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Abstract
Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine

increases male moth sensitivity to female sex pheromones, however, relatively little is

known as to the role of octopamine in the female olfactory system, nor its possible effects

on the reception of non-pheromone odorants. The purpose of this study was to determine

relative effects of octopamine on the sensitivity of the peripheral olfactory system in male

and female Heliothis virescens. Single sensillum recording was conducted in both sexes fol-

lowing injection with octopamine or Ringer solution, and during odorant stimulation with con-

specific female sex pheromone or host plant volatiles. Results indicate that octopamine

plays a significant modulatory role in female sex pheromone detection in female moths; and

that male and female pheromone detection neurons share distinct pharmacological and

physiological similarities in H. virescens despite sexual dimorphism at the antennal level.

Introduction
The olfactory system is important for sensory detection and is particularly important for inver-
tebrates [1]. Insects use olfaction to engage in critical behaviors, including selection of food,
choice of oviposition sites, identification of predators, and detection and selection of conspe-
cific mates [1]. In general, there are two main classifications of odors important to phytopha-
gous insects: host plant volatiles, and pheromones, being important for oviposition/feeding
and mating, respectively [2].

Insect antennae are primary organs for detection of olfactory cues. Antennae typically bear
large numbers of sensilla, which house dendrites of a single or multiple olfactory receptor neu-
ron(s) [1][3]. Sexual dimorphism is also evident in many species of insects, having differential
antennal structure, sensillar distributions and sensillar morphologies. For example, Almaas
and Mustaparta [4][5] reported that male tobacco budworm moth, Heliothis virescens F. (Lepi-
doptera: Noctuidae), possess long trichoid sensilla specialized for the detection of sex phero-
mones and short trichoid sensilla specialized for the detection of host plant odors; whereas
females only have short, ‘generally tuned’, trichoid sensilla.

Dimorphism is also evident in the antennal lobe–the first synaptic output of ORNs from the
antenna. The insect antennal lobe is a portion of the deutocerebrum of the insect brain and is
usually demarcated by numerous spherical glomeruli (neuropil subcompartments) spread
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throughout which are the first synaptic neuropil of the olfactory system [6]. In many insects,
there are a similar number of glomeruli in male and female insects, however, in most male
moths pheromone-sensitive ORNs project axons to a sexually dimorphic macroglomerular
complex (MGC)[6][7][8][9]. The MGC consists of several large glomeruli located closest to the
base of the antennal nerve [10]. A varying number of satellite glomeruli surround a primary
large glomerulus; H. virescens has four glomeruli in the MGC [6][7]. A similar, smaller, struc-
ture has been observed in female H. virescens at the base of the antennal nerve and is known as
the medial and central large female glomeruli (mLFG and cLFG, respectively) [8]. We recently
found that the cLFG receives significant innervation from olfactory receptor neurons which
detect cis-9-tetradecenal (Z9-14:Ald), a primary component ofH. virescens female sex phero-
mone [11][12].

In early studies, it was reported that male and female moths were both equally tuned to
plant odors, but male moths were exclusively able to detect female pheromone components in
the vast majority of cases [13]. However, Seabrook et al. [14] reported that some species of Lep-
idoptera do not show marked morphological sexual dimorphism, such as Choristoneura spp.
Clemens (Lepidoptera: Tortricidae) and Trichoplusia niHübner, (Lepidoptera: Noctuidae) but
can detect sex pheromone in relatively small concentrations. Ochieng et al. [15] found that Spo-
doptera littoralis Boisduval (Lepidoptera: Noctuidae) shows comparable ‘auto-detection’ of
female sex pheromone relative to males. Electroantennograms (EAGs) of female H. virescens
also show significant responses to components of conspecific female sex pheromone [11]. A
large concentration of 'male' type pheromone binding proteins have been found in the antenna
of female H. virescens; and female pheromone receptor gene expression is also present in
female H. virescens antenna [16][17]. A study by Skiri et al. [18] using calcium imaging was
unable to detect female pheromone activation in the antennal lobe of female H. virescens, how-
ever, it was reported that the cLFG was not in focus during the study. Conversely, Hillier et al.
[11] reported that female H. virescens do indeed detect and respond to their own sex phero-
mone despite morphological sexual dimorphism of their trichoid sensilla; and that female
pheromone-detecting ORNs do exclusively target the female cLFG analogous to the MGC in
males. Despite this, the evolutionary and behavioral importance of the ability of female H. vir-
escens to detect female pheromone is not yet known.

Biogenic amines are of particular importance in insect olfaction and are expressed in rela-
tively few antennal lobe neurons [19][20]. Octopamine (4-(2-amino-1-hydroxy-ethyl) phenol;
hereafter ‘OA’) is a neuromodulator of insect olfaction as well as a neurohormone and neuro-
transmitter throughout the nervous system [19][20]. The most widely, and arguably evolution-
arily important, observation of OA is the apparent similarity with the noradrenergic system of
vertebrates. In the periphery, OA functions as a regulator of activity and stress hormone,
enhancing muscle contraction and increasing metabolism of the fat body [21][22].

All major areas of the insect brain (optic lobes, central body, and mushroom bodies) are
innervated with octopamine containing neurons [22]. Octopaminergic neurons, as clusters of
cell bodies and perikarya, are classified into ten groups (I-X) [23]. Of particular interest are the
unpaired, Group VIII and IX, neurons situated in the ventral midline or the dorsal midline of
the subesophageal, thoracic, and abdominal ganglia. These referred to as VUM (ventral
unpaired median) and DUM (dorsal unpaired median) nerves and innervate most of the insect
brain [23]. In the locust the DUMETi neuron (a DUM neuron) innervates the extensor tibiae
muscle and modulates neuromuscular transmission; octopamine injections have been shown
to increase the contractile force of this muscle [24]. In Apis mellifera L the VUMmx1 neuron
originates in the suboesophageal ganglion and projects into the brain innervating the glomeruli
of the antennal lobes, lateral protocerebrum and mushroom body calyces [25]. The VUMmx1
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neuron has been proposed as being octopaminergic, possibly mediating olfactory learning, by
providing reinforcement similar to that of sugar in olfactory learning trials [25][26].

The modulatory effect of OA on the olfactory system of insects is of particular interest.
Within the Lepidoptera, octopaminergic neurons and OA receptors have been cloned from
multiple species, with extensive evidence for its role in sensory processing and behavioral mod-
ulation [27][28][29]. In studies on oriental fruit moths (Grapholita molesta Busck), OA treat-
ments cause a marked increase in sensitivity to pheromone signals resulting in increased
numbers of males taking flight and orienting to the odor source in a wind tunnel [30]. Linn &
Roelofs [31] also found male flight response to pheromone signals modulated by circadian
rhythm, temperature and photoperiodic cues are linked to endogenous neuromodulators. Sub-
sequent work with cabbage looper moths (T. ni) showed that not only were male moths sensi-
tized to pheromone after OA injection but that their behavioral response was similar to
response of untreated moths to much higher pheromone concentrations, and that OA antago-
nists reduced male response rates to female pheromone dramatically [32]. However, in studies
with male gypsy moths (Lymantria dispar L. (Lepidoptera: Erebidae)) it was determined that
the behavioral effect of OA injections did not occur at all times in the light cycle. Injections at
the start of scotophase had no affect on pheromone response whereas injections only an hour
earlier showed marked increase in pheromone response [33]. As well, in Agrotis ispilonHufna-
gel (Lepidoptera: Noctuidae), it has been shown that OA treatment enhances flight of virgin
males to female sex pheromone, it does not restore mating behavior in post-mated moths,
despite restoring response characteristics within the antennal lobe [34]. These studies show
that context is critical for the activity of OA. OA release, and its neuromodulatory action, is
under circadian control and that light level detection is key in its regulation, and that mecha-
nisms under OA control may be part of more complex regulatory pathways controlling behav-
ioral outputs.

Centrally, increased intracellular cyclic adenosine monophosphate (cAMP) activity in the
antennal lobe has been purported as a likely pathway for increased sensitivity to pheromone
[35]. On the antenna, Pophof [36] also investigated transepithelial potential changes to observe
the modulatory effects of OA on peripheral olfactory receptor neurons in the silkworm moth
(Antheraea polyphemus Busck (Lepidoptera: Saturiniidae)). OA injections increased peak
nerve impulse frequency in a dose dependent fashion in response to pheromone stimulation
whereas the antagonist epinastine decreased sensitivity in a dose-dependent fashion [36]. It
was concluded that the likely mechanism was modulation of the Na/K membrane pump of the
ORNs via cAMP induced PKA action. These results were later confirmed inMamestra brassi-
cae L (Lepidoptera: Noctuidae) [37]. In addition they showed that chlorpromazine, an OA
antagonist, decreases ORN pheromone sensitivity and may decrease long term adaptation of
ORNs keeping them in a sensitized state despite long exposure to pheromone cascade [37]. OA
injections also increase ORN responses to pheromones in male Bombyx mori L. (Lepidoptera:
Bombycidae) but did not increase ORN responses to general odorants in females [38]. This led
to the conclusion that despite the olfactory transduction pathway being the same for phero-
mone-sensitive and general odorant-sensitive ORNs a modulatory pathway exists in male
pheromone sensitive sensilla that is absent or less sensitive in females.

Recent evidence found that a large portion of female H. virescens short trichoid sensilla do
detect their conspecific female sex pheromone, which lends the question as to whether these
sensilla are modulated by OA [11]. OA is expressed on the antennae ofH. virescens, with reac-
tive cells present at the base of sensilla [17]. Given this knowledge, does OA also increase the
sensitivity of these sensilla, making them similar to the long pheromone sensitive trichoid sen-
silla of male H. virescens? Or is their sensitivity not increased by OA, making them pharmaco-
logically similar to other short trichoid sensilla tuned to non-pheromone odorants? Based on
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the evidence of octopaminergic neurons in the brain and receptors in the antenna of female H.
virescens it is hypothesized that OA will increase the sensitivity of female ORNs to their con-
specific female sex pheromone. In effect, this would indicate a significant degree of similarity
in neuropharmacology between male and female pheromone detecting systems, despite mor-
phological differences. The objective of this study is to utilize single sensillum recordings (SSR)
to compare any modulatory effect of OA injections on male and female H. virescens response
to pheromones and host plant volatiles.

Materials and Methods

Insects
Three to four day oldH. virescens were selected from an established colony at Acadia Univer-
sity (Wolfville, Nova Scotia). Larvae were reared on Tobacco Budworm Diet purchased from
Southland Products, Inc. (Southland™ Products Inc., Lake Village, Arkansas). Pupae were then
separated by sex and placed into an environmentally controlled room (24°C, 60% relative
humidity) on a reversed light schedule (14D:10L) until eclosion and testing.

Chemicals
Female pheromone components were selected based on their ability to elicit single sensillum
responses in female H. virescensmoths [11]. The female sex pheromone components were as
follows: (Z)-9-tetradecenal (Z9-14:Ald), (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-11-hexade-
cenyl acetate (Z11-16:OAc) and were obtained from Bedoukian Research, Inc. (Danbury,
Connecticut, USA). Putative host volatiles were selected from compounds that have shown
physiological or behavioral effects on H. virescens in previous studies [11][12][39][40]: 2-phe-
nyl ethanol, Z3-hexenol, along with racemic linalool and β-caryophyllene were obtained from
Sigma Aldrich (St. Louis, MO, USA). All chemicals were diluted in hexane at decade steps
from 10ng/μl-100μg/μl, and stored at -20°C. OA-hydrochloride was obtained from Sigma
Aldrich (St. Louis, MO, USA) and stored at room temperature. OA was diluted to 50μg/μl in
hemolymph Ringer solution [41] and stored in a fridge at 4°C.

Odorant Stimulation
Z11-hexadecenal (Z11-16:Ald), Z9-tetradecenal (Z9-14:Ald) and Z11-hexadecenyl acetate
(Z11-16:OAc) were used as pheromone stimuli, whilst 2-phenyl ethanol, Z3-hexenol, (+/-) lin-
alool and β-caryophyllene were selected as host volatiles for testing. All stimuli were diluted to
10−4 to 102 μg/μl, applied to filter paper at 10−3 to 103 μg loads and inserted into glass pipettes
for stimulations. Hexane was used as the solvent blank for control stimulations. Stimuli were
introduced as a 100ms pulse to a continuous stream of humidified, charcoal filtered air at a
flow rate of 1 L/min. When a sensillum was contacted and a stable recording achieved, each
stimulus was presented in random order at a 1μg stimulus load, along with the hexane blank to
determine relative sensitivity to all compounds. After an observed response to an individual
odor stimulus, a full concentration series was tested.

An interval of at least 60 seconds was allowed to pass between stimulation to prevent adap-
tation, in addition a constant vacuum flow (30 cm/s) was provided to clear residual odor away
from the preparation between stimulation. Stimulations were carried out for 100ms and
recordings were initiated 2 seconds before stimulation and continued 4 seconds after stimula-
tion for a 6 second total recording. All recording were made using Spikehound software (Physi-
ology Recording and Identification of Multiple Events; MATLAB1, The Mathworks, Inc.)
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[42], a freely-available Windows based program for digital recording and analyses of event/
spikes.

OA Injections
All moths were individually restrained in cut disposable 1ml micropipette tips with dental wax.
Injections of OA (1 μl volume) were made using a 50 μl syringe at a 1mm depth to the vertex
(posterior head, ‘neck region’), corresponding to 0.1 μg OA/mg of body weight per moth [38].
SSR were conducted 30 minutes after injection to coincide with previous reports of the optimal
window of activity of OA on ORNs [38][39]. Control moths were handled in a similar manner,
but injected with Ringer only.

Single Sensillum Recordings
Restrained, injected moths were placed horizontally on a microscope slide with their antennae
fastened to a small plastic cube with water-soluble correction fluid. Correction fluid was also
applied to the base of the antenna to ensure stability. The reference electrode was inserted in
the ipsilateral eye. The preparation was viewed at 200x magnification under a Nikon Eclipse
Fixed Stage Microscope.

Glass electrodes were produced using borosilicate capillary glass in a Sutter Instrument Co
P-97 Flaming/Brown Micropipette Puller (Sutter Instruments, Novato, CA). Individual sensilla
were cut using fine glass capillary mounted on a piezoelectric crystal controlled by a function
generator (INSTEK GFG-8215A). The glass capillary was made to resonate at high speed by
altering the frequency (square wave and 100K signal amplification setting) of the signal from
the function generator to the sound emitting piezo crystal [11][43]. Advancement of the reso-
nating glass capillary with the micromanipulator allowed the distal 25% of a given sensillum
selected from the proximal ventral portion of the antenna to be cut.

Once a sensillum was cut, a glass-recording electrode (chloridized silver wire in a Ringer
-filled glass capillary) was micromanipulated to the tip of the cut sensillum. ORN activity was
filtered and amplified using an EX-1 amplifier (Dagan Corporation, Danbury, CT, USA; Low
Cut Filter:10, High Cut Filter: 3K, Gain: 50, Notch Filtered), monitored using a Oscilloscope
(GOS-620FG, Instek, New Taipei City, Taiwan) and converted to audio using a AM Systems,
Inc. 3300 Audio Monitor for ease of ORN activity detection. Signals digitally acquired and
passed to a computer via a DAQ card (PCI-6251; National Instruments, Austin, TX, USA). As
mentioned previously odor stimulations and subsequent responses were controlled and digi-
tally recorded using Spikehound1 software.

Data Analysis
Recordings were filtered (300 high cut, 3000 low cut) to remove any background electrical
noise. Spikehound was used to extract, analyze and save the nerve impulse (i.e. spike) data.
Individual ORNS were sorted by spike amplitude. Stimulus-induced spike frequencies were cal-
culated using a one second window following stimulus onset. Pre-stimulus spontaneous
impulse frequencies were calculated from a 1 second window during the recording (time points
0–1 second before stimulus delivery. Pre-stimulus and post-stimulus data were exported as text
files.

The mean change in impulse frequency (post-stimulus frequency–pre-stimulus frequency)
for all odors was calculated for the control and OA injected groups across the concentration
series, and standardized versus a solvent (hexane) control stimulus. Data was segregated by
sex, and a multi-way ANOVA was performed to testing injection treatment, stimulus and con-
centration as factors [44]. Mean pre-stimulus spike frequency was also calculated to compare
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spontaneous firing prior to stimulus onset. A two-way ANOVA was conducted comparing
pooled spontaneous activity of pheromone-sensitive versus host volatile sensitive sensilla, and
injection of OA or control factors. Tukey's HSD (honest significant difference; α = 0.05) test at
was used for post-hoc comparisons. All statistical analyses were conducted in in JMP1 10
[45].

Results
Successful recordings (complete recordings in which responses to all stimuli were obtained)
were made from 239/400 sensillar contacts from females, and from 275/365 contacts in males
in the control group (the greater success rate in males is attributed to ease in identifying phero-
mone-sensitive long sensilla trichodea; Table 1). In the OA-injected group, 119/212 sensillar
contacts yielded useful recordings from females, along with 140/189 contacts in males.

Mean spontaneous impulse frequency of ORNs within pheromone-sensitive sensilla was
significantly greater in the OA-injected group than in the control group for both males (F3, 155
= 107.2; p<0.001) and females (F3, 194 = 97.5; p<0.001). In males, responses by ORNs housed
in long sensilla trichodea were represented by Type A, responding to Z11-16:Ald, Type B,
responding to Z9-14:Ald, and Type C responding to Z11-16:OAc, and other components. In
females, responses to selected pheromone components were localized to short sensilla tricho-
dea which have been previously shown to respond to key pheromone components. Pheromone
component-sensillar types were as follows: Z11-16:Ald (Type 5), Z9-14:Ald (Type 3), Z11-16:
OAc (Type 1). Nomenclature for sensillar types for males and females is based on numerous
previous studies (4)(5)(11)(34). ORNs from OA-injected female (F1,90 = 4853.2; p<0.001) and
male (F1,130 = 5757.4; p<0.001) moths were significantly more sensitive to all female sex phero-
mone compounds than control moths (Figs 1 and 2). This was observed in recordings from
ORNs housed in long sensilla trichodea in males and from those within short sensilla trichodea
in females, which responded to these stimuli. This effect was most pronounced at stimulus con-
centrations above 100ng/μl-1μg/μl.

By comparison, no significant differences were observed in ORN responses within short
sensilla trichodea between control and OA-injected groups of both sexes when stimulated with
selected host plant stimuli (females—F3,149 = 0.5727; p = 0.45; males—F3,145 = 2.5; p = 0.11;
Type 7–13 sensilla in both males and females; Fig 3). Increasing stimulus concentrations within
both sexes and experimental groups yielded very similar stimulus profiles (Fig 3). Furthermore,
the spontaneous impulse frequency of host volatile-sensitive neurons in both sexes was not sig-
nificantly different following injection of OA (F2,294 = 0.49; p = 0.65).

Table 1. Number of successful single sensillum recordings frommale and female Heliothis virescens injected with ringer or octopamine which
responded to selected stimuli.

Female Male

Successful recordings Ringer Octopamine Ringer Octopamine

2-Phenyl ethanol 15 15 15 15

Beta-caryophyllene 25 20 21 20

Linalool 20 24 20 24

Z3-hexenol 15 15 15 15

Z9-14:Ald 15 15 23 22

Z11-16:Ald 15 15 21 20

Z11-16:OAc 15 15 20 24

Total 120 119 135 140

doi:10.1371/journal.pone.0143179.t001
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Discussion
Single sensillum recordings compared the response of Heliothis virescens pheromone-sensitive
sensilla (long sensilla trichodea in males and short sensilla trichodea in females), and those
detecting a selection of host plant volatiles (short sensilla trichodea in both sexes). OA injec-
tions selectively increased sensitivity of male and femaleH. virescens olfactory receptor neurons
to pheromone components versus other compounds tested. This study further confirms previ-
ous work by Hillier et al. [11] thatH. virescens females can detect components of their own sex
pheromone.

Following OA injection, threshold to response by males and females to pheromone compo-
nents was reduced by two-to-three orders of magnitude versus control group. In other words,
OA treatment confers a sensitivity and response to a 100ng/μl stimulus which is as great as the
response to a 10μg/μl simulus in a control moth (three orders of magnitude greater). In addi-
tion, an increase in spontaneous firing was observed in pheromone-sensitive ORNs from both
sexes, but not to those receptive to the host volatiles.

The mechanism of OA action on neurons is proposed via the G-coupling of OA receptors
to adenylate cyclase [35]. Although the underlying mechanisms of transduction are not under-
stood, it has been proposed that OA binding induces the production of cAMP, and OA-depen-
dent CAMP levels putatively regulate pheromone receptor ion channel complexes, modifying
sensitivity to key odorants [46]. Subsequent increases of subthreshold potentials (and sensitiv-
ity) have been proposed through increased leaking of the olfactory receptor/coreceptor ion
channel complex [47][48], and/or increased opening of PKC-inhibited L-type Ca 2+ and
CNG-channels [47][49]. Overall, the current work suggests biogenic amine susceptibility, and

Fig 1. Exemplar responses of female type 3 sensilla to stimulation of three 100ms pulses of Z9-14:Ald at concentrations of 100ng and 1μg
following injection of Ringer control or octopamine.

doi:10.1371/journal.pone.0143179.g001
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thus OA receptors, may be linked to olfactory receptor protein types which are differentially
expressed in both long and short sensilla trichodea in male and female moths.

As discussed, until relatively recently, much insect olfactory research has been based on the
presumption that many species of female moths may not effectively detect female sex phero-
mone. The combination of morphological and physiological data to date has therefore sug-
gested that dimorphism in the detection and processing of pheromones maintains exclusivity
based upon sex. FemaleH. virescens do, however, have sensilla that detect, and a cluster of glo-
meruli at the base of the antennal lobe which process, female sex pheromone components [11].
This study further validates that females both detect and modulate pheromone responses in a
manner similar to conspecific males.

Modulation of ORN sensitivity in male moths is not surprising. It is logical that increasing
sensitivity to female sex pheromone is extremely important to male moths. Indeed, Roelofs and
Linn [50] demonstrated that injections of OA cause male moths to detect, take flight, and ori-
ent to smaller concentrations of female pheromone in wind tunnel assays. However, minimal
behavioral research has been conducted as to why females detect their own sex pheromone.
Indeed, few reliable behavioral paradigms have been devised to examine if females respond
behaviorally to female sex pheromone, while many exist exquisitely showing that males orient
and fly upwind to female pheromone sources [51][52]. As a consequence, more research is
required to determine if increased peripheral sensitivity to pheromone in females will affect
behavioral response to pheromones.

While sensitivity of female ORNs to pheromone components has been previously docu-
mented [15], the selective modulation of such ORNs in a manner consistent with male phero-
mone-sensitive ORNs is novel. Such modulation is proposed to impact yet undescribed
pheromone-mediated behaviors in females for which modulation of sensitivity is required
(similar to males [30][31][32][33]). As in males, this may influence circadian rhythms of
response, orientation, or calling behavior directly [53][54][55][56]. Without a clear under-
standing of the role of such ‘autodetection’, it remains to be determined how OA modulation
of peripheral sensitivity influences olfactory-driven behaviors or physiological changes.

Three primary hypotheses exist for female ‘autodetection’: 1) First, female moths may detect
the pheromone mixture produced by other conspecific females, and thus, can position them-
selves to reduce intraspecific competition for mates [53]. Second, pheromone emission may
trigger females to join together to form choruses of joint pheromone-emission [54]. Third, the
detection of conspecific female pheromone by immature female moths triggers a biochemical
process (i.e. priming) by which immature female moths initiate production and emission of
their own sex pheromone [55][56]. It is clear, however, more research is required in this area,
and no previous evidence is known to support either hypothesis specifically for female autode-
tection in H. virescens.

Recent electrophysiological evidence has shown that females of two Noctuid moth species,
S. littoralis and H. virescens, detect their own female sex pheromone [11][15] despite having
only morphologically ‘short’ trichoid sensilla. Additionally, olfactory receptor neurons of these
female sex pheromone-detecting sensilla target a large glomerulus (central large female glomer-
ulus, aka. cLFG) at the base of the antennal nerve analogous to the MGC in female H. virescens
[11]. As well, female pheromone receptor gene expression and 'male' type olfactory binding
proteins have been previously found onH. virescens antenna [16][17]. From an evolutionary

Fig 2. Dose-response curves showing impulses/second from sensillar recordings of male and femaleHeliothis virescens, following injection of
Ringer control or octopamine, and stimulation with: (A, B) Z9-14:Ald; (C, D) Z11-16:Ald; and (E, F) Z11-16:OAc. Asterisks indicate significant
differences between responses in control and octopamine treatments to the same compound/concentration of stimulus (Tukey’s HSD, p<0.05).

doi:10.1371/journal.pone.0143179.g002
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perspective, our study demonstrates octopaminergic effects on ORNs within female H. vires-
cens pheromone-sensitive sensilla that suggests similarity in their physiological function as
ORNs in male pheromone-sensitive sensilla. This suggests that pharmacological specialization
of pheromone-sensitive ORNs via octopaminergic modulation predates divergence of sexually
dimorphic morphological differences seen in this species (i.e. differences in sensillar length and
a relatively large MGC).

Pophof [38] reported that OA injections in males increased their sensitivity to female sex
pheromone, but similar injections in females did not increase sensitivity to general odorants.
This suggests that an OA-dependent modulatory pathway is either absent, or less sensitive, in
female ORNs. It should be noted that to date, conspecific female pheromone-detecting ORNs
in female A. polyphemus have not been reported [38].

It is worthwhile noting that other studies provide evidence of OA-modulation of peripheral
olfactory responses to non-pheromonal odors. In Tortricid moths Choristoneura rosaceana
Harris and Arygrotaenia velutinanaWalker, injection of OA enhances electroantennogram
responses to several host plant volatiles, mimicking sensitization observed by pre-exposure to
complex host mixtures [57]. As well, cockroaches, Periplaneta americana L, have differential
modulation of olfactory receptor neurons. Specifically, application of OA to male cockroaches
increased ORN responses to the non-pheromone volatile (hexan-1-ol) [58]. This study further
found that different sensilla responsive to non-pheromone volatiles were influenced differently,
with firing rates of short, but not long-alcohol-sensitive sensilla being increased. Differential
results between results found in cockroaches and other studies on Lepidoptera remain to be
reconciled, however, each of these studies used differing concentrations of OA injection, and
results garnered from other studies on Lepidoptera using electroantennograms may include
responses from many different types of sensilla (comprising both pheromone and host-plant
sensitive sensilla).

Recently octopamine/tyramine receptors have been cloned from aMamestra brassicae L.,
with extensive expression noted within both long and short sensilla trichodea of both sexes
[59], also suggesting that OA modulates allelochemical and pheromone detection. This varies
from previous Digoxigenin (DIG)-labeling results which found OA expression inH. virescens
antennae was isolated to cells at the base of sensilla, rather than within sensilla themselves [29].
Therefore, behavioral and evolutionary significance of the set of odorants tested in each species,
along with the context of presentation and endogenous OA concentrations may also influence
observed responses.

Evidence that OA enhancement of ORN sensitivity inH. virescens is exclusive to phero-
mone-sensitive neurons (at least based on the set of odorants tested) provides new directions
for investigation of OA on non-pheromone based behaviors. OA can replace the sugar stimulus
in honey bee proboscis extension reflex (PER) conditioning trials, and concurrent OA injection
can greatly increases PER responsiveness to sucrose [60][61]. More recently, work onManduca
sexta L. has also demonstrated a marked effect of OA injection on conditioning to floral volatile
organic compounds, displaying PER responsiveness to OA, and multichannel neural record-
ings which were similar to those obtained from moths which had learned with a standard PER
protocol [62]. Future work in H. virescensmight therefore investigate if OA exhibits effects on
olfactory conditioning using odorants documented in the current study, and if these may be

Fig 3. Dose-response curves showing impulses/second from sensillar recordings of male and femaleHeliothis virescens, following injection of
Ringer control or octopamine, and stimulation with: (A, B) 2-Phenyl ethanol; (C, D) β-caryophyllene (E, F) linalool; and (G, H) Z3-hexenol. No
significant differences were noted between responses in control and octopamine treatments to the same compound/concentration of stimulus (Tukey’s HSD,
p<0.05).

doi:10.1371/journal.pone.0143179.g003
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modulated through higher order activity in the brain, rather than via direct enhancement of
peripheral sensitivity.

In conclusion, this study demonstrates that OA dramatically increases the sensitivity of
female insect olfactory receptor neurons, specifically those detecting female-produced sex
pheromone components. This provides new avenues to examine the connection between the
modulatory role of OA on pheromone-detecting ORNs and female moth behavior. Moreover,
these results provide new insights regarding the divergence and evolution of sexual
dimorphism.
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