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Abstract: Cockles are highly appreciated mollusks and provide important services in coastal areas.
The two European species, edible (Cerastoderma edule) and lagoon (Cerastoderma glaucum) cockles,
are not easily distinguishable, especially when young. Interestingly, the species show different
resistance to Marteilia cochillia, the parasite responsible for marteiliosis outbreaks, which is devastating
cockle production in some areas. C. edule is severely affected by the parasite, while C. glaucum seems
to be resistant, although underlying reasons are still unknown. Hybrids between both species might
be interesting to introgress allelic variants responsible for tolerance, either naturally or through
artificial selection, from lagoon into edible cockle. Here, we used 2b restriction site-associated DNA
sequencing (2b–RAD) to identify single nucleotide polymorphisms (SNP) diagnostic for cockle
discrimination (fixed for alternative allelic variants). Among the nine diagnostic SNPs selected,
seven were validated using a SNaPshot assay in samples covering most of the distribution range of
both species. The validated SNPs were used to check cockles that were suggested to be hybrids by
a claimed diagnostic tool based on the internal transcribed spacers of the ribosomal RNA. Although
these were shown to be false positives, we cannot rule out the fact that hybrids can occur and be
viable. The SNP tool here developed will be valuable for their identification and management.

Keywords: 2b–RAD; cockles; diagnostic SNPs; hybrids; New Generation Sequencing (NGS);
SNaPshot; wildlife forensic
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1. Introduction

True cockles are members of the genus Cerastoderma, a group of bivalve mollusks widely distributed
in the Mediterranean and Atlantic coasts of Europe [1]. Production of cockles, especially the species
most valued as food, edible cockle (Cerastoderma edule (Linnaeus, 1758)), is especially relevant in Spain,
the British Isles, and France, with production reaching up to 24,626 tons in 2017 in Europe [2]. European
production of cockles is mostly exported to Galicia (NW Spain), where the species is marketed as
fresh or canned food. In addition to food provisioning, cockles provide many ecosystem services [3],
which are especially important for the development and support of many coastal areas. Edible cockle
production has been severely affected by marteiliosis outbreaks caused by Martelia cochillia, especially
in Galicia (NW Spain), where the parasite has devastated its production in the Southern estuaries
(Rias). This parasite was first recorded in that area in 2012 [4], but its first description was reported
in Catalonia (NE Spain) from cockles identified as C. edule [5], despite the typical cockle species
occurring in the Mediterranean coasts is the lagoon cockle (Cerastoderma glaucum (Poiret, 1789)) [1].
Interestingly, in the Galician coast, only C. edule is affected by martelliosis, while C. glaucum seems
to be resistant to this parasite [6]. The known geographic ranges of both Cerastoderma species [1]
supports the fact that cockles occurring in the Mediterranean Sea are C. glaucum, and accordingly,
the cockles infected with M. cochillia in Catalonia should be C. glaucum. This would suggest different
susceptibility to this parasite between the Mediterranean (Catalonian) and the Atlantic (Galician) types
of C. glaucum [6], thus adding new data to the convenience of splitting C. glaucum into different species
or subspecies [7,8]. This information would refine the previous report suggesting that Catalonian and
Galician populations would be included in the same lineage of the three identified for C. glaucum using
restriction site-associated DNA Sequencing (RADseq) [9], which is widely distributed from the Western
Mediterranean to the Baltic Sea [9]. Alternatively, the hypothesis of different virulence between the
parasites M. cochillia occurring in Catalonia and Galicia should not be discarded. The reasons behind
this differential resistance between C. edule and C. glaucum in Galicia are still unknown, and deserve
special attention within the COCKLES EU project following a genomic approach in the most affected
area, the Ria of Arousa (42◦30′ N–08◦56′ W, EAPA_458/2016). Furthermore, the tolerance of C. glaucum
to M. cochillia makes putative hybrids especially interesting. Checking its viability and reproduction
would be an interesting way to introgress allelic variants responsible for tolerance either naturally or
through artificial selection in C. edule.

The two recognized cockle species, C. edule and C. glaucum, are not easy distinguishable at
a glance, especially when they are young. However, there are some morphological characteristics
that trained eyes can use for discrimination [10,11]. Hybrids have been claimed to be generated in
captivity [12], but limited evidence that they were real hybrids was provided. Despite the two species
showing differences in habitat preferences and lifestyle (see Tarnowska et al. [13] for a detailed
description), they present overlapping geographical distributions in various sites of the European
Atlantic coast [10,11], and overlapping spawning periods have been supported for these species [14].
Although no records of hybrids have been reported to date, their presence has been recently suggested
(Seila Díaz, unpublished data) using a reported diagnostic tool based on the rDNA internal transcribed
spacer (ITS) [15]. ITSs have been used to discriminate species quite frequently among parasites [16],
but also for aquaculture species such as cockles [17] and mud crabs (Scilla sp.) [18]. ITSs represent
a very useful and straightforward way to develop molecular tools for species discrimination because of
the existence of conserved regions for universal primer design in the adjacent 18S, 5.8S, and 28S genes.
However, the tandem constitution of rDNA genes and the multiple location and site polymorphism
reported for Nucleolar Organizer Regions (NOR) reported in several species, including cockles [19],
suggest caution and strict validation using consistent reference tools.

The development of cutting-edge genomic technologies and protocols in the last decade has
opened the possibility to develop a wide range of genotyping by sequencing methods that enable
simultaneously identifying and genotyping thousands of single nucleotide polymorphisms (SNP)
at low cost [20]. This approach has also been applied to compare large portions of the genomes of
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individuals from closely related species to look for diagnostic markers that make possible suitable
discrimination between taxa [21]. Furthermore, these SNP-based tools enable distinguishing F1, F2,
and backcrosses with high confidence, thus allowing a refined evaluation of the hybridization degree
of individuals and populations. Here, we describe the identification of a set of diagnostic SNPs for
a reliable identification of C. edule, C. glaucum, and their putative hybrids in natural beds of the Atlantic
Area, where geographical distribution of both species overlaps. Nine markers fixed for alternative allelic
variants identified in “pure” individuals of the two species were validated in samples covering a wide
distribution range and tuned up in a SNaPshot assay designed to provide a cheap and straightforward
diagnostic tool. This SNP panel will be useful for management of extensive and intensive production
areas where both species co-occur, and to address more sophisticated tools for studying the resistance
of cockles to marteiliosis.

2. Materials and Methods

2.1. Samples for Genomic 2b Restriction Site-Associated DNA Sequencing (2b–RAD) Libraries

Thirty individuals of C. glaucum and 120 individuals of C. edule collected over 2017–2018 were
genotyped using the 2b–RAD genotyping-by-sequencing (GBS) method [22] to identify diagnostic
SNPs to distinguish the two species and their hybrids. Edible cockles were collected in four Atlantic
European locations: Somme Bay, Miño, Campelo, and Ria Formosa (from north to south, 30 individuals
collected in each sampling site) covering a wide distribution range (Table 1; Figure 1), while lagoon
cockles were collected in Redondela (N = 30) (Figure 1).
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Table 1. Cockle beds used in the present study. Individuals used for genomic libraries for 2b restriction
site-associated DNA sequencing genotyping by sequencing (2b–RAD GBS) and those analyzed with
the SNaPshot molecular tool (SNaPshot) developed in the present study are shown.

Bed (Drainage) Code Geographical
Coordinates

N
Specimens Technique

Cerastoderma
edule

Cerastoderma
glaucum

Suspected
Hybrids

2bRAD
GBS SNaPshot

Texel—Netherlands
(Atlantic) NTX 53◦00.22′ N,

4◦46.23′ E 8 8 8

Somme Bay—France
(Atlantic) FBS 50◦12.08′ N,

1◦37.62′ W 30 30 30 8

Burry—Wales (Atlantic) WBY 51◦38.55′ N,
4◦09.98′ W 8 8 8

Dundalk Bay—Ireland
(Atlantic) IDA 53◦53.05′ N,

6◦20.48′ W 8 8 8

Miño–Galicia Spain
(Atlantic) SMI 43◦21.69′ N,

8◦12.35′ W 30 30 30

Ria de Noia—Spain
(Atlantic) SNO 42◦47.42′ N,

8◦55.36′ W 8 8 8

Campelo—Spain
(Atlantic) SCA 42◦25.25′ N,

8◦41.09′ W 30 30 30

Redondela—Spain
(Atlantic) SRG 42◦17.63′ N,

8◦37.24′ W 30 30 30 19

Tejo Mouth–Portugal
(Atlantic) PTE 38◦46.00′ N,

9◦02.00′ W 8 8 8

Ria Formosa–Portugal
(Atlantic) PRF 36◦59.86′ N,

7◦49.81′ W 30 30 30

Delta del Ebro—Spain
(Mediterranean) EDCE 40◦41.75′ N,

0◦45.12′ E 29 29 29

Nykobing
Mors—Denmark
(Atlantic) *

DNCE 56◦46.91′ N,
8◦52.27′ W 11 6 2 3 11

Espasante—Spain
(Atlantic) * EECE 43◦43.44′ N,

7◦48.26′ W 9 8 1 9

Carril—Spain (Atlantic) * ECCE 42◦36.75′ N,
8◦46.50′ W 10 6 3 1 10

Combarro—Spain
(Atlantic) * EACE 42◦25.92′ N,

8◦42.30′ W 7 4 3 7

Lourizán—Spain
(Atlantic) * ELCE 42◦24.53′ N,

8◦40.66′ W 9 7 2 9

* Locations where suspected hybrids have been detected.

2.2. DNA Extraction and Single Nucleotide Polymorphisms Calling and Genotyping

DNA was extracted from gill tissue using the E.Z.N.A. E-96 mollusk DNA kit (OMEGA Bio-tech,
Norcross, GA, USA), following the manufacturer recommendations. SNP identification and selection,
as well as genotyping and validation protocols, were similar to those described by Maroso et al. [21].
Briefly, genomic DNA was cut using the AlfI IIb restriction enzyme (RE), and then 2b–RAD libraries
were constructed by joining adaptors to both fragment ends, followed by PCR amplification using
primers targeting specific regions within adaptors. After PCR amplification, DNA from barcoded
individuals was pooled for sequencing in an Illumina Next-seq machine. Ninety individuals were
routinely multiplexed per run. After demultiplexing and filtering raw reads by quality (Phred value > 30)
and the presence of the AlfI restriction site, Stacks 2.0 [23] was used to align all reads from both species
to identify and characterize shared genomic loci (RAD–tags) between both species; this information
was used to create a consensus catalog of loci and to call SNPs using the whole population data from
both species using a de novo approach. A minimum of three identical reads was required, and up to
three mismatches were allowed between reads to be considered as part of the same locus. The obtained
SNP dataset was parsed to identify diagnostic SNPs (those with different alternative alleles fixed in
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the two analyzed species). This list was additionally filtered, and RAD–tags containing only one
SNP and called in at least 15 C. glaucum and 30 C. edule specimens were retained. RAD–tags of this
filtered dataset were then aligned against the C. edule draft genome (Tubío et al, unpublished) and
only those aligning to a single genome site were retained. Sequences of the C. edule genome 150 bp up-
and down-stream from the diagnostic SNP position were used to design external primers using the
software Primer3 [24].

2.3. Validation of Diagnostic Single Nucleotide Polymorphisms

Among the diagnostic loci retained, a small subset of 20 was selected for the final validation
(see Results and Discussion). For this, external primers were checked in three C. glaucum and three
C. edule specimens. Loci were amplified in 15 µL volume, including 1 µL template DNA (~30 ng),
1X PCR Gold Buffer (Applied Biosystems, Forest City, CA, USA), 1.5 mM of MgCl2, 100 µM of dNTP,
10 pmol of both forward and reverse PCR primers, and 0.5 U of Amplitaq GoldTM DNA polymerase
(Applied Biosystems). Thermal cycling was conducted on a VerityTM 96-Well Thermal Cycler (Applied
Biosystems) as follows: initial denaturation at 95 ◦C for 10 min, 35 cycles of denaturation at 94 ◦C for
45 s, annealing at 60 ◦C for 50 s, and extension at 72 ◦C for 50 s. There was a final extension step at 72 ◦C
for 10 min. Only primer pairs showing a single neat band in agarose gels and the expected amplicon
size in both species were selected for further steps. Selected RAD–tag amplicons were sequenced in
three C. glaucum and three C. edule specimens following the ABI Prism BigDye™ Terminator v3.1 Cycle
Sequencing Kit protocol in an ABI 3730xl DNA Genetic Analyzer (Applied Biosystems) in order to
confirm the consensus sequences around the diagnostic SNPs, from which internal primers could be
designed for genotyping. Annotation of these sequences was carried out using BLASTn with default
parameters and e-value <1e–5 within the NCBI database. Selected SNPs were genotyped with the
SNaPshot methodology (Applied Biosystems), which is based on the fluorescent detection of the SNP
variants through a two-step reaction protocol. The first step involves the amplification by PCR of
a region including the selected SNP (using the external primers), while the second step is a 1-base
sequencing reaction from the adjacent SNP primer (i.e., internal primer). For SNP multiplexing, internal
primers were designed with length differences by adding CAGT tails to the 5’ end of the primer
sequence (see Table 2). Primer compatibility for multiplexing was checked using ThermoFisher web
application [25] and one multiplex reaction following the methodology described by Vera et al. [26] was
finally designed to analyze the nine selected SNPs (Table 2). For genotyping, 0.2 µM of each primer was
used, both for PCR amplification with the external primers and for the SNaPshot reaction using internal
primers. The annealing temperatures for PCR amplification and the SNaPshot reaction were 60 ◦C and
55 ◦C, respectively. The obtained SNaPshot assay was finally tested on 48 individuals morphologically
identified of each species (total = 96), covering their main distribution ranges and including specimens
previously genotyped by 2b–RAD GBS methodology (see Table 1). Finally, five different beds from
Denmark (1) and Galicia (4) (total individuals = 46; see Table 1), where both species co-occur and
suspected hybrids had been identified (Díaz et al. unpublished data) using the methodology described
by Freire et al. [15], were analyzed with the developed SNP tool.
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Table 2. External and internal primers (IP) for the two multiplex reactions developed in the present study. Lowercase letters in internal primers indicate the GACT
nucleotide tails. Single nucleotide polymorphisms (SNPs) variants (with their position within their submitted GenBank sequence between parentheses), sense of the
internal primer (IP sense; F: Forward, R: Reverse) and GenBank accession numbers for the sequences used to design the markers (length in bp of the sequence between
parentheses) are shown.

Marker SNPs Variants
C.edule/C. glaucum External Primers (5′-3′) Tailed Internal Primer (5′-3′) IP Sense GenBank Accession

Number

Cerast_1173A A/G
(129)

F: GGGACGGCACTTTTCACAAT
R: TGGTGCTGTGGATGAATCGA gactTGGTGGGCACTTGGATGC R MN178492 (240)

Cerast_1316 T/C
(55)

F: TAGACAAAACAGGCCTACGC
R: TCGTGATCTGCCAAAGGTTT gactgactgacGCAACAGATTGCCAGCTGT R MN178494 (171)

Cerast_1400 G/A
(99)

F: AGCACGGTTGTTGATTGGAC
R: TTTAAGCCAGGGTCCTCGG gactgactgactACTCTTCTTCATGGTTGAAAAGTC F MN178495 (218)

Cerast_456 C/T
(90)

F: CAGCTTGGCATAACGTCACC
R: TTATGCCTTGCGAATGTCCG gactgactgactgactgactgaCAGAAGGATGCGGCATTGT F MN178490 (190)

Cerast_31 A/G
(141)

F: CAGACCAGGCAAACACATCA
R: CAGCTCGCATTTGTTCCCTT gactgactgactgactgactgacATGATTAAGCAAGCTACTGCTAG F MN178488 (241)

Cerast_1255 A/T
(115)

F: AATCGTTCATCATGTCCCGC
R: AGTTGGTGTTCACAATTCCCC gactgactgactgactgactgactgactgaATTGATTCGCAGTGTTTTGCT R MN178493 (192)

Cerast_586 C/T
(154)

F: TGAATCTGTCCGCATCCTGA
R: GATAAAACCTAACAGGTGGGC gactgactgactgactgactgactgactgactgactgacATGGGCATGCGCAAAGG F MN178491 (213)

Cerast_450 A/T
(165)

F: TTCACTCCACAACGAATCCA
R: CCGGTACCCCAAACAATATAACA gactgactgactgactgactgactgactgactgactgactCATTATAAATTCCTAGCGAGCAGA F MN178489 (250)

Cerast_2530 T/A
(126)

F: TGTGATTTGTGTGGTGCTGT
R: GTGTCTTCTAACATGGCATGCT gactgactgactgactgactgactgactgactgactgactgactgactTGAATTTTGGCATGTTTTTGCTCTAG R MN178496 (243)
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3. Results and Discussion

All specimens of both species used for identifying diagnostic SNPs were retained for further
analysis, except one C. glaucum sample, which was eliminated before filtering due to the low number of
raw reads. On average, 2,768,161 reads per specimen were retained after quality filtering. Stacks analysis
identified a total of 13,715 SNPs in RAD–tags, including reads from both species, 2057 diagnostic and
11,658 restricted to one or other of the two species (Tables S1 and S2, respectively). Among the latter,
1658 were private of C. edule (1190 with a minimum allele frequency (MAF) ≥ 0.05; 71.8%) and 10,000
of C. glaucum (3028 with MAF ≥ 0.05; 30.3%). These figures, despite being representative of a particular
fraction of the genome (RAD–tags including diagnostic SNPs), strongly suggest a much higher genetic
diversity in C. glaucum than in C. edule, especially regarding the number of SNPs per physical length;
furthermore, much of the difference was due to the higher proportion of rare alleles in C. glaucum than
in C. edule (MAF < 0.05: 69.7% vs. 28.2%, respectively), suggestive of higher effective population size
and/or no recent bottlenecks. Moreover, the most representative C. glaucum beds were located within
the Southern glacial refugia of the species (i.e., Iberian Peninsula), where higher genetic diversity is
expected [13]. As usually reported in mollusk species [27,28], a global significant heterozygote deficit
was observed in both species (FIS > 0; P = 0), but was significantly higher in C. glaucum than in C. edule
(FIS 0.252 vs. 0.129).

The 2057 diagnostic loci were identified in 1534 different RAD–tags, meaning that more than one
diagnostic SNP was detected in many RAD–tags; nearly 50% contained two diagnostic loci and six
RAD–tags up to three diagnostic SNPs (Table S1). Only 157 RAD–tags contained a single diagnostic
SNP and no other polymorphism (i.e., private SNPs). Since these 157 RAD–tags showed no genetic
variation within species, they were considered the most suitable ones for designing primers, taking the
C. edule genome as a reference. After eliminating RAD–tags shared by a low number of individuals of
the two species, 60 were retained, and among these, 46 matched to unique positions in the C. edule
genome (Tubío et al., unpublished data). A final selection of 20 RAD–tags was randomly made for the
final validation step using the SNaPshot protocol, but the remaining 26 RAD–tags represent a useful
repository for increasing the number of diagnostic SNPs if necessary.

Twenty primer pairs were designed with Primer 3 using the C. edule genome as a reference and
their performance for PCR amplification was checked on agarose gels in three C. edule individuals
from Ría de Noia (SNO) and three C. glaucum from Redondela (SRG). Nine loci showed a single band
of expected size, thus being considered suitable for the last step of validation using the SNaPshot
methodology (Cerast_31, Cerast_450, Cerast_456, Cerast_586, Cerast_1173A, Cerast_1255, Cerast_1316,
Cerast_1400, and Cerast_2530, Table 2). The sequences of these nine RAD–tags confirmed that those
markers showed a single diagnostic difference between both species (GenBank Accession Numbers:
MN178488–MN178496). Four out of the nine sequences matched against annotated genes, but these
markers were not associated with either mtDNA or ribosomal genes (Table S1). Internal primers
were then designed adjacent to the SNP position for these nine loci to achieve the best compatibility
for multiplexing the SNaPshot mini-sequencing reaction (Table 2). The obtained genotypes in the
individuals analyzed with both techniques (i.e., 2b–RAD GBS and SNaPshot) were identical (Table S3),
confirming the correspondence between them and giving additional support to the designed molecular
tool. When individuals from distant beds not included in the initial RADseq screening were genotyped,
diagnostic differences remained for all loci except for Cerast_586 and Cerast_1173A, which showed
a low polymorphism for C. glaucum in Mediterranean samples (Table S3). Previous molecular tools have
been reported for the identification of cockle species, but they were focused on maternally inherited
mtDNA [29], on dominant random amplified polymorphic DNA (RAPDs) patterns [30] and on the
ITSs of the tandemly arranged rDNA gene family [15,31], all of them displaying different limitations
for the identification of hybrids. The seven SNPs here reported as diagnostic and developed by Next
Generation Sequencing (NGS) and Genotyping-By-Sequencing (GBS) methodologies allow for a more
refined analysis of hybridization between both species if it exists, detecting with fully confidence F1
hybrids and with reasonable accuracy their backcrosses (BC) and F2 hybrids (P > 0.95).
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The 10 suspected hybrids detected (Díaz et al., unpublished data) using the methodology ITS
region [15] were analyzed with the tool here described, and all of them showed pure multilocus
genotypes either for C. edule (three individuals) or C. glaucum (seven individuals) (Table S4), strongly
suggesting that they are not hybrids. In fact, the most intense ITS band shown on agarose gels
by these individuals corresponded with the assigned species with the SNP tool (data not shown).
Although we cannot fully discard a recurrent backcross introgression from one species into another
occurring several generations ago, a more plausible explanation for this observation is the existence
of an intraspecific rDNA polymorphism in cockles, as previously reported in C. glaucum [19] and in
many other species [32–35]. As outlined above, the probability of being a BC or F2 hybrid with pure
species genotype would be < 0.05 for seven diagnostic loci, and this would be much lower for the
multiple individuals detected showing that pattern. Despite the fact that this observation does not fully
invalidate the ITS tool by Freire et al. [15], methodological modifications (e.g., changes in annealing
temperature) should be addressed to avoid the appearance of unspecific bands in the gels.

In summary, our data support the usefulness of the seven diagnostic SNPs reported from a large
sample of individuals covering the main distribution range for discriminating edible and lagoon
cockles; furthermore, a larger SNP diagnostic repository is available in case more markers were
needed depending on the goals of the study. In addition, our study highlights the usefulness of NGS
strategies to identify diagnostic differences in the genomes of closely related species for the analysis of
hybridization in the wild, useful for management of genetic resources in productive areas or in those
areas where cockles provide ecosystem services.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/10/760/s1,
Table S1: Diagnostic single nucleotide polymorphisms (SNPs) for both cockle species analyzed in the present study.
SNP position in the RADtag sequence (SNP position), SNP variants (Allele 1 and Allele 2), number of analyzed
individuals (N), marker name (see main text and Table 2) and annotation against NCBI database are shown,
Table S2: Private alleles detected for each cockle species. SNPs variants (Allele 1 and Allele 2), average number of
reads per marker (Av. Nb reads), number of individuals analyzed (N), observed and expected heterozygosities
(Ho and He, respectively), and inbreeding coefficients (Fis) are shown, Table S3: Genotypes obtained for the
96 individuals (48 C. edule and 48 C. glaucum) tested with the SNaPshot technique. Expected genotypes for each
species with 2b–RAD–GBS technique and those previously found with this technique in control individuals are
also shown. Morphological and molecular species identification is included for each individual. Bed codes are
shown on Table 1, Table S4: Genotypes obtained with the SNaPshot technique for the 46 individuals from beds
where the presence of hybrids has been suggested. For each individual, their identification using the methodology
described by Freire et al. (2011) using ITS region (ITS) and the SNaPshot methodology described in the present
study (SNaPshot) are shown. The 10 suspected hybrids and the multilocus genotypes for each species are shown
in yellow and green, respectively. Bed codes are shown on Table 1.
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