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Abstract

In this paper, we investigate a step-stress partially accelerated lifetime test for the four-compo-

nent hybrid systems with Type-II progressive hybrid censoring scheme while the life time of

system component follows exponential failure rate. In many cases, the exact component caus-

ing the system failure cannot be identified and the cause of failure is masked. Based on Type-II

progressively hybrid censored and masked data, the maximum likelihood estimations for

unknown parameters and acceleration factor are obtained. In addition, approximate confidence

interval and bootstrap confidence interval are presented by using the asymptotic distributions

of the maximum likelihood estimations for unknown parameters and bootstrap method, respec-

tively. Finally, the proposed method is illustrated through the simulation studies.

Introduction

The failure data from multi-component systems plays an important role in system reliability

analysis. Usually, the system failure data contain the failure time and the information on the

exact component causing the system failure. In some cases, however, due to lack of proper

diagnostic equipment or cost and time constraints, the exact component causing the system

failure is not identified, and the failure cause is isolated to a subset of the system components.

Such type of data is called masked data. Recently, the statistical analysis for masked data has

been studied by several authors. Usher and Hodgson [1] initially proposed the masked data,

and derived the maximum likelihood estimations (MLE) for unknown parameter in a series

system. Lin [2] presented the Bayes estimation for a two-component series system with expo-

nential components. Sarhan [3] focused on two and three component series system when com-

ponent life follows Weibull distribution, and obtained the MLE of unknown parameter.

Bayesian analysis for the two-component series system with Pareto components were dis-

cussed in [4]. The MLE and Bayesian estimation (BE) were presented for parallel system in [5–

6]. When system component lifetime follows constant and linear failure rate, the MLE and

other estimation methods were studied in [7–9]. Jiang [10] presented the MLE and BE for a
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series system under exponential failure rate. The MLE and approximate confidence interval

were derived for a three-component hybrid systems in [11].

For some products with high reliability and long lifetime, it is difficult to get the failure

information under use stress level. Accelerated life test (ALT) is a strategy to overcome the

problem. Based on the failure data of accelerated life test to analyze the life characteristics of

product, we need to use the relationship between the reliability index and stress levels, that

acceleration model. In many cases, however, the accelerated model does not exist or is difficult

to find so that ALT is not available. Partially accelerated life test (PALT) is a better way to use

in practical application. A class of PALT is step-stress partially accelerated life test (SSPALT).

In SSPALT, a test product runs at use stress level first and if it does not fail in a prefixed time

point, and then it run at accelerated stress level until failures or the observations are censored.

Based on Type-I censoring scheme, reliability analysis for a series system in SSPALT was stud-

ied in [12], where the components lifetime follows Weibull distributions. Ismail [13] presented

the MLE and interval estimation of the generalized exponential distribution parameters under

SSPALT with Type-II censoring. Sun [14] made inference for Burr-XII distribution parame-

ters in SSPALT, and a hybrid algorithm combined Gibbs sampling and Metropolis-Hastings

sampling was used. The MLE, approximate confidence interval (ACI) and Bootstrap confi-

dence intervals (BCI) were given under SSPALT with Type-I censoring in [15]. Ref. [16] con-

sidered the MLE and ACI in SSPALT for the Burr-XII distribution with Type-I censoring.

Ref. [17] proposed Bayesian analysis for the series system under SSPALT.

In SSPALT, it is necessary to take progressively hybrid censoring schemes into account.

Type-II progressively hybrid censoring (PHC), initially proposed by Kundu D [18], is a new

censoring scheme. It can not only remove the tested product to study properties during the

test, but also effectively control the test of time and reduce test costs. Therefore, the censoring

scheme has attracted wide attention. SSPALT was studied under Type-I PHC in [19–20].

Ismail [21] made inference for a Weibull distribution in SSPALT with an adaptive Type-I pro-

gressively hybrid censored data. Some related literatures are [22–25]. So far, most researches

for masked data focused on a system that is either series or parallel only. In many real situa-

tions, however, it is often seen that a system functions in a way better described by a combina-

tion of series and parallel constructions. For example, computer network transmission

systems, power transmission systems in power stations, and complex electric burst networks

[26]. Statistical analysis on hybrid system with masked data was very rare. Wang et al. [11]

studied parameter inference on the independent component hybrid system with masked data,

where the component’s failure rate was considered as a constant or a linear function. Assum-

ing dependent lifetimes of components modelled by Marshall and Olkin’s bivariate exponen-

tial distribution in the system, Sha et al. [27] investigated statistical inference on dependent

component hybrid system with masked data. In addition to constant and the linear failure

rates, the exponential failure rate is also worthy of attention and are studied [28]. Statistical

inference for a series system was discussed based on complete samples in [28], where the com-

ponent’s failure rate was considered as an exponential function. However, they did not involve

accelerated life testing and PHC schemes. Different from previous research, this paper mainly

discussed SSPALT for four-component hybrid system with masked data under PHC when the

component’s failure rate was exponential function.

The rest of this paper is organized as follows. A brief description of the SSPALT model and

the assumptions are elaborated in Section 2. MLEs for unknown parameters and acceleration

factor are presented in Section 3. Approximate confidence interval and Bootstrap confidence

interval for unknown parameters and acceleration factor are obtained in section 4. In Section

5, the Monte-Carlo simulation studies are carried out for different sample sizes and for differ-

ent progressive censoring schemes. Some conclusions are presented in Section 6.

Statistical analysis for masked hybrid system lifetime data in SSPALT
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Model description and basic assumptions

Two fundamental types of hybrid systems with four components is discussed in this paper,

which is shown in Fig 1 and Fig 2.

For above two fundamental types of hybrid systems, the SSPALT model under Type-II

PHC is described as follows.

Model description

At the start, n identical systems are placed on test at use stress level s0. Each of these systems

has four components. At the first failure time t1, R1 systems are randomly removed from the

remaining n−1 systems. At the second failure time t2, R2 systems are randomly removed from

the remaining n−R1−2 systems, and so on. At time τ, all of the surviving systems are moved to

accelerated stress level s1 (s1 > s0). If the mth failure time tm occurs before the preset time point

η (η> τ), then the test terminates at the time point tm and all of the remaining Rm = n−m−(R1

+ � � � + Rm−1) are removed, where τ, R1,R2� � �,Rm are prefixed and m< n. Otherwise, If the

Fig 1. Hybrid system (a).

https://doi.org/10.1371/journal.pone.0186417.g001

Fig 2. Hybrid system (b).

https://doi.org/10.1371/journal.pone.0186417.g002
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failure time tm does not occur before the time point η, and only d failure occurs before the time

point η, where d<m, then all the remaining R�d systems are removed at the time point η and

test terminates, where R�d ¼ n � d � ðR1 þ � � � þ RdÞ. Let nu denote the number of systems

failure at use stress level, nv be the number of systems failure at accelerated stress level, and R
be the whole number of systems failure at the life test, where R = nu + nv. Assume the observed

system failure times can be obtained, and the cause of system failure is only known to belong

to the minimum random subset of the set {1,2,3,4}. Let Si be the set of components causing the

system i failure, si represent the observations of Si, Then si� {{1},{2},{3},{4},{1,2},{1,3},{1,4},

{2,3}{2,4},{3,4},{1,2,3},{1,3,4}{2,3,4}{1,3,4},{1,2,3,4}} Thus, the available lifetime data of the

hybrid system can be obtained as follows:

Case Ⅰ: fðt1; s1Þ; ðt2; s2Þ; � � � ; ðtnu ; snuÞ; � � � ; ðtm; smÞg, if τ< tm� η,

Case Ⅱ: fðt1; s1Þ; ðt2; s2Þ; � � � ; ðtnu ; snuÞ; � � � ; ðtnuþnv ; snuþnvÞg, if tm> η.

Basic assumptions

In order to analyze the lifetime data of the hybrid system from SSPALT, we make the following

assumptions.

A1. At use stress level s0, the lifetime of the j-th component in the hybrid system follows

exponential failure rate:

h1jðtÞ ¼ lje
t; t > 0; lj > 0; j ¼ 1; 2; 3; 4: ð1Þ

Then the cumulative distribution function (CDF), probability density function (PDF) and

reliability function (RF) for the j-th component of the system are given (j = 1,2,3,4), respec-

tively.

F1jðtÞ ¼ 1 � exp½� ljðe
t � 1Þ�; t > 0; lj > 0; ð2Þ

f1jðtÞ ¼ lje
t � exp½� ljðe

t � 1Þ�; t > 0; lj > 0; ð3Þ

�F 1jðtÞ ¼ exp½� ljðe
t � 1Þ�; t > 0; lj > 0: ð4Þ

A2. The tampered random variable (TRV) model holds:

T ¼ X; if X � t; T ¼ tþ a� 1ðX � tÞ; if X > t; ð5Þ

where T denotes the total lifetime of a component and X is the lifetime of the system at use

stress level, τ is the stress change time and α is the acceleration factor, α> 1, see [29]. From

Eqs (1–5), at accelerated stress level s1, the CDF, FRF, RF and PDF for the j-th (j = 1,2,3,4)

component of the system are given by

F2jðtÞ ¼ 1 � exp½� ljðeðtþaðt� tÞÞ � 1Þ�; h2jðtÞ ¼ aljeðtþaðt� tÞÞ;

�F 2jðtÞ ¼ exp½� ljðeðtþaðt� tÞÞ � 1Þ�; t > 0; lj > 0;

f2jðtÞ ¼ aljeðtþaðt� tÞÞ � exp½� ljðeðtþaðt� tÞÞ � 1Þ�; t > 0; lj > 0:

ð6Þ

A3. The lifetime of tested systems is independent and identically distributed at both use

stress level and accelerated stress level.

A4. Masking is independent of the cause of system failure, the failure time and stress level.

Statistical analysis for masked hybrid system lifetime data in SSPALT
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Maximum likelihood estimations

Assume Ti is the lifetime of the system i, ti denote observations of Ti. The lifetime of the j-th

component of the system i are denoted by Tij, the observations of Tij is expressed as tij,
i = 1,2,� � �,n, j = 1,2,3,4. Note that Si be the set of components causing the system i failure, si
represent the observations of Si. If si include more than one element, then the cause of the sys-

tem failure is not exact and it is masked. Let Ki denote the specific component inducing the

system i failure. Unless otherwise noted, k = 1,2 respectively denote the use stress level and

accelerated stress level in this paper. So, when k = 1, i = 1,� � �,nu and when k = 2, i = nu+1,� � �,R.

Now, let us consider the system i, where i = 1,� � �,nu; k = 1 or i = nu+1,� � �,R; k = 2.

Pðti < Ti < ti þ dti; Si ¼ siÞ ¼
X4

j¼1

Pðti < Ti < ti þ dti; Si ¼ si;Ki ¼ jÞ

¼
X4

j¼1

Pðti < Ti < ti þ dti;Ki ¼ jÞPðSi ¼ sijti < Ti < ti þ dti;Ki ¼ jÞ

¼
X

j2si

Pðti < Ti < ti þ dti;Ki ¼ jÞPðSi ¼ sijti < Ti < ti þ dti;Ki ¼ jÞ;

ð7Þ

where P(Si = si|ti< Ti< ti + dti, Ki = j) is called masked probability, and from basic assump-

tions A4, we derived P(Si = si|ti< Ti< ti + dti, Ki = j) = P(Si = si) = θi, where P(ti< Ti< ti + dti,
Ki = j) is the probability of system failure caused by component j at the time ti.

For the hybrid systems (a), the lifetime of the system i is

Ti ¼ max½minðTi1;Ti2Þ;minðTi3;Ti4Þ�:

The probability of the system i failure at the time ti due to each component is presented as

follows:

Pi1 ¼ Pðti < Ti < ti þ dti;Ki ¼ 1Þ

¼ Pðti < Ti1 < ti þ dtiÞPðTi2 > tiÞ½1 � PðTi3 > tiÞPðTi4 > tiÞ�

¼ fk1ðtiÞ�Fk2ðtiÞ½1 � �Fk3ðtiÞ�Fk4ðtiÞ�dti;

Pi2 ¼ Pðti < Ti < ti þ dti;Ki ¼ 2Þ

¼ PðTi1 > tiÞPðti < Ti2 < ti þ dtiÞ½1 � PðTi3 > tiÞPðTi4 > tiÞ�

¼ �Fk1ðtiÞfk2ðtiÞ½1 � �Fk3ðtiÞ�Fk4ðtiÞ�dti;

Pi3 ¼ Pðti < Ti < ti þ dti;Ki ¼ 3Þ

¼ ½1 � PðTi1 > tiÞPðTi2 > tiÞ�Pðti < Ti3 < ti þ dtiÞPðTi4 > tiÞ

¼ ½1 � �Fk1ðtiÞ�Fk2ðtiÞ�fk3ðtiÞ�Fk4ðtiÞdti;

Pi4 ¼ Pðti < Ti < ti þ dti;Ki ¼ 4Þ

¼ ½1 � PðTi1 > tiÞPðTi2 > tiÞ�PðT3 > tiÞPðti < Ti4 < ti þ dtiÞ

¼ ½1 � �Fk1ðtiÞ�Fk2ðtiÞ��Fk3ðtiÞfk4ðtiÞdti:

To ease notation, we denote

fi1 ¼ fk1ðtiÞ�Fk2ðtiÞ½1 � �Fk3ðtiÞ�Fk4ðtiÞ�; fi2 ¼ �Fk1ðtiÞfk2ðtiÞ½1 � �Fk3ðtiÞ�Fk4ðtiÞ�;

fi3 ¼ ½1 � �Fk1ðtiÞ�Fk2ðtiÞ�fk3ðtiÞ�Fk4ðtiÞ; fi4 ¼ ½1 � �Fk1ðtiÞ�Fk2ðtiÞ��Fk3ðtiÞfk4ðtiÞ;
ð8Þ
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where i = 1,� � �,nu; k = 1 or i = nu+1,� � �,R; k = 2. That is, if the system i fails at the use tress

level, then k = 1; system i fails at the accelerating stress level, then k = 2.

Suppose the lifetime of component 1, 2, 3 and 4 in the system are X,Y,Z,K, and X,Y,Z,K are

independent of each other. At use stress level, they have the same failure rate function h1(t) =

λet,t>0,λ>0. Then the system life W = max[min(X,Y),min(Z,K)]. According to basic assump-

tions A1 and A2, the reliability function of system at use stress level is obtained

�F 1ðtÞ ¼ expð� 2lðet � 1ÞÞ½2 � expð� 2lðet � 1ÞÞ�; t > 0; l > 0:

The reliability function of system at accelerated stress level is

�F 2ðtÞ ¼ expð� 2lðeðtþaðt� tÞÞ

� 1ÞÞ½2 � expð� 2lðeðtþaðt� tÞÞ

� 1ÞÞ�; t > 0; l > 0:

Based on Type-II PHC sample, the likelihood function for the hybrid systems (a) is given

by

Lðl; aÞ /
Ynu

i¼1

X

j2si

yifij

 !

�

"

�F 1

�

ti

�#Ri( )
YR

i¼nuþ1

(
X

j2si

yifij

 !

�

"

�F 2

�

ti

�#Ri)

�

"

�F 2

�

Z

�#R�

/
Ynu

i¼1

(
X

j2si

fij

 !

�

"

�F 1

�

ti

�#Ri) YR

i¼nuþ1

(
X

j2si

fij

 !

�

"

�F 2

�

ti

�#Ri)

�

"

�F 2

�

Z

�#R�

In the above formula, for Case Ⅰ, R = m, R
�

= 0; For Case Ⅱ: R = d, R
�

= n−d−(R1 +� � �+ Rd).
The likelihood function for the hybrid systems (a) is written as:

Lðl; aÞ /
Ynu

i¼1

X

j2si

fij

 !

� ½�F 1ðtiÞ�
Ri

( )
YR

i¼nuþ1

X

j2si

fij

 !

� ½�F 2ðtiÞ�
Ri

( )

� ½�F 2ðZÞ�
R�

/
YR1

i¼1

X

j2si

fij

( )
YR1þR2

i¼R1þ1

X

j2si

fij

( )
YR1þR2þR3

i¼R1þR2þ1

X

j2si

fij

( )
YR1þR2þR3þR4

i¼R1þR2þR3þ1

X

j2si

fij

( )
YR1þ���þR5

i¼R1þR2þR3þR4þ1

X

j2si

fij

( )

�
YR1þ���þR6

i¼R1þ���þR5þ1

X

j2si

fij

( )
YR1þ���þR7

i¼R1þ���þR6þ1

X

j2si

fij

( )
YR1þ���þR8

i¼R1þ���þR7þ1

X

j2si

fij

( )
YR1þ���þR9

i¼R1þ���þR8þ1

X

j2si

fij

( )

�
YR1þ���þR10

i¼R1þ���þR9þ1

X

j2si

fij

( )
YR1þ���þR11

i¼R1þ���þR10þ1

X

j2si

fij

( )
YR1þ���þR12

i¼R1þ���þR11þ1

X

j2si

fij

( )
YR1þ���þR13

i¼R1þ���þR12þ1

X

j2si

fij

( )

�
YR1þ���þR14

i¼R1þ���þR13þ1

X

j2si

fij

( )
Ynu

i¼R1þ���þR14þ1

X

j2si

fij

( )

�
Ynu

i¼1

½�F 1ðtiÞ�
Ri

� 	

�
YnuþR15

i¼nuþ1

X

j2si

fij

( )
YnuþR15þR16

i¼nuþR15þ1

X

j2si

fij

( )
YnuþR15þ���þR17

i¼nuþR15þR16þ1

X

j2si

fij

( )
YnuþR15þ���þR18

i¼nuþR15þ���þR17þ1

X

j2si

fij

( )
YnuþR15þ���þR19

i¼nuþR15þ���þR18þ1

X

j2si

fij

( )

�
YnuþR15þ���þR20
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X

j2si

fij

( )
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X

j2si

fij

( )
YnuþR15þ���þR22

i¼nuþR15þ���þR21þ1

X

j2si

fij

( )
YnuþR15þ���þR23

i¼nuþR15þ���þR22þ1

X

j2si

fij

( )

�
YnuþR15þ���þR24

i¼nuþR15þ���þR23þ1

X

j2si

fij

( )
YnuþR15þ���þR25

i¼nuþR15þ���þR24þ1

X

j2si

fij

( )
YnuþR15þ���þR26

i¼nuþR15þ���þR25þ1

X

j2si

fij

( )
YnuþR15þ���þR27

i¼nuþR15þ���þR26þ1

X

j2si

fij

( )

�
YnuþR15þ���þR28

i¼nuþR15þ���þR27þ1

X

j2si

fij

( )
YR

i¼nuþR15þ���þR28þ1

X

j2si

fij

( )

�
YR

i¼nuþ1

½�F 2ðtiÞ�
Ri

� 	
� ½�F 2ðZÞ�

R�

/
Ynu

i¼1

leti expð� 2lðeti � 1ÞÞ½1 � expð� 2lðeti � 1ÞÞ�f g �
Ynu

i¼1

expð� 2lðeti � 1ÞÞ½2 � expð� 2lðeti � 1ÞÞ�f g
Ri

�
YR

i¼nuþ1
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� 	

�
YR

i¼nuþ1
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� 	Ri
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R�
:

ð9Þ
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The log-likelihood function l = lnL(λ,a) can be written as

l / Rlnlþ nvlnaþ
Xnu

i¼1

½ti � 2lAðtiÞ þ lnð1 � W � 1ðtiÞÞ� þ
Xnu

i¼1

Ri½� 2lAðtiÞ þ lnð2 � W � 1ðtiÞÞ�

þ
XR

i¼nuþ1

½tþ aðti � tÞ � 2lBðtiÞ þ lnð1 � Q� 1ðtiÞÞ�

þ
XR

i¼nuþ1

Ri½� 2lBðtiÞ þ lnð2 � Q� 1ðtiÞÞ� þ R�½� 2lBðZÞ þ lnð2 � Q� 1ðZÞÞ�;

ð10Þ

where AðtiÞ ¼ eti � 1, W � 1ðtiÞ ¼ 1=WðtiÞ ¼ expð� 2lðeti � 1ÞÞ, BðtiÞ ¼ eðtþaðti � tÞÞ

� 1, and

Q� 1ðtiÞ ¼ 1=QðtiÞ ¼ expð� 2lðeðtþaðti � tÞÞ

� 1ÞÞ.

Setting the partial derivatives of l with respect to λ and α to zero, we can obtain

@l
@l
¼
R
l
þ
Xnu

i¼1

2AðtiÞ
1

WðtiÞ � 1
� 1

� �

þ
Xnu

i¼1

2RiAðtiÞ
1

2WðtiÞ � 1
� 1

� �

þ
XR

i¼nuþ1

2BðtiÞ
1

QðtiÞ � 1
� 1

� �

þ
XR

i¼nuþ1

2RiBðtiÞ
1

2QðtiÞ � 1
� 1

� �

þ 2R�BðZÞ
1

2QðZÞ � 1
� 1

� �

¼ 0

@l
@a
¼
nv
a
þ
XR

i¼nuþ1

ðti � tÞ 1 � 2lðBðtiÞ þ 1Þ þ
2lðBðtiÞ þ 1Þ

QðtiÞ � 1

� �

þ
XR

i¼nuþ1

2lRiðti � tÞðBðtiÞ þ 1Þ
1

2QðtiÞ � 1
� 1

� �

þ 2lR�ðZ � tÞðBðZÞ þ 1Þ
1

2QðZÞ � 1
� 1

� �

¼ 0

Solve the above equations by using an iterative method such as Newton-Raphson, we can

derive the MLEs of λ and α.

Similar to the hybrid systems (a), we can get the likelihood function for the hybrid systems

(b).

L l; að Þ /
Ynu

i¼1

X

j2si

fij

 !

� ½�F 1 tið Þ�
Ri

( )
YR

i¼nuþ1

X

j2si

fij

 !

� ½�F 2 tið Þ�
Ri

( )

� ½�F 2 Zð Þ�
R�

/
Ynu

i¼1

letiexp � 2l eti � 1ð Þð Þ½1 � exp � l eti � 1ð Þð Þ�½2 � exp � l eti � 1ð Þð Þ�f g

�
Ynu

i¼1

exp � 2l eti � 1ð Þð Þ½2 � exp � l eti � 1ð Þð Þ�
2

� 	Ri

�
YR

i¼nuþ1

ale tþaðti� tÞð Þexp � 2l e tþaðti � tÞð Þ � 1
� �� �

½1 � exp � l e tþaðti� tÞð Þ � 1
� �� �

�½2 � exp � l e tþaðti � tÞð Þ � 1
� �� �

�
� 	

�
YR

i¼nuþ1

exp � 2l e tþaðti � tÞð Þ � 1
� �� �

½2 � exp � l e tþaðti � tÞð Þ � 1
� �� �

�
2

� 	Ri

� exp � 2l e tþaðZ� tÞð Þ � 1ð Þð Þ½2 � exp � l e tþaðZ� tÞð Þ � 1ð Þð Þ�
2

� 	R�
:

ð11Þ
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From Eq.(11),the log-likelihood function l = lnL(λ,a) is given by

l / Rlnlþ nvlnaþ
Xnu

i¼1

½ti � 2lAðtiÞ þ lnð1 � C� 1ðtiÞÞ þ lnð2 � C� 1ðtiÞÞ� þ
Xnu

i¼1

Ri½� 2lAðtiÞ þ 2lnð2 � C� 1ðtiÞÞ�

þ
XR

i¼nuþ1

½tþ aðti � tÞ � 2lBðtiÞ þ lnð1 � D� 1ðtiÞÞ þ lnð2 � D� 1ðtiÞÞ�

þ
XR

i¼nuþ1

Ri½� 2lBðtiÞ þ 2lnð2 � D� 1ðtiÞÞ� þ R�½� 2lBðZÞ þ lnð2 � D� 1ðZÞÞ�;

ð12Þ

where AðtiÞ ¼ eti � 1, C� 1ðtiÞ ¼ 1=CðtiÞ ¼ expð� lðeti � 1ÞÞ, BðtiÞ ¼ eðtþaðti � tÞÞ

� 1, and

D� 1ðtiÞ ¼ 1=DðtiÞ ¼ expð� lðeðtþaðti � tÞÞ

� 1ÞÞ.

From Eq (12), we obtain the partial derivatives of lwith respect to λ and α and equating

them to zero as follows

@l
@l
¼
R
l
þ
Xnu

i¼1

AðtiÞ
1

CðtiÞ � 1
þ

1

2CðtiÞ � 1
� 2

� �

þ
Xnu

i¼1

2RiAðtiÞ
1

2CðtiÞ � 1
� 1

� �

þ
XR

i¼nuþ1

BðtiÞ
1

DðtiÞ � 1
þ

1

2DðtiÞ � 1
� 2

� �

þ
XR

i¼nuþ1

2RiBðtiÞ
1

2DðtiÞ � 1
� 1

� �

þ 2R�BðZÞ
1

2DðZÞ � 1
� 1

� �

¼ 0

@l
@a
¼
nv
a
þ
XR

i¼nuþ1

ðti � tÞ 1 � 2lðBðtiÞ þ 1Þ þ
lðBðtiÞ þ 1Þ

DðtiÞ � 1
þ

lðBðtiÞ þ 1Þ

2DðtiÞ � 1

� �

þ
XR

i¼nuþ1

2lRiðti � tÞðBðtiÞ þ 1Þ
1

2DðtiÞ � 1
� 1

� �

þ 2lR�ðZ � tÞðBðZÞ þ 1Þ
1

2DðZÞ � 1
� 1

� �

¼ 0

The above equations can be solved by using an iterative method such as Newton-Raphson,

we can derive the MLEs of parameter λ and α.

According to the invariance of maximum likelihood estimate, we can easily derive MLE of

survival function of system at use stress level, it is denoted by �̂F 1ðtÞ.
For the hybrid systems (a),

�̂F 1ðtÞ ¼ expð� 2l̂ðet � 1ÞÞ½2 � expð� 2l̂ðet � 1ÞÞ�; t > 0;

For the hybrid systems (b),

�̂F 1ðtÞ ¼ expð� 2l̂ðet � 1ÞÞf½2 � expð� l̂ðet � 1ÞÞ�g
2

; t > 0;

where l̂ is the MLE of parameter λ.

Confidence interval

Approximate confidence interval

The observed Fisher information matrix is given by

F ¼ �
@2 l̂

@�p@�q

 !

2�2

¼ �

@2l
@l

2

@2l
@l@a

@2l
@a@l

@2l
@a2

2

6
6
4

3

7
7
5

#ðl̂ ;âÞ

; p; q ¼ 1; 2;�1 ¼ l; �2 ¼ a
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where F−1 is the asymptotic variance-covariance matrix for l̂ and â.

The approximate 1001-γ% confidence intervals for the parameters λ and α can be presented

by

ðl̂ � zg=2

ffiffiffiffiffiffiffi
F � 1

11

p
; l̂ þ zg=2

ffiffiffiffiffiffiffi
F � 1

11

p
Þ; ðâ � zg=2

ffiffiffiffiffiffiffi
F � 1

22

p
; â þ zg=2

ffiffiffiffiffiffiffi
F � 1

22

p
Þ;

where zγ/2 is the upper(γ/2) percentile of the standard normal distribution.

For the hybrid systems (a), we get the second partial derivatives of lwith respect to λ and α.

@2l
@l

2
¼ �

R
l

2
þ
Xnu

i¼1

� 2AðtiÞ
ðWðtiÞ � 1Þ

2

@WðtiÞ
@l

þ
� 4RiAðtiÞ
ð2WðtiÞ � 1Þ

2

@WðtiÞ
@l

( )

þ
XR

i¼nuþ1

� 2BðtiÞ
ðQðtiÞ � 1Þ

2

@QðtiÞ
@l

þ
� 4RiBðtiÞ
ð2QðtiÞ � 1Þ

2

@QðtiÞ
@l

( )

þ R�
� 4BðZÞ

ð2QðZÞ � 1Þ
2

@QðZÞ
@l

" #

;

@2l
@a@l

¼
XR

i¼nuþ1

2ðti � tÞðBðtiÞ þ 1Þ
1

QðtiÞ � 1
�

l

ðQðtiÞ � 1Þ
2
�
@QðtiÞ
@l

� 1

( )

þ
XR

i¼nuþ1

2Riðti � tÞðBðtiÞ þ 1Þ
1

2QðtiÞ � 1
�

2l

ð2QðtiÞ � 1Þ
2
�
@QðtiÞ
@l

� 1

( )

þ 2R�ðZ � tÞðBðZÞ þ 1Þ
1

2QðZÞ � 1
�

2l

ð2QðZÞ � 1Þ
2
�
@QðZÞ
@l

� 1

( )

;

@2l
@a2
¼ �

nv
a2
þ
XR

i¼nuþ1

2lðti � tÞ
1

QðtiÞ � 1

@BðtiÞ
@a
�

BðtiÞ þ 1

ðQðtiÞ � 1Þ
2

@QðtiÞ
@a

�
@BðtiÞ
@a

( )

þ
XR

i¼nuþ1

2lRiðti � tÞ
1

2QðtiÞ � 1

@BðtiÞ
@a
�

2ðBðtiÞ þ 1Þ

ð2QðtiÞ � 1Þ
2

@QðtiÞ
@a

�
@BðtiÞ
@a

( )

þ 2lR�ðZ � tÞ
1

2QðZÞ � 1

@BðZÞ
@a
�

2ðBðZÞ þ 1Þ

ð2QðZÞ � 1Þ
2

@QðZÞ
@a

�
@BðZÞ
@a

( )

;

where
@BðtiÞ
@a
¼ ðti � tÞðBðtiÞ þ 1Þ,

@WðtiÞ
@l
¼ 2AðtiÞWðtiÞ,

@QðtiÞ
@l
¼ 2BðtiÞQðtiÞ, and

@QðtiÞ
@a
¼ 2lðti � tÞðBðtiÞ þ 1ÞQðtiÞ.

Similarly, for the hybrid systems (b).

@2l
@l

2
¼ �

R
l

2
þ
Xnu

i¼1

� AðtiÞ
ðCðtiÞ � 1Þ

2

@CðtiÞ
@l

þ
� 2AðtiÞ

ð2CðtiÞ � 1Þ
2

@CðtiÞ
@l

þ
� 4RiAðtiÞ
ð2CðtiÞ � 1Þ

2

@CðtiÞ
@l

( )

þ
XR

i¼nuþ1

� BðtiÞ
ðDðtiÞ � 1Þ

2

@DðtiÞ
@l

þ
� 2BðtiÞ

ð2DðtiÞ � 1Þ
2

@DðtiÞ
@l

þ
� 4RiBðtiÞ
ð2DðtiÞ � 1Þ

2

@DðtiÞ
@l

( )

þ R�
� 4BðZÞ

ð2DðZÞ � 1Þ
2

@DðZÞ
@l

" #

;
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@2l
@a@l

¼
XR

i¼nuþ1

ðti � tÞðBðtiÞ þ 1Þ
1

DðtiÞ � 1
�

l

ðDðtiÞ � 1Þ
2
�
@DðtiÞ
@l

þ
1

2DðtiÞ � 1
�

2l

ð2DðtiÞ � 1Þ
2
�
@DðtiÞ
@l

� 2

( )

þ
XR

i¼nuþ1

2Riðti � tÞðBðtiÞ þ 1Þ
1

2DðtiÞ � 1
�

2l

ð2DðtiÞ � 1Þ
2
�
@DðtiÞ
@l

� 1

( )

þ 2R�ðZ � tÞðBðZÞ þ 1Þ
1

2DðZÞ � 1
�

2l

ð2DðZÞ � 1Þ
2
�
@DðZÞ
@l

� 1

( )

;

@2l
@a2
¼ �

nv
a2
þ
XR

i¼nuþ1

lðti � tÞ
1

DðtiÞ � 1

@BðtiÞ
@a
�

BðtiÞ þ 1

ðDðtiÞ � 1Þ
2

@DðtiÞ
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þ
1
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�
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2
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( )

þ
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( )
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2
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�
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( )

;

where @BðtiÞ
@a
¼ ðti � tÞðBðtiÞ þ 1Þ,

@CðtiÞ
@l
¼ AðtiÞCðtiÞ,

@DðtiÞ
@l
¼ BðtiÞDðtiÞ,

@QðtiÞ
@a
¼ lðti � tÞðBðtiÞ þ 1ÞDðtiÞ.

Bootstrap confidence intervals

The bootstrap is a resampling method for statistical inference. In this section, we use the

parametric bootstrap method to construct Studentized-t (Stud-t) bootstrap confidence interval

(CI) for the unknown parameters λ and a, which was suggested by Hall [30] as follows.

1. Based on type-II progressively hybrid censored sample and masked data, we can obtain the

MLE of ψ, ĉ ¼ ðφ̂1; φ̂2Þ (where φ̂1 ¼ l̂, φ̂2 ¼ â).

2. Based on the Prefix the values of n,m,τ,η along with the same R1,R2� � �,Rm, Generated type-

II progressively hybrid censored bootstrap samples and compute the bootstrap estimate φ̂�1
and φ̂�2 of the parameter by the method proposed in Section 3 (where φ̂�1 ¼ l̂�, φ̂�2 ¼ â�) as

with (1).

3. Repeat steps (2) N
�

times representing N
�

different bootstrap samples. The value of N
�

has

been taken to be 2000.

4. Arrange all ĉ� ¼ ðφ̂�1; φ̂
�
2Þ in an ascending order to derive the bootstrap sample

ðφ̂�½1�d ; φ̂�½2�d . . . ; φ̂�½N
��

d Þ; d ¼ 1; 2.

The Stud-t bootstrap CIs can be given as follows. Firstly, find the order statistics

s
�½1�

d < s
�½2�

d < . . . < s
�½N��
d ; d ¼ 1; 2, where s

�½d�
d ¼

φ̂�½d�
d
� φ̂dffiffiffiffiffiffiffiffiffiffiffiffi

varðφ̂�½d�
d
Þ

p ; d ¼ 1; 2; . . . ;N�; d ¼ 1; 2:

Secondly, choose the interval ðs�
dL; s

�
dUÞ from all possible 1001-γ% CIs of the form

ðs
�½h�
d ; s

�½1� gN�þh�
d Þ; h ¼ 1; 2; . . ., γN

�

, δ = 1,2 when the width of CI is a minimum.

Finally, the two-sided Stud-t BCI for φδ can be given by ðφ̂d � s�
dU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðφ̂dÞ

p
; φ̂d � s�

dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðφ̂dÞ

p
Þ.
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Simulation studies

In this section, we consider only the simulation studies for the hybrid system (a), and the

hybrid system (b) can be similarly discussed. Monte Carlo simulation studies are conducted to

discuss the performance of the MLEs in terms of their mean square errors (MSEs) for different

choices of n, m, τ and η values based on masked hybrid system lifetime data in step-stress par-

tially accelerated life test with Type-II PHC. Also, 95% approximate confidence intervals

(ACIs) and Stud-t bootstrap confidence intervals (BCIs) of the model parameters are con-

structed and their lengths are computed and presented with associated coverage probabilities

(CP).

Three different progressive censoring schemes are considered in the simulation study:

CS 1: R1 = � � � = Rm−1 = 0,Rm = n−m,

CS 2: R1 = n−m, R2 = � � � = Rm = 0,

CS 3: R1 = R2 = � � � = Rm−11 = 0, Rm−10 = � � � = Rm−1 = 1, Rm = n−m−10.

The simulation studies are carried out according to the following algorithm:

1. Specify the values of n,m,τ,η, R1,R2� � �,Rm and the values of parameters λ, α.

2. Generate a random sample with size n from the random variable T given by Eq (5) and sort

it. The random variable with PDF in Eq (2) can be easily generated. For example, if U repre-

sents a uniform random variable from [0, 1], then T = ln[1−[ln(1−U)/λ]] has the PDF given

by Eq (2) if t� τ. But if t> τ then T = τ + [ln(1−(ln(1−U)/λ)−τ)]/α has the PDF given by Eq

(6).

3. For given the values of n,m,τ,η(η>τ), R1,R2� � �,Rm and the values of parameters λ, α, the

Type-II progressively hybrid censored sample is generated.

4. Based on the Type-II progressive hybrid censored sample, generated the Type-II progres-

sively hybrid censored sample with masked data:

Case Ⅰ: fðt1; s1Þ; ðt2; s2Þ; � � � ; ðtnu ; snuÞ; � � � ; ðtm; smÞg, if τ< tm� η,

Case Ⅱ: fðt1; s1Þ; ðt2; s2Þ; � � � ; ðtnu ; snuÞ; � � � ; ðtnuþnv ; snuþnvÞg, if tm> η.

5. Use the values of Type-II progressively hybrid censored sample with masked data to com-

pute the MLEs, ACI and BCI of the model parameters using the method proposed in the

section 4,

6. Replicate steps 2–5 2000 times, and compute the average values of MLEs of the parameters

as well as associated MSEs.

7. Compute the average values of intervals lengths (ILs) as well as the associated coverage

probabilities with each parameter using confidence level 0.95.

8. Steps 1–7 are done with different values of n,m,τ,η(η>τ), R1,R2� � �,Rm, λ and α.

Tables 1 and 2 present the average of MLE (A-MLE) and corresponding mean square error

(MSE) of the parameter λ and the acceleration factor α for the different values of n,m,τ,η and

the censoring schemes (CS), while the 95% CIs, corresponding interval length (IL) and CP of

the parameter λ and a are given in Tables 3 and 4.

From Tables 1, 2, 3 and 4, it may be observed that

1. For fixed η,τ and n, the MSE of the MLE decreases as m increases, and A-MLE is closer to

the real value. For fixed η, τ and m, the MSE of the MLE decreases as n increases.
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2. For fixed η,τ, the MSE of the MLE decreases as n and m increase at the same time.

3. For fixed n,m and η, the MSE of the MLE decreases as τ decreases. For fixed n,m and τ, the

MSE of the MLE decreases as η increases.

4. The bootstrap confidence interval has the more smaller length and more bigger coverage

probabilities than the approximate confidence interval

Thus, the procedure proposed in this paper can achieve good estimation performance.

Conclusions

In this paper, statistical analysis for two hybrid systems are studied based on masked data in

SSPALT with Type-II progressive hybrid censoring. The maximum likelihood estimations for

unknown parameters and acceleration factor are presented when the life time of system com-

ponent follows exponential failure rate. In addition, approximate confidence interval and

Stud-t bootstrap confidence interval of the model parameters are obtained by using the

Table 1. A-MLE for parameters and MSE (λ = 1.2, α = 1.5 and η = 0.7).

A-MLE (λ̂) A-MLE (â) MSE (λ̂) MSE (â)

(n,m) CS τ = 0.1 τ = 0.3 τ = 0.1 τ = 0.3 τ = 0.1 τ = 0.3 τ = 0.1 τ = 0.3

(80,40) 1 1.2934 1.3401 1.1687 1.1265 0.0382 0.0421 0.1443 0.1567

2 1.2881 1.0988 1.1107 1.6089 0.0235 0.0332 0.1356 0.1453

3 1.1314 1.0887 1.2078 1.1898 0.0343 0.0375 0.1189 0.1124

(80,60) 1 1.2765 1.3101 1.2567 1.2065 0.0287 0.0239 0.1123 0.1209

2 1.2909 1.1011 1.2102 1.1989 0.0212 0.0304 0.1078 0.1243

3 1.1502 1.0912 1.2342 1.2001 0.0334 0.0365 0.0987 0.1098

(100,40) 1 1.2601 1.2824 1.1323 1.7298 0.0272 0.0254 0.1221 0.0868

2 1.1408 1.3098 1.7001 1.2912 0.0213 0.0265 0.0675 0.0712

3 1.1118 1.0765 1.2409 1.2328 0.0243 0.0253 0.0743 0.0674

(100,60) 1 1.1786 1.2754 1.2898 1.2398 0.0175 0.0189 0.0349 0.0432

2 1.1456 1.2908 1.6487 1.2376 0.0214 0.0213 0.0498 0.0467

3 1.2072 1.1468 1.2921 1.2754 0.0153 0.0208 0.0423 0.0556

https://doi.org/10.1371/journal.pone.0186417.t001

Table 2. A-MLE for parameters and MSE (λ = 1.2, α = 1.5 and η = 0.7).

A-MLE (λ̂) A-MLE (â) MSE (λ̂) MSE (â)

(n,m) CS τ = 0.1 τ = 0.3 τ = 0.1 τ = 0.3 τ = 0.1 τ = 0.3 τ = 0.1 τ = 0.3

(80,40) 1 1.2787 1.3354 1.1701 1.1346 0.0367 0.0412 0.1401 0.1467

2 1.2875 1.0916 1.1123 1.6023 0.0205 0.0312 0.1323 0.1408

3 1.1138 1.0576 1.2012 1.1943 0.0298 0.0401 0.1112 0.1156

(80,60) 1 1.2697 1.3021 1.2711 1.2212 0.0256 0.0212 0.1108 0.1211

2 1.2876 1.1078 1.2254 1.1989 0.0212 0.0298 0.1005 0.1008

3 1.1432 1.0876 1.2087 1.1965 0.0312 0.0324 0.0881 0.1012

(100,40) 1 1.2547 1.2756 1.1954 1.1656 0.0254 0.0212 0.1108 0.1081

2 1.1498 1.3032 1.6987 1.3082 0.0206 0.0256 0.0609 0.0761

3 1.1328 1.0932 1.2543 1.2301 0.0231 0.0277 0.0701 0.0612

(100,60) 1 1.1775 1.2546 1.2989 1.2416 0.0167 0.0176 0.0308 0.0431

2 1.1507 1.2897 1.6187 1.2409 0.0215 0.0219 0.0421 0.0474

3 1.2054 1.1576 1.3001 1.2842 0.0131 0.0178 0.0386 0.0412

https://doi.org/10.1371/journal.pone.0186417.t002
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Table 3. 95% CI for parameters, IL and CP of CI (λ = 1.2, a = 1.5, τ = 0.3 and η = 0.7).

(n,m) CS Para. ACI, IL, CP BCI, IL, CP

(80,40) 1 λ (0.8256,1.6523), 0.8267, (0.937) (0.8563,1.5312), 0.6749, (0.944)

a (0.8897,1.9442), 1.0545, (0.942) (1.0067,1.8787), 0.8720, (0.957)

2 λ (0.8312,1.4787), 0.6475, (0.941) (0.8397,1.4396), 0.5999, (0.952)

a (1.0223,1.9009), 0.8786, (0.957) (1.0212,1.8554), 0.8342, (0.942)

3 λ (0.8336,1.4698), 0.6362, (0.943) (0.8521,1.4523), 0.6002, (0.933)

a (1.0543,1.9012), 0.8469, (0.945) (1.0765,1.8432), 0.7667, (0.956)

(80,60) 1 λ (0.8339,1.4476), 0.6137, (0.951) (0.8401,1.4234), 0.5833, (0.949)

a (1.1121,1.9112), 0.7991, (0.939) (1.1132,1.8245), 0.7113, (0.957)

2 λ (0.8412,1.4422), 0.6010, (0.959) (0.8398,1.4506), 0.6108, (0.952)

a (1.0134,1.8156), 0.8022, (0.961) (1.0145,1.8103), 0.7958, (0.947)

3 λ (0.8322,1.4276), 0.5954, (0.949) (0.8564,1.4301), 0.5737, (0.958)

a (1.0127,1.8314), 0.8187, (0.946) (1.1084,1.8123), 0.7039, (0.951)

(100,40) 1 λ (0.8427,1.4378), 0.5951, (0.963) (0.8423,1.4211), 0.5788, (0.967)

a (1.0122,1.8676), 0.8554, (0.945) (1.1211,1.7653), 0.6442, (0.956)

2 λ (0.8312,1.4091), 0.5779, (0.954) (0.8465,1.4089), 0.5624, (0.947)

a (1.1101,1.7531), 0.6430, (0.965) (1.1379,1.6901), 0.5522, (0.963)

3 λ (0.8442,1.4308), 0.5866, (0.952) (0.8698,1.4128), 0.5430, (0.971)

a (1.1281,1.7361), 0.6080, (0.947) (1.1498,1.6213), 0.4715, (0.958)

(100,60) 1 λ (0.8809,1.4218), 0.5409, (0.958) (0.8876,1.4198), 0.5322, (0.951)

a (1.1265,1.8312), 0.7047, (0.946) (1.1422,1.7041), 0.5619, (0.967)

2 λ (0.8678,1.4134), 0.5456, (0.952) (0.8866,1.4112), 0.5246, (0.957)

a (1.1301,1.8221), 0.6920, (0.956) (1.1531,1.7165), 0.5634, (0.961)

3 λ (0.8736,1.4087), 0.5351, (0.953) (0.8809,1.4011), 0.5202, (0.952)

a (1.1408,1.7122), 0.5714, (0.961) (1.1598,1.6987), 0.5389, (0.969)

https://doi.org/10.1371/journal.pone.0186417.t003

Table 4. 95% CI for parameters, IL and CP of CI (λ = 1.2, a = 1.5, τ = 0.3 and η = 1.5).

(n,m) CS Para. ACI, IL, CP BCI, IL, CP

(80,40) 1 λ (0.8277,1.6471), 0.8194, (0.941) (0.8437,1.5124), 0.6687, (0.933)

a (0.8764,1.9341), 1.0577, (0.958) (1.0981,1.8987), 0.8006, (0.947)

2 λ (0.8365,1.4456), 0.6091, (0.942) (0.8278,1.4212), 0.5934, (0.967)

a (1.0134,1.9016), 0.8882, (0.957) (1.0198,1.8679), 0.8481, (0.955)

3 λ (0.8445,1.4612), 0.6167, (0.952) (0.8643,1.4501), 0.5858, (0.948)

a (0.9487,1.9001), 0.9514, (0.949) (1.0675,1.8821), 0.8146, (0.961)

(80,60) 1 λ (0.8398,1.4453), 0.6055, (0.945) (0.8403,1.4212), 0.5809, (0.957)

a (1.0009,1.9101), 0.9092, (0.954) (1.0112,1.8567), 0.8455, (0.949)

2 λ (0.8478,1.4409), 0.5931, (0.952) (0.8422,1.4376), 0.5954, (0.955)

a (1.0113,1.8147), 0.8034, (0.967) (1.1167,1.8133), 0.6966, (0.942)

3 λ (0.8378,1.4265), 0.5887, (0.948) (0.8465,1.4267), 0.5802 (0.945)

a (1.0568,1.8228), 0.7660, (0.962) (1.1371,1.8187), 0.6816, (0.953)

(100,40) 1 λ (0.8456,1.4321), 0.5865, (0.957) (0.8478,1.4278), 0.5800, (0.961)

a (1.1144,1.8765), 0.7621, (0.965) (1.1231,1.7007), 0.5776, (0.959)

2 λ (0.8309,1.4087), 0.5778, (0.962) (0.8412,1.4076), 0.5664, (0.964)

a (1.1012,1.7643), 0.6631, (0.939) (1.1412,1.6885), 0.5473, (0.957)

3 λ (0.8436,1.4301), 0.5865, (0.961) (0.8615,1.4238), 0.5623, (0.959)

a (1.0423,1.7445), 0.7022, (0.954) (1.1035,1.6756), 0.5721, (0.971)

(100,60) 1 λ (0.8813,1.4328), 0.5515, (0.955) (0.8809,1.4167), 0.5358, (0.962)

a (1.1167,1.8008), 0.6841, (0.963) (1.1577,1.7787), 0.6210, (0.965)

2 λ (0.8675,1.4212), 0.5537, (0.967) (0.8712,1.4109), 0.5397, (0.968)

a (1.0271,1.8024), 0.7753, (0.962) (1.1556,1.7298), 0.5742, (0.957)

3 λ (0.8721,1.4065), 0.5344, (0.952) (0.8806,1.4002), 0.5196, (0.969)

a (1.1306,1.7117), 0.5811, (0.967) (1.1501,1.6741), 0.5240, (0.971)

https://doi.org/10.1371/journal.pone.0186417.t004
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asymptotic distributions and parametric bootstrap method, respectively. The performance of

estimation methods is assessed by simulation studies.

Supporting information

S1 File. The derivation of the simulation results in the Tables. The data of this paper are cal-

culated by numerical simulation. All relevant data, including any instructions, equations, and

parameters, needed to fully replicate the simulations described in the paper can be found

within the paper or S1 File.
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