic genome activation (ZGA)-dependent MRD has
been characterized in mouse 2-cell embryo. However, in early embryos, the dynamics of MRD s still poorly
understood, and the maternal factor-mediated MRD before and along with ZGA has not been investigated. Argonaute
2 (Ago2) is highly expressed in mouse oocyte and early embryos. In this study, we showed that Ago2-dependent
degradation involving RNA interference (RNAJ) and RNA activation (RNAa) pathways contributes to the decay of over
half of the maternal mRNAs in mouse early embryos. We demonstrated that AGO2 guided by endogenous small
interfering RNAs (endosiRNAs), generated from double-stranded RNAs (dsRNAs) formed by maternal mRNAs with their
complementary long noncoding RNAs (CMR-IncRNAs), could target maternal mRNAs and cooperate with P-bodies to
promote MRD. In addition, we also showed that AGO2 may interact with small activating RNAs (saRNAs) to activate
Yap1 and Tead4, triggering ZGA-dependent MRD. Thus, Ago2-dependent degradation is required for timely elimination

of subgroups of maternal mMRNAs and facilitates the transition between developmental states.

Introduction

Growing oocytes possess high transcriptional activity
and accumulate large amounts of maternal mRNAs and
proteins, which control the initial stages of develop-
ment"?. During maternal-to-zygotic transition (MZT),
the majority of maternal mRNAs are eliminated, and the
zygotic genome becomes transcriptionally active®*, MRD
is required to remove repressive factors and enable
ZGA™.
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MRD occurs during oogenesis, beyond fertilization, and
is accomplished along ZGA. It acts during two sequential
processes from oocyte to early embryo®. In oocyte, the
maternally encoded products are exclusively used to
activate the degradation pathway. For example, the RNA-
binding proteins, SMAUG and BTG4, can recognize some
specific maternal mRNAs and trigger MRD?™'*, In Dro-
sophila, Zebrafish, and Xenopus early embryos, small
RNA, especially microRNA, has been reported to promote
the degradation of their target mRNAs'®. Recently, in
mouse embryos, the ZGA-dependent maternal mRNA
clearance has been characterized at 2-cell stage, and
YAP1- and TEAD4-mediated zygotic transcription is
crucial for the pathway'®. However, a group of maternal
mRNAs are observed to degrade rapidly in mouse 1-cell
embryo. Thus, the dynamics of MRD in early embryos is
still poorly understood. Before ZGA, embryogenesis is
supported by maternal factors, which participate in the
removal of maternal detritus and the robust activation of
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the embryonic genome'”~'?, suggesting the existence and

functional importance of the maternal factor-mediated
MRD before and along with ZGA in early embryos, but it
has not been investigated.

Since the discovery of the first Argonaute gene in Arabi-
dopsis, the members of this family have rapidly emerged as
key components of the gene regulatory pathway at the
transcriptional and post-transcriptional levels**~>% In mice,
four AGO proteins (AGO1-4), which share structural simi-
larities and have overlapping functions in RNAI, exist, but
only AGO?2 is highly expressed in oocytes and early embryos
and possesses endonuclease catalytic activity”>**, In addition,
recent reports have demonstrated that AGO2 could coop-
erate with saRNA to activate gene expression at the tran-
scriptional level, implying its potency to detonate ZGA”*>.
Moreover, Ago2 mutant oocytes fail to progress through the
first cell division event, and zygotic Ago2 deletion leads to
embryonic developmental arrest after post-implantation,
while Agol, Ago3 and Ago4 deletions are viable®>**~>!, The
features of Ago2 indicate its potential role in early embryos.
To this end, we knocked down Ago2 (Ago2 kd) by injection
of small interfering RNA (siRNA) targeting Ago2 and AGO2
antibodies into mouse zygotes, and demonstrated that dele-
tion of Ago2 impairs normal early embryonic development,
accompanied by abnormal MRD and ZGA.

Materials and methods
Mouse experiments

All experiments were performed in accordance with the
ARRIVE (Animal Research: Reporting of In Vivo Experi-
ments) guidelines and regulations. Animal experiments were
performed with 7-week-old ICR mice. Animals were main-
tained under a 12 h light/dark cycle and provided with food
and water ad libitum in individually ventilated units.

Embryo collection

Embryos were collected from 7-week-old F1 superovulated
female mice treated with 6.5 IU of pregnant mares’ serum
gonadotropin (PMSG) and, 47 h later, with 5 IU of human
chorionic gonadotropin (hCG) and crossed with F1 males.
Embryos were isolated in M2 medium (Sigma) and cultured
in KSOM medium at 37°C in 5% CO, and fixed at the
following times post-hCG injection: 20 h for the zygote, 40 h
for the middle 2-cell embryo, 55 h for the early 4-cell embryo,
64 h for the 4-cell embryo, 70 h for the 8-cell embryo, 88 h
for the morula and 99h for the blastocyst. Additionally,
oocytes were collected from 7-week-old ICR superovulated
females at 16 h post-hCG.

Microinjection

All small interfering RNAs (siRNAs) were purchased
from GenePharma. Ago2-siRNAs was designed to speci-
fically target Ago2 and on the basis of 30%-52%
GC content and avoiding of internal repeats (5'-3’).
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Ago2-siRNA1: GCAAAGAUCGCAUCUUUAATT; Ago2-
siRNA2: GCCAGUGAUCGAGUUUGUUTT; Ago2-siRN
A3: GCAGAAACACACCUACCUUTT; the scrambled
siRNA used as negative control. All siRNAs were modified
with 2'Fluoro rU/C to increase their annealing tempera-
ture. The prediction of off-target effects was described in
result. To perform microinjection, zygote-stage embryos
were placed in 150 pg/mL hyaluronidase (Sigma) to digest
the outer granule cells. SiRNAs was centrifuged at
12,000 rpm for 10 minutes at 4 °C and placed at 4 °C for
use. Then, siRNA microinjection was carried out with an
Eppendorf FemtoJet microinjector and Narishige NT-
88NE micromanipulators. For injection, a glass capillary
Femtotip II (Eppendorf) was loaded with 2 uL. of 10 uM
siRNA by a microloader (Eppendorf), and the solution
was injected into the cytoplasm in a 100 pL drop of M2
medium (Sigma) plus 5pg/mL cytochalasin B (Sigma).
The injection volume was approximately 2-5pL. The
injection conditions consisted of 250 hPa injection pres-
sure, 60 hPa compensation pressure and 0.7 s injection
time. Immediately after microinjection, embryos were
cultured in KSOM medium at 37 °C in 5% CO,.

Antibody purification

The anti-AGO2 antibody used was rabbit anti-AGO2
(Abcam, ab32381), and purchased in azide-free format
and concentrated using Amicon Ultra-0.5 100 kDa cen-
trifugal filter devices (Millipore) to remove traces of azide
and replace the buffer with PBS. Prior to microinjection,
antibodies were diluted in 1x PBS containing Ago2-siRNA
(100 uM) to the following concentrations: anti-AGO2
(0.5 mg/ml) and Ago2-siRNA (10 uM). Prior to micro-
injection, antibodies-siRNA mixture was incubated on ice
for 30 min. And, microinjection was performed using a
micromanipulator and Eppendorf Femtojet system
mounted on the OLYPUS microscope. Once the glass
needle was transiently inserted into the cytoplasm, the
needle was quickly withdrawn when slight swelling in
cytoplasm appears, indicating the successful injection.

Overexpression and inhibition of endosiRNA

The endosiRNAs associated with maternal mRNAs of
Zfp277, Bripl and Spinl were verified. The sequences of
the endosiRNAs are as follows (5'-3): Zsi-1: (ACATG
GTGGAGCATGTGTCCT); Zsi-2: (ACCGCCAGACTG
ATTTCCA); Zsi-3: (ACCAACAATGGAGGAGTGT);
Zsi-4: (ACCTGAATTTTTGATCTTA); Zsi-5: (ACATTT
TTTCAGGTGCTTCTC); Bsi-1: (ACAGCAATGTGGAA
ATGTAAGC); Bsi-2: (ACATCCCTCCATGACCTCTG);
Bsi-3: (ACATCCCTCCATGACCTCTGA); Bsi-4: (ACAG
TCCTGACTTCCTTTGGTGAT); Ssi-1: (ACATGTGGT
TGCTGGGATTTG); Ssi-2: (ACCTATGAGAAAGACCC
TGTCT); Ssi-3: (ACATCACCTATGAGAAAGACC); Ssi-
4: (ACCCCTTCATGCCTTCAAA); Ssi-5: (ACCCCTTC
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ATGCCTTCAAAA). The mimics used are small, che-
mically modified dsRNAs, and the sequences of one of the
strands are the same with the endosiRNAs and enable
upregulation of its activity. The inhibitors are small,
chemically modified single-stranded RNA molecules with
complementary sequences of endosiRNAs designed to
specifically bind to and inhibit endosiRNA molecules and
enable downregulation of endosiRNA activity.

Immunofluorescence staining

After removal of the zona pellucida with acidic oper-
ating fluid, mouse embryos were fixed in 4% PFA for
40 minutes at room temperature (RT), followed by per-
meabilization in 1% Triton X-100 for 20 minutes at RT.
Embryos were then blocked in blocking solution (1% BSA
in PBS) for 1 h at RT after 3 washes for 5 minutes each in
washing solution (0.1% Tween-20, 0.01% Triton X-100 in
PBS). Incubations were performed overnight at 4 °C or for
1 h at 37 °C using the following antibodies and dilutions in
blocking solution: AGO2 (1:200) and DCP1A (1:100). The
next day, the embryos were washed 3 times in washing
solution and incubated with secondary antibodies (goat
anti-mouse IgG Alexa Fluor 647 conjugated, 1:200, Invi-
trogen, A32728; and donkey anti-rabbit IgG Alexa Fluor
546 conjugated, 1:500, Invitrogen, A10040) for 1 h at RT.
After 5 minutes of staining with Hoechst, the embryos
were washed 4 times in washing solution. Imaging of
embryos in microdroplets was performed using an
inverted confocal microscope. We jointly used Image]
software and PS CC to count protein particles.

RNA-FISH

After removal of the zona pellucida with acidic operating
fluid, mouse embryos were washed twice in PBS. Then,
embryos were fixed in 4% paraformaldehyde (PFA) for
40 minutes followed by 2 washes in PBS. Embryos were
gradient dehydrated in ethanol and washed 2 times in PBT
(1% Tween-20, in PBS). After permeabilization in per-
meabilizing solution (0.5% Triton X-100 in PBS), embryos
were aspirated repeatedly in proteinase K (5 pg/mL) for one
minute and were washed 3 times in PBT. Embryos were
then hybridized in hybridization solution (50% formamide
(Sigma, F9037), 2x SSC, 10% dextran sulfate (Sigma,
30915), 10 mM VRC (Sigma, 94742), 2 mg/mL BSA) con-
taining 20 ug of DIG-labeled /nc521 probes at 37 °C over-
night (14-15h). Embryos were washed four times in
washing solution after 2 washes for 5min each in hybri-
dization washing solution (50% formamide, 2 x SSC) at
60 °C. We blocked the embryos in blocking solution (10%
sheep serum, 0.05% BSA, in 1x PBS) for 1 h at RT followed
by incubation in secondary antibody solution (Abcam,
ab119349). After 4 washes for 5min each in PBT, the
embryos were stained with Hoechst for 5 min. Then, the
embryos were mounted on glass slides after three washes.
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RNA extraction, reverse transcription and g-PCR analysis

Total RNA was extracted using the PureLink RNA Mini
Kit (Ambion) according to the manufacturer’s instructions,
and reverse transcription was performed to generate cDNA
using the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems). Small noncoding RNA (sncRNA) was
extracted using the mirVana™ microRNA Isolation Kit
(Ambion) according to the manufacturer’s instructions, and
reverse transcription was performed using TransScript
microRNA First-Strand ¢cDNA Synthesis SuperMix (Trans-
Gen Biotech) according to the manufacturer’s instructions.
RNase-Free DNase Set (QIAGEN) was used to ensure that
there was no DNA contamination. Q-PCR was performed
using TB Green™ Premix Ex Taq (TaKaRa) and a 7500 q-
PCR System (Applied Biosystems). The reaction parameters
were as follows: 95 °C for 30 s followed by 40 two-step cycles
of 95°C for 5s and 60°C for 34s. 18srRNA and 5s rRNA
were used as reference genes. Ct values were calculated using
Sequence Detection System software (Applied Biosystems),
and the amount of target sequence normalized to the
reference sequence was calculated as 2 AL ubcellular
localization analysis of /nc521 was performed as our previous
description®.

RNA-seq analysis

For RNA-seq analysis of early stage embryos, FastQC
was performed for Illumina reads. In addition, we
employed Trim Galore software to discard low-quality
reads, trim adaptor sequences, and eliminate poor-quality
bases. Then, we downloaded the mouse reference genome
(Genome assembly: GRCm38.p6) from Ensembl and
selected HISAT2 software for read alignment. The gene-
level quantification approach is to aggregate raw counts of
mapped reads using HTSeq-count (parameter: “-m
union”). Then, the expression level of each gene was
quantified with normalized FPKM (fragments per kilobase
of exon per million mapped fragments) by StringTie.
Next, we used the R package DESeq?2 for differential gene
expression analysis. The DAVID database (https://david.
ncifcrf.gov/) is an essential foundation for the success of
any high-throughput gene function analysis. GO annota-
tions were performed using the DAVID online tool on the
screened differentially expressed genes.

Maternal mRNA clustering

Maternal mRNAs with FPKM > 2 at the MII oocyte
stage were retained for further analysis. The expression
level of each gene was transformed by log2 (FPKM + 1) in
the following analysis. Clusters I-1II consist of the genes
that satisfy the following criteria: cluster I: expression
(MII) > expression  (2-cell) + 1, expression (2-cell) <
expression (4-cell) + 1, expression (2-cell) > expression
(4-cell) — 1; cluster II: expression (MII) > expression (2-
cell) +1, expression (MII) < expression (2-cell) — 1,
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expression (2-cell) > expression (4-cell) + 1; cluster IIL:
expression (MII) > expression (2-cell) 4+ 1, expression (2-
cell) > expression (4-cell) + 1.

Identification of endosiRNA and microRNA target maternal
mRNAs

Small RNAs were classified as previously reported.
EndosiRNAs expressed in MII oocytes, 2-cell embryos
and 4-cell embryos were aligned to AGO2-dependent
maternal mRNAs by Bowtie (parameter: “-a -m 20 -v 2”),
and endosiRNA-targeting maternal mRNAs were pre-
dicted. Additionally, microRNAs expressed in MII
oocytes, 2-cell embryos and 4-cell embryos were used to
align to AGO2-dependent maternal mRNAs by miRDB
(http://mirdb.org/miRDB/), and a score >97 was predicted
for microRNA-targeting maternal mRNAs.

Prediction of CMR-IncRNAs and saRNAs

LncRNAs expressed in MII oocytes, 2-cell embryos and
4-cell embryos were predicted based on coding potential
using PLEK®?, CPC23* and CPAT®® software. LncRNA
expressed at the zygote, 2-cell or 4-cell stage was used to
predict CMR-IncRNA. The filtered IncRNAs were aligned
to endosiRNA-targeting AGO2-dependent maternal
mRNAs by BWA, and IncRNAs with an alignment ratio >
90% (based on complementary sequencing) were pre-
dicted to be CMR-IncRNAs. CMR-IncRNAs were anno-
tated by bedtools to identify the corresponding genome
region. To predict saRNAs, we used small RNA-seq data
(GSE83581), and the expression level was calculated and
normalized using the RPM (reads per million) value.
Small RNAs with lengths from 18 to 30 nt after adapter
trimming and expression levels >1 at the zygote or 2-cell
stage were used for further analysis. ZGA-genes were
identified as described in a previous report. Then, we
aligned the filtered fragments to upstream sequences
within 1.0 kb of AGO2-related ZGA-gene TSSs by Bowtie
to predict saRNAs and the corresponding ZGA-genes.

Statistical analysis

Statistical analysis was performed using SPSS 13.0 for
Microsoft Windows. Data are shown as the mean + s.e.m.
Most experiments included at least three independent
samples and were repeated at least three times. Differences
in the results of two groups were evaluated using either
two-tailed Student’s ¢-test or one-way ANOVA followed
by Dunnett’s test. *p < 0.05, **p < 0.01 and ***p < 0.001.

Results
Characteristics and degradation of maternal mRNAs

In mice, the burst of ZGA happens during the middle-
to-late 2-cell stage, and MRD occurs accompanied by
ZGA and is accomplished before the 4-cell stage. In this
study, to accurately identify the patterns of MRD in
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mouse early embryos, we take ZGA as a timing, a set of
MRD occurs before ZGA, and the second set of MRD
follow ZGA. On the basis of the classification rule, we
performed RNA-seq on MII oocytes, middle 2-cell
embryos and early 4-cell embryos. Transcripts with high
expression in MII oocytes (FPKM >2) were defined as
maternal mRNAs, including some identified mRNAs,
such as Zarl, Hsfl, Ooep, Nlrp5 and Npm?2, and the
expression of most of these mRNAs (n = 3,098) decreased
significantly during the transition from MII oocytes to
early 4-cell embryos. The maternal mRNAs degraded
during the process were categorized into three clusters. A
total of 1,258 maternal mRNAs in cluster I were sig-
nificantly downregulated at the 2-cell stage and remained
stable during the transition from middle 2-cell to early 4-
cell embryos. In contrast, cluster II, including 1,056
maternal mRNAs, showed no significant changes during
the transition from MII oocytes to 2-cell embryos, but was
dramatically downregulated at the 4-cell stage. Moreover,
784 maternal mRNAs that were continuously degraded
during the transition from MII oocytes to early 4-cell
embryos were classified into cluster III (Fig. 1A; Supple-
mentary Table S1). Therefore, we suggest that the
maternal mRNAs in cluster I could be degraded during
the transition from MII oocyte to middle 2-cell embryo
(MII/2 C degradation) before ZGA, while the maternal
mRNAs in cluster II could be degraded during the tran-
sition from middle 2-cell to early 4-cell embryos (2C/4C
degradation), which may be associated with ZGA, and the
degradation of the maternal mRNAs in cluster III, termed
continuous degradation, might be associated with both
processes.

Ago2 is involved in MRD in mouse early embryos

To test the role of Ago2 in MRD, we first examined the
expression of AGO2 protein by immunofluorescence
during oocyte maturation and pre-implantation embryo-
nic development. As shown in the previous reports®, the
signals were high in oocytes and early embryos, and
peaked at blastocyst stage (Supplementary Fig. S1A), and
the expression pattern was also confirmed by quantitative
mass spectrometry in mouse embryos (Supplementary
Fig. S1B)**. Then, we knocked down Ago2 at both the
RNA and protein levels by injecting siRNA targeting Ago2
and AGO?2 antibodies into zygotes. We first screened the
off-targets of Ago2-siRNA1-3 in RefSeq database by
Blastn, and three genes were found (mismatch value < 2).
However, except Ago2, 9230019HI1IRik and Zdhhcl5
were seldomly not expressed in mouse early embryos,
confirming the negative off-targets of the siRNAs (Sup-
plementary Fig. S1C).The efficiency of Ago2 kd was con-
firmed by q-PCR (Fig. 1B) and immunofluorescence (Fig.
1C). Consistent with previous reports, the development of
pre-implantation embryos after Ago2 deletion was
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Fig. 1 Role of Ago2 in MRD in mouse early embryos. A Heat map showing the expression patterns of maternal mRNAs in Mil oocytes, middle 2-
cell embryos and early 4-cell embryos. We classified the maternal mRNAs into three categories according to their degradation dynamics: MIl/2 C

degradation, 2C/4C degradation, and continuous degradation. The expression patterns of the three clusters and representative genes are shown on
the right. B,C Q-PCR and immunofluorescence analysis of 2-cell embryos injected with either Ago2 siRNA or AGO2 antibodies, validating the Ago2 kd
efficiency. Fluorescence staining was imaged using a basal fluorescence microscope. Ctrl: control group; Ago2 kd: Ago2-knockdown group. **p < 0.01,
Error bars indicate the s.em. Scale bar, 50 um. D Depletion of Ago2 impaired the development of pre-implantation embryos in mice. The Ago2 siRNA
or AGO2 antibodies was injected into zygotes. The development rate of Ago2 kd embryo was significantly lower than the control group at 4-cell
stage. Data are presented as the mean + s.e.m. E Pie chart shows the fraction of AGO2-dependent degradation in 2- and 4-cell embryos, Box plots of
AGO2-independent and AGO2-dependent gene expression are shown on the right. F Box plots of AGO2-dependent MII/2C and 2C/4C degradation

in 2- and 4-cell embryos, respectively. Ago2-dependent MIl/2C and 2C/4C mRNA remains stable and upregulated upon Ago2 kd.

significantly affected from the 4-cell stage (Fig. 1D; p-
value < 0.05). Then, we performed RNA-seq on the mid-
dle 2-cell and early 4-cell embryos with and without Ago2.
The unsupervised hierarchical clustering (UHC) could
separate the Ago2 kd embryos from the control embryos
(Supplementary Fig. S1D, G); meanwhile, the efficiency of
Ago2 kd was further confirmed by RNA-seq data (Sup-
plementary Fig. S1E, H). 365 and 284 genes were
increased and decreased in Ago2-depleted middle 2-cell
embryos, respectively. And in Ago2-depleted early 4-cell
embryos, 902 upregulated and 1,093 downregulated genes
were identified (Supplementary Fig. S1F, I; p-value < 0.05).
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Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed
on the differentially expressed genes, and the genes were
shown to be enriched in cell cycle and transcriptional
regulation (Supplementary Fig. S1J, K), verifying the key
regulatory role of Ago2 in developmental progress. We
overlapped the genes, whose expressions were increased
or stable between MII oocyte and Ago2-depleted middle
2-cell embryo, with Cluster I and Cluster III genes,
respectively, and found the degradation of 729 and 454
maternal mRNAs in cluster I and cluster III, respectively,
was blocked by Ago2 kd during the MII to 2-cell
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transition. While, by overlapping the genes, whose
expressions were increased or stable between middle 2-
cell embryo and Ago2-depleted early 4-cell embryo, with
Cluster II and Cluster III genes, respectively, we observed
the degradation of 290 and 137 maternal mRNAs in
cluster II and cluster III, respectively, was inhibited by
Ago2 kd during the transition from middle 2-cell to early
4-cell embryos. The results indicate that the degradation
of a large number of maternal mRNAs is AGO2-depen-
dent, especially MII/2 C degradation (Fig. 1E). Addition-
ally, AGO2-dependent MII/2C and 2C/4C degradation
was identified in the 2- and 4-cell embryos, respectively
(Fig. 1F; Supplementary Table S2), indicating that AGO2-
dependent degradation occurs before and along with
ZGA. These results show that Ago2 is involved in MRD in
mouse early embryos.

EndosiRNA is associated with AGO2-dependent MRD

In the RNAi pathway, AGO2 cooperates with micro-
RNA and endosiRNA, negatively regulating gene expres-
sion at the post-transcriptional level>’ ~**, Thus, to
determine the mechanism of AGO2-dependent MRD, we
profiled the unique sequences of microRNAs and endo-
siRNAs from MII oocytes to 8-cell embryos (GSE83581),
and we observed that the numbers of microRNAs
sequences were almost equal in each stage. However, the
numbers of endosiRNAs sequences were extremely high
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before the 4-cell stage, consistent with the progress of
MRD (Fig. 2A). Then, we screened the small RNAs tar-
geting the maternal mRNAs, and 66,568 endosiRNAs
targeting 1,751 maternal mRNAs and 273 microRNAs
targeting 475 maternal mRNAs were found (Fig. 2B;
Supplementary Table S3). To further confirm the con-
struction of AGO2-endosiRNA network, we analyzed the
AGO?2 RIP-seq data on mouse embryonic stem (ES) cells,
and we found the majority of small RNAs interacting with
AGO2 were highly expressed in mouse early embryos
(Supplementary Fig. S2A), and about 82% of the 66,568
endosiRNAs targeting maternal mRNAs were directly
bounded by AGO2 (Supplementary Fig. S2B), suggesting
that endosiRNAs contribute to AGO2-dependent MRD.
Moreover, the expression patterns of the endosiRNAs,
microRNAs and their targets were analyzed. These data
reveal that the targets of both endosiRNAs and micro-
RNAs were significantly downregulated during the tran-
sition from the zygote to the 4-cell stage, and
correspondingly, the expression peak of endosiRNAs was
also observed in the stage (Fig. 2C); however, in contrast,
the expression peak of microRNAs was observed at the 4-
and 8-cell stages (Fig. 2D). We further explored the role of
endosiRNAs and microRNAs on AGO2-dependent
degradation and found that 685 and 185 endosiRNA-
targeting maternal mRNAs overlapped with AGO2-
dependent MII/2C and 2C/4C degradation, respectively;
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in contrast, only 206 and 59 microRNA-targeting mater-
nal mRNAs overlapped with AGO2-dependent MII/2C
and 2C/4C degradation, respectively (Fig. 2E; Supple-
mentary Table S4). The results suggest that endosiRNAs,
but not microRNAs, are mainly associated with AGO2-
dependent MRD.

Verification of the role of endosiRNAs in AGO2-dependent
MRD

To verify the function of endosiRNAs in MRD experi-
mentally, we selected maternal mRNAs of Zfp277, Bripl
and Spinl, the degradation of which was AGO2-
dependent (Fig. 3A). Their expression patterns and their
corresponding endosiRNAs from MII oocytes to 8-cell
embryos were examined by g-PCR. The maternal mRNAs
were significantly degraded at the 2-cell stage, and the
endosiRNAs were present at high levels at this stage (Fig.
3B). And, these endosiRNAs were confirmed to link with
AGO2 by AGO2 RIP-seq analysis (Supplementary Fig.
S2A). To further confirm the effect of the endosiRNAs on
the degradation of the corresponding maternal mRNAs,
mimics or inhibitors of the endosiRNAs targeting Zfp277,
Bripl, and Spinl mRNAs were injected into zygotes, and
the levels of the maternal mRNAs were detected at the 4-
cell stage. We found that, compared to the control and
negative control (N.C.) groups, the maternal mRNA levels
were significantly high when inhibitors were injected and
significantly low when mimics were injected, demon-
strating that degradation is severely repressed upon the
suppression of endosiRNAs and vice versa (Fig. 3C). The
results verify the regulatory role of endosiRNAs in AGO2-
dependent MRD. Then, we analyzed the stability of
Zfp277, Bripl and Spinl mRNAs regulated by the corre-
sponding endosiRNAs. Zygotes were treated with acti-
nomycin D to inhibit transcriptional activity, and the
mimics of endosiRNAs were shown to greatly decrease
the stability of the corresponding maternal mRNAs; in
contrast, the inhibitors could increase the stability
(Fig. 3D). These results demonstrate that endosiRNAs
facilitate AGO2-dependent MRD at the post-
transcriptional level.

P-bodies participates in endosiRNA-mediated AGO2-
dependent MRD

P-bodies, which are cytoplasmic ribonucleoprotein
(RNP) granules, are associated with mRNA decay45 , and
AGO?2 is described to interact with P-bodies®. Thus, we
wanted to check whether P-bodies are related to AGO2-
dependent MRD. To this end, we first co-stained AGO2
and DCP1A, the core P-bodies component, in 2-cell
embryos. We found a considerable overlap of the staining
patterns of AGO2 with DCP1A, identical to the particles
residing in perinuclear foci (Fig. 4A), suggesting that the

Official journal of the Cell Death Differentiation Association

Page 7 of 14

majority of AGO2 was associated with P-bodies. Then, we
injected the mixture of the endosiRNA mimics or inhi-
bitors used above into one blastomere of the 2-cell
embryos. The 5-Fam labeled negative siRNA was also
injected to mark the injected cells. The localizations of
AGO2 and DCP1A were examined after 1h by immu-
nofluorescence staining. We observed that the colocali-
zation of AGO2 and DCP1A was not markedly changed
by the negative siRNA injection in the control group.
However, the co-localized particles residing in perinuclear
foci of AGO2 and DCP1A were enriched by the injection
of endosiRNA mimics, while the percentage of colocali-
zation granules decreased upon injection of endosiRNA
inhibitors (Fig. 4A,B). These results reveal that P-bodies
may participate in endosiRNA-mediated AGO2-depen-
dent MRD.

LncRNA complementary to maternal mRNA is involved in
the biogenesis of endosiRNAs to facilitate AGO2-
dependent MRD

Generally, endosiRNAs are processed from dsRNAs
formed by the targeted transcripts with the complementary
IncRNAs***. To further demonstrate the AGO2-dependent
MRD mediated by endosiRNAs, we screened CMR-
IncRNAs in the early embryos. More CMR-IncRNAs,
complementary to 403 endosiRNA-targeting maternal
mRNAs, were found in zygotes than in 2-cell and 4-cell
embryos (Fig. 5A; Supplementary Table S5). CMR-IncRNAs
were annotated using all available annotation sources, and a
total of 37.8% and 18.7% were found residing in introns and
coding exons, revealing that CMR-IncRNAs are likely
derived from the intragenic regions of maternal mRNAs to
generate endosiRNAs (Fig. 5B). To check the mechanism
experimentally, we conducted an in-depth exploration
of Zfp277 and its three predicted CMR-IncRNAs, namely,
ENSMUST00000140021, ENSMUSTO00000206433 and
ENSMUST00000219521, the levels of which were particu-
larly high in zygotes (Fig. 5C). To explore the role of CMR-
IncRNAs in the biogenesis of endosiRNAs targeting Zfp277,
we depleted the three CMR-IncRNAs by injecting siRNA
into the zygote, and found that endosiRNAs were lacking
when an annotated transcript ENSMUST00000219521,
termed [nc521, was knocked down (Fig. 5D; Supplementary
Fig. S2C); the addition of the part of [nc521 complementary
to Zfp277 mRNA could rescue the deficiency (Fig. 5Q).
LncRNAs found mainly in the cytoplasm can form
dsRNAs*"*2, Thus, we analyzed the subcellular localization
of Inc521 by q-PCR (Fig. 5E) and RNA-FISH (Fig. 5F) in 2-
cell embryos, and the results showed that /nc521 was mainly
located in the cytoplasm. In RNA-FISH, RNase A-treated 2-
cell embryos were tested as the N.C. In embryos, the
fluorescence signal of Gapdh was almost undetectable.
However, although the fluorescence intensity was greatly
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Fig. 3 Verification of endosiRNAs in AGO2-dependent MRD. A Schematic of Zfp277, Spin1 and Brip1. The peak diagram shows the location of
endosiRNAs targeting maternal mRNAs, and the red fragment represents the tested endosiRNAs. B Q-PCR analysis of the expression patterns of
Zfp277, Spin1 and Brip1 mRNAs and corresponding endosiRNAs in early mouse embryos. Each red dot represents the average expression level of each
endosiRNA of individual maternal gene. Three maternal mRNAs degraded prior to the 4-cell stage and were inversely related to the expression
pattern of endosiRNA. Error bars indicate the sem. C Effect of the corresponding endosiRNAs on the expression levels of Zfp277, Spin1 and Brip1
measured by g-PCR. Injection of endosiRNA mimics accelerates the degradation of target maternal mRNA, and vice versa. **p < 0.01, Error bars
indicate the s.e.m. D Degradation curve of Zfp277, Spin1 and Brip1 obtained by injection of corresponding endosiRNA mimics and inhibitors. Zygotes
were treated with actinomycin D (0.6 pg/ml) immediately after microinjection, and were recorded as 0 h. Curve fitting was performed by R package
(basicTrendline). The endosiRNAs decreased the expression of the maternal mRNAs by post-transcriptional gene silencing through mRNA
degradation. T,,, denotes half-life.

decreased, the fluorescence signal of [nc521 could still be
detected, suggesting that dsRNAs formed by /nc521 exist in
the cytoplasm (Fig. 5F). The results indicate that [nc521 may
participate in the biogenesis of endosiRNAs targeting
Zfp277. To further investigate the effect of /nc521 on the
degradation of Zfp277 mRNA, Inc521 was knocked down,
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and we found that a deficiency in degradation at the 4-cell
stage; this deficiency could also be rescued by addition of
Inc521 (Fig. 5H). Together, these results demonstrate that
CMR-IncRNAs may form dsRNA with maternal mRNA and
participate in the biogenesis of endosiRNA to facilitate
AGO2-dependent MRD.
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AGO2 guided by saRNAs to function in ZGA-dependent
MRD

The above observation showed that the degradation of
over half of the maternal mRNAs dependent on AGO2
was mediated by endosiRNAs (Fig. 2E), suggesting that
there might be other mechanisms that facilitate AGO2-
dependent MRD. AGO2-dependent MRD was observed
to occur along with ZGA, and recently, ZGA-dependent
MRD was characterized during MZT'®. In addition, our
observation showed that Ago2-deletion led to marked
developmental decreases after the 2-cell stage (Fig. 1D),
indicating that Ago2 might function in ZGA. Indeed,
nearly half of the downregulated genes (n = 554) observed
upon Ago2 deletion in 2-cell and 4-cell embryos were
ZGA genes identified previously*® (Fig. 6A), including
Pou5fl, Eif4gl, Yapl and Yyl (Fig. 6B), and consistent
with previous reports, ZGA-associated biological events
were affected (Fig. 6C), suggesting a potential role of Ago2
in ZGA. Ago2 guided by saRNAs can target specific pro-
moter regions to stimulate gene expression at the tran-
scriptional level, a phenomenon known as RNAa**, Thus,
we believe that Ago2 may cooperate with saRNAs to
regulate ZGA. To this end, we screened the candidate
saRNAs targeting the upstream sequences within 1.0 kb of
AGO2-related ZGA-gene TSSs using small RNA-seq data
on mouse MII oocytes and 2-cell and 4-cell embryos. We
found that the upstream regions of 317 (out of 554)
AGO2-related ZGA genes were predicted to be targeted
by saRNAs (Fig. 6D). Compared to those in MII oocytes,
the expression patterns of the saRNAs were significantly
upregulated in zygotes and 2-cell embryos (Fig. 6E), and
consistent with previous reports®*, the saRNAs mainly
recognized the upstream sequences at 200—-400 bp of the
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TSSs (Fig. 6F). These features verified the credibility of the
saRNA prediction, and the results suggest that AGO2 may
be guided by saRNA to function on ZGA. To assess the
ZGA-dependent MRD involved with AGO2, we first
identified MRD that depend on ZGA. It has been shown
that transiently inhibiting minor ZGA with DRB in zygote
(4-20 hpi) severely impaired major ZGA in 2-cell
embryos*’. We found that the expression of a large
number of transcripts increased or was stable after the
DRB treatment (Supplementary Fig. S2D), and 701 tran-
scripts overlapped with 2C/4C degradation-maternal
mRNAs (Fig. 6G), revealing that their degradation is
ZGA-dependent. Moreover, 208 of them were also
AGO2-dependent 2C/4C degradation maternal mRNAs
(Fig. 6H), indicating that Ago2 may be related to ZGA-
dependent MRD. Yap! and Tead4 have been reported to
direct ZGA-dependent MRD'®!. As expected, the
expression of Yapl and Tead4 was significantly down-
regulated upon Ago2 deletion (Fig. 6B). We also identified
multiple saRNAs with high expression levels in 2-cell
embryos targeting the proximal upstream regions of Yap1
and Tead4 TSSs (Fig. 6I; Supplementary Fig. S2E). The
results suggest that AGO2 may cooperate with saRNAs to
activate Yapl and Tead4 and trigger ZGA-dependent
MRD.

Discussion

The transition from maternal to embryonic control of
gene expression requires that the amount of accumulated
maternal mRNA be greatly reduced. However, maternal
mRNAs are inherently stable and remain in oocytes for up
to a few weeks before fertilization®. Thus, there must be a
dramatic change in the stability of the maternal mRNA
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pool. In this study, we demonstrate that AGO2 guided by
endosiRNAs, generated from dsRNAs, formed by mater-
nal mRNAs with their CMR-IncRNAs, digested with
DICER*, could target maternal mRNAs and cooperate
with P-bodies to promote MRD. We also indicate that
AGO2 may interact with saRNAs to activate Yapl and
Tead4 and trigger ZGA-dependent MRD (Fig. 7). Our
findings provide insights into the function of AGO2 in
MRD and suggest its role in ZGA.

An important event during MZT is the elimination of a
subset of the maternal mRNAs that had accumulated
during oogenesis>’. In both invertebrates and vertebrates,
the clearance of maternal mRNAs begins at the onset of
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oogenesis and continues beyond fertilization®. Generally,
the clearance of maternal mRNAs is accomplished by two
activities: the first is maternally encoded, M-decay, while
the second requires zygotic transcription, Z-decay, but it
has not been elaborated. AGO2, as a maternal factor,
stores in oocyte. In this regard, AGO2-dependent MRD
could be related to M-decay. However, AGO2 must be
guided by endosiRNAs to bound to the specific maternal
mRNAs and perform their degradation, and the produc-
tion of endosiRNAs may occur in minor ZGA. Further-
more, we also demonstrated that AGO2 functions on
ZGA-dependent MRD mediated by saRNAs, which
mainly expressed in zygotes and 2-cell embryos. Thus, the
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AGO2-dependent MRD during the early cleavage seems endosiRNAs and microRNAs to mediate post-
to be involved in both M-decay and Z-decay, indicating transcriptional silencing of gene expression®®*?, How-
the tight interplay of maternal factor-mediated and ZGA-  ever, in mouse early embryos, it has been demonstrated
dependent pathways in spatio-temporal control of MRD.  that microRNAs do not contribute to MZT*'~*3, Con-
In this study, we showed that Ago2 regulated the degra-  sistent with this, we found that endosiRNAs, but not
dation of over half of the maternal mRNAs in mouse early =~ microRNAs, are mainly associated with AGO2-
embryos. In the RNAi pathway, AGO2 cooperates with  dependent MRD.
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Fig. 7 Model for AGO2-dependent MRD. In mouse embryos, AGO2 guided by endosiRNAs, generated from dsRNAs formed by maternal mRNAs
with their CMR-IncRNAs, digested with DICER®’, could target maternal mRNAs and cooperate with P-bodies to promote MRD. In addition, AGO2 may
also interact with saRNAs to activate Yap7 and Tead4, and trigger ZGA-dependent MRD'®.
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P-bodies are aggregates of translationally repressed RNPs
associated with the translation repression and RNA decay
machinery*>”*™°, We observed the colocalization of
AGO2 and P-bodies in perinuclear foci in mouse early
embryos, suggesting their common effect on MRD. Fur-
thermore, the enrichment of the co-localized particles
residing in perinuclear foci of AGO2 and P-bodies were
regulated by endosiRNAs. It has been demonstrated that if
the PAZ domain of AGO2, which is necessary for the
binding of small RNAs, is destroyed, AGO2 loses its ability
to interact with P-bodies®”. Hence, we indicate that, in
addition to bridge AGO2 to maternal mRNAs, endosiRNA
is also essential for the cooperation of AGO2 with P-bodies
to guarantee the clearance of maternal mRNAs timely.

In agreement with the previous reportssl_sg, we also
found endosiRNAs were enriched not only in mouse
oocytes, but also in zygotes and 2-cell embryos, suggesting
their potential as zygotic sources. We identified a new set

Official journal of the Cell Death Differentiation Association

of IncRNAs complementary to maternal mRNAs, CMR-
IncRNAs, which are involved in the biogenesis of endo-
siRNAs associated with MRD, and these IncRNAs were
mainly found in zygotes, showing the zygotic derivation of
endosiRNAs. EndosiRNA from dsRNA formed by base-
pairing of mRNA and antisense RNA in mouse oocyte and
early embryos has been predicted, and suggested to con-
trol the pace of clearance of specific maternal mRNAs>""%,
In the study, we evidenced the endosiRNA-mediated
AGO2-dependent MRD pathway. Given that endosiRNAs
were produced before ZGA at 2-cell stage, we believe that
endosiRNA-mediated AGO2-dependent MRD is inde-
pendent of the major ZGA. In mice, the products of minor
ZGA transcription were characterized between S phase of
zygote and G1 phase of 2-cell embryo, and the transcrip-
tion was relatively promiscuous, low-level, and produced
transcripts from thousands of protein-coding genes that
were inefficiently spliced and polyadenylated®. Consistent
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with this finding, CMR-IncRNAs were found residing in
intragenic regions, making CMR-IncRNAs highly likely to
complement maternal mRNAs. Thus, we hypothesize that
the CMR-IncRNAs may come from minor ZGA, revealing
the regulatory role of minor ZGA in MRD.

Some maternal factors are indicated as driver of ZGA,
such as Brgl, Nfya and Nelfa, the deletion of which will
result in embryonic developmental arrest at early stages and
failure of activation of part of ZGA-genes'®'*, Similarly,
the Ago2 kd led to the developmental defect of majority of
embryos after 2-cell stage, and by RNA-seq, we observed
that half of the genes downregulated by Ago2 kd were ZGA-
genes. In RNAa, the partnering of AGO2 with saRNA
positively regulates gene expression by targeting the pro-
moter region. As expected, we identified multiple saRNAs
targeting the upstream of ZGA-genes. Consistent with the
previous reports, the target sites were proximal to the TSSs,
and the expression of the saRNAs initiated at the zygote and
was high in 2-cell embryos, which is consistent with RNAa-
induced gene expression being delayed by 24-48 h**%
The results indicate the potential role of Ago2 in ZGA,
which needs to be explored in future studies. ZGA-
dependent MRD has been demonstrated in mice, and
YAP1-TEAD4 transcription factor-mediated transcription is
essential for the degradation'®. In this study, we found that
the degradation of a portion of maternal mRNAs depending
on AGO?2 occurred along with ZGA, suggesting that Ago2
may trigger ZGA-dependent MRD as ZGA contributor. In
addition, the activation of Yapl and Tead4, as ZGA-genes,
were regulated by Ago2, and their saRNAs, located near to
the TSSs, were predicted, revealing AGO2 guided by saR-
NAs may directly activate Yapl and Tead4 to promote
ZGA-dependent MRD. This provides a possible mechanism
to explain ZGA-dependent MRD mediated by Ago2.

In summary, our results demonstrate the novel role of
Ago2 in the degradation of maternal mRNAs during early
embryogenesis, and enrich the understanding of RNA
metabolism, deepening our understanding of mammalian
pre-implantation development, which will help advance
the field of reproductive medicine.
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