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a b s t r a c t 

Outbreaks of infectious diseases, such as influenza, are a major societal burden. Mitigation policies dur- 

ing an outbreak or pandemic are guided by the analysis of data of ongoing or preceding epidemics. The 

reproduction number, R 0 , defined as the expected number of secondary infections arising from a single 

individual in a population of susceptibles is critical to epidemiology. For typical compartmental models 

such as the Susceptible-Infected-Recovered (SIR) R 0 represents the severity of an epidemic. It is an esti- 

mate of the early-stage growth rate of an epidemic and is an important threshold parameter used to gain 

insights into the spread or decay of an outbreak. Models typically use incidence counts as indicators of 

cases within a single large population; however, epidemic data are the result of a hierarchical aggrega- 

tion, where incidence counts from spatially separated monitoring sites (or sub-regions) are pooled and 

used to infer R 0 . Is this aggregation approach valid when the epidemic has different dynamics across the 

regions monitored? We characterize bias in the estimation of R 0 from a merged data set when the epi- 

demics of the sub-regions, used in the merger, exhibit delays in onset. We propose a method to mitigate 

this bias, and study its efficacy on synthetic data as well as real-world influenza and COVID-19 data. 

© 2021 Published by Elsevier Inc. 
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The burden of infectious diseases is felt around the world. De- 

eloped countries are often faced with increased health-care ex- 

enditure, while developing countries face increased mortality and 

etrimental long-term effects on the population [1] . Seasonal epi- 

emics such as influenza infect millions of people annually since 

reventative measures are imperfect. In the 2017–2018 epidemic, 

here were 45 million influenza illnesses and 21 million influenza- 

s-sociated medical visits. In the 2018 − 2019 epidemic, the effi- 

acy of the flu vaccine was reported to be as low as 47% [2] . In-

uenza severely affects vulnerable groups in particular, such as 

oung children and the elderly [3] , and in 2017, the associated 

eath toll was around 61,0 0 0 in the United States (US) [4] . More-

ver, the total economic burden of influenza epidemics within the 

S is projected to be in the realm of $87 . 1 billion [5] . The ongo-

ng COVID-19 pandemic has affected more than 251 million peo- 

le worldwide with a fatality of 5 million [6] , and an economic 
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ontraction nearing that of the Great Depression of the 1930s 

nd with projected injections of more than 5 trillions globally 

7] . Economists estimate, under the optimistic assumption that the 

andemic’s effects will abate in two years, the total cost of the 

andemic would lie at nearly 16 trillion dollars [8] and we are 

ow seeing the emergence of new strains. Clearly, the severe hu- 

an and economic costs of pandemics and regular seasonal epi- 

emics motivate the need for accurate methods for risk-prediction 

nd planning during outbreaks. To this end, Non Governmental 

gencies (NGOs) and health care officials work in tandem to collect 

isease incidence data. 

Epidemiological models can be used to turn the collected data 

nto actionable insights [9–11] . The parameters in epidemiological 

odels quantify the severity of the disease [12] and the param- 

ters thus obtained are used to devise strategies of intervention 

13–15] . The reproduction number, R 0 , is a critical quantity defined 

s the expected number of secondary cases caused by a single in- 

ected individual in a population of susceptibles [16–18] . The re- 

roduction number characterizes the growth potential of an epi- 

emic [19] . It also serves as a threshold parameter: if above one, 

n epidemic is expected to grow, while if below one, an epidemic 

https://doi.org/10.1016/j.annepidem.2021.07.008
http://www.ScienceDirect.com
http://www.annalsofepidemiology.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annepidem.2021.07.008&domain=pdf
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s expected to decay. R 0 is widely used for risk-assessment, op- 

imization of strategies for intervention or management of allo- 

ation of human and economic resources, particularly during the 

rst stages of a crisis [20–22] . An accurate estimation of the repro- 

uction number from observational data is thus critical. However, 

uch assessment relies on the accuracy of collected epidemiologi- 

al data, which is often noisy due to a variety of factors which we 

hall discuss next. 

As exemplified by the ongoing COVID-19 pandemic, the collec- 

ion of data during an outbreak is challenging because of logistical, 

ultural, political, and technical factors, particularly at early stages 

f an epidemic or pandemic. For example, under-reporting of cases, 

nd slow transmission of data between organizations were impor- 

ant sources of heterogeneity that made their way into the final 

stimates collected by the World Health Organization (WHO) dur- 

ng the Ebola outbreak [23] . In the case of influenza in the United

tates, data are collected in a hierarchical structure: incidence is 

ecorded at sub-regional organizations such as local hospitals, ag- 

lomerated by regional organizations (such as state level health- 

are agencies) before being transmitted to the Centers for Disease 

ontrol and Prevention (CDC) and aggregated to create national in- 

ection curves [24] . Modern multi-regional data collection and ag- 

regation practices may no longer reflect the assumptions of typ- 

cal epidemiological models. Is such an aggregation approach valid 

hen the epidemic has different dynamics across the regions moni- 

ored? In this study, we characterize bias in the estimation of R 0 
rom a merged dataset when the epidemics of the sub-regions, 

sed in the merger, exhibit delays in onset. We propose a method 

o mitigate this bias, and study its efficacy on synthetic data as 

ell as real-world influenza and COVID-19 data. 

The paper is organized as follows: in Section 2 , we showcase 

 real-world example of variation in epidemic onset, and discuss 

ow such variation arises in epidemiological data. Section 3 pro- 

ides background on the SIR model and how its parameters are 

nterpreted. In particular, we discuss how temporal delays in the 

nset of an epidemic affect the epidemic curves and bias estimates 

f the reproduction number. Section 4 details the method we pro- 

ose to reduce this bias by explicitly accounting for temporal off- 

ets, introducing a new Shifted-SIR model (S-SIR). In Sections 4 and 

 , we validate our method using synthetic data and real-world in- 

uenza data collected in the United States, respectively. Finally, in 

ection 6 we use our methodology to illustrate how the methodol- 

gy can help reduce errors at early stages of epidemics even when 

nderstanding of the underlying disease dynamics is not yet clear. 

e conclude with a discussion of related work and the implica- 

ions of our method in Section 7 . 

eterogeneity in epidemic data 

The procedures for reporting cases of infectious diseases vary 

rom country to country but generally follow a hierarchical struc- 

ure. Starting from hospitals and clinics, data is collected, tabu- 

ated and aggregated before being passed onto regional authorities 

nd NGOs. This process is repeated and the aggregated statistics 

re sent to national bodies where it is used for intervention pol- 

cy, crisis response, planning and management. In resource-limited 

ettings, some of this hierarchical infrastructure has to be created 

n-the-go during an outbreak [26] . 

By way of example, consider a government agency in the United 

tates that wishes to quantify the severity of the influenza epi- 

emic in 2014. Typically, the severity of an epidemic is assessed by 

stimating the R 0 from data collected locally and then aggregated. 

However, the aggregation process smoothes out local hetero- 

eneity that are relevant for the assessment of the severity of the 

pidemic. For example, in Fig. 1 we plot the incidence curves for 

he 2014 influenza outbreak in several major states in the United 
2 
tates; here we observe non-uniformity in the start times of the 

pidemic across the various (sub-regions) states. Week 40 of the 

ear is typically used by the CDC to denote the start of the flu sea-

on [25] . 

Decisions on quantifying the severity of the disease are made 

sing national level epidemic data and the aggregation infras- 

ructure that creates the national data pools the data from the 

ub-regions. Typical compartmental models assume that incidence 

urves reflect a single large well-mixed population. This assump- 

ion is violated when sub-regional epidemics begin at different 

oints in time. Failing to account for this heterogeneity in onset 

f the epidemic among sub-regions can bias estimates of R 0 in- 

erred from the aggregated data. We pause to reflect on how such 

eterogeneity in onset time of epidemics could arise. 

1. Errors in Data Reporting: An infection curve typically repre- 

sents the number of infected individuals over time. However, 

the reported number is often a noisy estimate of the true num- 

ber of individuals infected. Deviations from ground truth can 

occur due to under-reporting [27,28] , or errors in tabulation. 

2. Ecological bias: Typical compartmental models assume a sin- 

gle , mean, rate of infection and recovery across the entire popu- 

lation. Aggregating incidence counts from sub-regions in which 

there is high variance in the rates of infectivity and recov- 

ery may result in inferring a global reproduction number, R 0 
[29] that is not representative of the reproduction numbers of 

sub-regions. This is a case where ecological bias can arise in 

epidemiological studies [30] . Correcting ecological bias of this 

nature is difficult due to non-identifiability in the data: namely 

that there exists an infinite set of sub-regional incidence curves, 

each corresponding to different values of R 0 , that can give rise 

to an observed aggregated infection curve. 

3. Offset in epidemic onset in sub-regions: Epidemics rarely 

begin simultaneously across spatially separated geographic re- 

gions. Due to factors such as the population density of sub- 

regions and the variation in disease vectors, there are often 

delays in the onset of the epidemic. These delays can be dif- 

ficult to detect: for example, California in Fig. 1 , has a non-zero 

number of cases of influenza as baseline before the onset of the 

epidemic, making it difficult to pinpoint exactly how to define 

the onset of the epidemic. Organizations like the CDC often use 

week 40 in the year as an empirical mark of the beginning of 

seasonal epidemics such as the flu. This is a choice that aligns 

well with the epidemic dynamics in some sub-regions but not 

others. 

We next focus on mitigating errors in estimating R 0 , and 

hereby the quantification of epidemic severity, due to the third 

cenario highlighted above. We expect that when delays in epi- 

emic onset among sub-regions are comparable to the duration of 

he epidemic, the aggregated curve is fundamentally altered. We 

onjecture that the resulting bias in R 0 arises because parameters 

n compartmental models are forced to capture delays, in addition 

o the dynamics of the epidemic. 

Hereafter, sub-regions refer to collection sites for epidemic data 

hile regional data refers to the aggregation of incidence counts 

rom such sub-regions to form the incidence curve from which R 0 
s inferred. We work with the canonical epidemic compartmental 

odel, the SIR model, described succinctly in the next section. 

he SIR model 

orm and basic assumptions 

The Susceptible Infectious Recovered (SIR) model is ubiquitous 

or the analysis of epidemic data [31] . It splits a homogeneous 

opulation into three groups, or compartments, and represents the 
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Fig. 1. Flu outbreaks in 2014: Infection curves for influenza across different states of the U.S. On the x-axis is weeks elapsed since week 40 [25] , used by the CDC as a 

marker for the onset of the flu season. On the y-axis is the number of individuals who report to outpatient clinics with an influenza like illness. Note that the maximum 

number of infected individuals differs across sub-regions. 
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rogression of the epidemic as the status of individuals transition 

hrough the compartments. Typically, nearly all individuals are ini- 

ially considered to be Susceptible while a small number of in- 

ected individuals are introduced in the naive population. The rates 

f change of the proportion of individuals in each compartment are 

overned by coupled ordinary differential equations governing the 

umber, or fraction, of the susceptible ( S), infected ( I) and recov- 

red ( R ) individuals: 

dS 

dt 
= −βSI , 

dI 

dt 
= βSI − γ I, 

dR 

dt 
= γ I. (1) 

We work with the normalized model where S + I + R = N = 1 .

is the mass action parameter encompassing contact and trans- 

ission rates between susceptible and infected individuals, and γ , 

he rate of recovery of infected individuals. 

The reproduction number, the average number of secondary in- 

ections caused by a single infected individual introduced in the 

opulation, is derived as R 0 = 

βS 0 
γ where S 0 is the initial fraction 

f susceptible individuals in the population. 

The primary use of R 0 is as a threshold parameter to quantify 

hether an outbreak is expected to die off or spread and grow into 

n epidemic. When R 0 > 1 , the region experiences an epidemic 

ith an increase in the number of cases, I. When R 0 < 1 , the out-

reak dies out ( I decreases). The value of R 0 is therefore crucial for 

isk assessment and testing intervention strategies such as plan- 

ing for the number of drugs to allocate, hospital beds to prepare, 

nd healthcare workers to deploy during the epidemic. An under 

r over-estimation of the reproduction number can have disastrous 

ublic health and economic consequences. 

Note that the SIR model makes a number of implicit assump- 

ions such as homogeneity in the distribution of the recovery and 
3 
nfection rates. Anyone is equally likely to be infected and recover. 

he model also assumes homogeneity in the social contact net- 

ork: i.e. any infected individual is equally likely to be the source 

f infection for any other individual, not accounting for distance, 

eterogeneity in pathogen shedding, residence in the same indoor 

pace, or contributions from air contamination indoors for respira- 

ory diseases for example [32–34] . Several extensions to the model 

ave been proposed to account in various ways for homogeneity 

n spatial and temporal scales or shedding amounts and timescale 

ompetitions [35–39] , but there is no universal approach yet to 

est account for these effects in general. 

We begin with a demonstration on synthetic data to show how 

elays in onset of epidemics in sub-regions can affect assessment 

f R 0 from the regional data. 

otivating the problem with the SIR model 

The setup is as follows. We consider an epidemic with R 0 = 2 . 3

s manifested in ten different sub-regions. Each sub-regional epi- 

emic is characterized by a choice of R 0 ∼ |N (2 . 3 ; 1) | . The inci-

ence curves are simulated and visualized in Fig. 2 [ A ]. The re-

ional data is given by their aggregation in Fig. 2 [ B ]. Although 

ypically, R 0 would only be estimated from regional data, in this 

xercise, we use the SIR model to infer R 0 from each of the sub- 

egional curves and their aggregation – we visualize the results in 

ig. 2 [ C ]. Next, we repeat the exercise in Fig. 2 [ D-F ] but this time

imulate epidemics where the epidemic onset in the sub-regions is 

elayed, with a delay uniformly sampled from two to six weeks. 

Without delays in onset of epidemics in sub-regions, even with 

oise in the observational data and a small degree of variation in 
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Fig. 2. Time-delay is a source of error when inferring R 0 . [ A ] shows the infection curves for populations in ten hypothetical regions alongside the aggregated infection 

curve in [ B ]. [ C ] shows the results of inferring R 0 using the SIR model on all the sub-regional data, the aggregated curve along with the true R 0 = 2 . 3 . [ D ], [ E ], and [ F ] follow 

similarly but showcase instances where there is heterogeneity in epidemic onset time between the sub-regions with resulting values of R 0 estimated using the SIR model 

that are much further away from the ground truth. 
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he sub-regional R 0 , inferring R 0 from the aggregated data using 

he SIR model yields a reasonable estimate R 0 = 2 . 4 compared to

he true value of 2.3. However, in the presence of delayed epidemic 

nsets in the sub-regions, the inferred R 0 = 1 . 8 from regional data

s less accurate, further from the true value. This demonstrates 

ow a naive approach to the inference of the reproduction number 

an lead to a serious underestimation of the severity of an out- 

reak. 

To illustrate the importance of the problem, let us consider a 

opulation of a million individuals. In the absence of temporal 

ffsets, the model’s estimation, R 0 = 2 . 4 , (blue line in panel [ C ])

ould be approximately 240,0 0 0 infected individuals while the 

rue number, R 0 = 2 . 3 , (orange line in panel [ C ]) predicts 230,0 0 0.

his is an under-estimation of 10,0 0 0 individuals or 1% of the pop-

lation. In the presence of heterogeneity due to variation in epi- 

emic onset (panel [ F ]), the number of underestimated infected in- 

ividuals rises up to 20 0,0 0 0. This is 20% of the population, and

our times larger than the error incurred in the absence of tem- 

oral variation in disease onset. Such large errors in the predic- 

ion of the number of infected individuals can have dramatic con- 

equences during an outbreak; for example: from an operational 

tandpoint, care facilities may be under-prepared for dealing with 

he additional influx of sick patients. 

Note that in the experiments discussed here, we ensured over- 

ap between the sub-regional epidemic curves in Fig. 2 [D]. Clearly, 

n the extreme case in which the epidemic curves do not over- 

ap, the use of an SIR model for the aggregated model can no 

onger hold. The aggregated curve would either be in the form of 

 plateau or appear as a series of epidemic curve peaks, possibly 

uggesting multiple epidemic waves. These extreme cases imply 

bvious breakdowns of the SIR type model for the aggregated data, 

nd so are not of high concern: a typical user would not typically 

ry to extract SIR-type parameters from such multi-modal or “flat”

pidemic data curves. However, more concerning is the intermedi- 

te regime for which delays in onset are important, but with suf- 

cient remaining overlap between epidemic curves, such as shown 

n Fig. 2 [D]. In such cases, there is no obvious distortion of the 

ggregated epidemic curve. As we have seen, in such cases, the 

 0 inferred is typically biased and in particular, is underestimated. 

ndeed, in such intermediate cases, the SIR model is incapable of 
4 
apturing time-delays, or offsets, in the onset of the epidemic in 

ub-regions, the source of errors we seek to avoid. To remedy this 

athology, we next introduce an alternative epidemic model. 

hifted-SIR (S-SIR) model 

The shifted-SIR model uses an additional parameter to explicitly 

apture delays in the onset of the epidemic. 

Denoting by τ the start time of the epidemic, and I the indica- 

or function: 

 [ x ] = 1 if x holds, 0 otherwise . 

he S-SIR model has the following dynamics for each of the com- 

artments of a population: 

dS 

dt 
= I [ t > τ ](−βSI) , 

dI 

dt 
= I [ t > τ ](βSI − γ I) , (2) 

dR 

dt 
= I [ t > τ ](γ I) . 

he key difference between Equations (1) and (2) is the incorpo- 

ation of an additional parameter to the model, τ . When t > τ , 

he Shifted SIR, and the SIR model are equivalent. When t ≤ τ , the 

hifted SIR model preserves the initial conditions of the differential 

quation without temporal evolution. In this way, the model has a 

echanism to explicitly account for the start time of each infection 

urve, and the new parameter has a rooting in a physical, measur- 

ble effect of delay in onset or reporting, or a combination of both. 

onsequently, this means that the parameters β, γ that govern the 

nfection dynamics, and by proxy reproduction number R 0 , are not 

sed to model the early portion epidemic data attributed to delays 

nd noise; they can instead focus on modeling infection counts af- 

er τ time-steps. 

Simulation and parameter estimation in the S-SIR model: For 

 given choice of τ , one can simulate from this model using an SIR 

odel followed by right-shifting the simulated curve right by τ
ime-steps. However, the incorporation of τ to the compartmental 

odel requires new methods to fit parameters from epidemiologi- 

al data. We use a grid search for τ and nested within it, a least- 
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Fig. 3. Inferring parameters of the S-SIR model For each sub-region, we simulate noisy data following SIR dynamics with severity R 0 and time-delays Uniform (τ − 1 , τ + 1) 

(top row) and Uniform (τ − 3 , τ + 3) (bottom row) using the values of R 0 , τ displayed in the top row of the legend. The aggregated curve ( Data ) is then used to infer the 

parameters of an S-SIR model and we simulate from the resulting model ( Sim. ; alongside the inferred parameters). The faded graphs are the epidemic curves in the sub- 

regions. 
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quares [59–61] based fitting procedure to estimate β, γ from in- 

ection counts I. The practitioner’s prior estimates for what values 

can take for a given epidemic may be used to constrain the grid 

earch. We defer the reader to the supplementary information (SI) 

or a detailed exposition on how the parameters of the model are 

nferred. 

Inferring parameters of the S-SIR model: We first reflect upon 

ow heterogeneity in epidemic onset manifests in aggregated inci- 

ence curves. In Fig. 3 we study eight different scenarios, where 

oth R 0 , τ take high and low values (values listed in the figure- 

ey labelled as Data ). In the top row, each of the ten sub-regional

pidemic curves (faded curves) are assumed to be generated from 

n SIR model with the corresponding value of R 0 and shifted to 

he right by an offset drawn from Uniform (τ − 1 , τ + 1) . In the 

ottom row, each of the ten sub-regional epidemic curves (gen- 

rated as above) are shifted to the right by an offset drawn from 

niform (τ − 3 , τ + 3) . The top row illustrates the case where there 

s a small degree of heterogeneity in onset times among the sub- 

egions and the bottom row illustrates the case where there is a 

arge degree of heterogeneity. The aggregated curve (depicted with 

he label Data ) is then used to infer the parameters of the S-SIR

odel. We simulate from the model and display the estimated pa- 

ameter values ( ̂  R 0 , ˆ τ ) alongside the curve from the simulation, 

oted with Sim in the figure-key. 

The results showcase a few important aspects of the inferred 

arameters. First, across the board, we find that simulation from 

he S-SIR model with the inferred parameters presents an accurate 

t to the aggregated, epidemic curve. Second, when the epidemic 

nset delays in the underlying sub-regions have a small amount 

f variation (top row), when they differ greatly (bottom row) and 

he epidemics among the sub-regions have the same fraction of in- 

ected individuals, the value taken on by ˆ τ lies close to the small- 

st time-delay among the sub-regions. We conjecture that this is 

ecause the smallest time-delay among the sub-regions is the min- 

mum delay that may be identified from the aggregated infection 

ounts. In practice the degree of observational noise, the number 

f sub-regions, the severity of the epidemic in each sub-region and 

he heterogeneity in delay onset affect the values of ˆ R 0 , ̂  τ inferred. 

Improving R 0 using the S-SIR model Next, we perform a more 

horough quantitative study of scenarios to understand where the 
t

5 
-SIR model can improve the estimation of R 0 in the presence of 

ffsets in epidemic onset in sub-regions. 

The setup for the experiments are as follows. Across either ten 

r one hundred sub-regions, we first simulate an SIR epidemic and 

hift the epidemic curve to mimic a delayed onset. Folded random 

oise (with standard deviation of 0.005) is added to each point in 

very simulated curve. The curves are aggregated and the aggre- 

ation is used to infer the parameters of the SIR and the S-SIR, 

sing O (X , 0) and Algorithm 1, respectively. We then study the er- 

or between the inferred value ˆ R and the true value, R 0 . Each such 

xperiment is repeated 10 0 0 times. 

We study two kinds of epidemics with different severities: R 0 = 

 . 8 , R 0 = 3 . 1 . We vary the way in which the delay in epidemic on-

et in sub-regions, τ , behaves among the sub-regions by selecting 

our distributions from which τ (in unit of weeks) is sampled: 

1. τ ∼ �(0 . 3) 

2. τ ∼ �(5) 

3. τ ∼ Uniform [0 , 3] 

4. τ ∼ Uniform [7 , 10] 

The results of our analysis are depicted in Fig. 4 when τ is 

rawn from a Gamma distribution among the sub-regions and in 

ig. 5 when τ is drawn from a Uniform distribution. Both vio- 

in plots indicate that the SIR and S-SIR models underestimate R 0 . 

owever, across all results, we find that errors in the estimation 

f R 0 inferred from the S-SIR model are on average, lower than er- 

ors in R 0 from the SIR model, suggesting that explicitly accounting 

or time-delays does improve the accuracy of the inferred R 0 . We 

xamine several follow up questions in turn. 

Accuracy in the absence of time-delays: 

Figs. 4 and 5 show the results of the inference with small time 

elays (two columns on the left of all the plots of the figures). We 

ote that from the perspective of planning for epidemics, it is wor- 

ying that even small time-delays in epidemic onset in sub-regions 

esult in an appreciable error in the estimation of R 0 from aggre- 

ated data, giving a lower value than reality on the ground; this 

howcases a scenario that calls for concern about bias in the es- 

imates of R 0 . Such scenario is particularly concerning when the 

pidemic is severe (relatively high R 0 ). The Figs. (4 and 5 ) show

hat both synthetic scenarios tested, we find some gains from the 
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Fig. 4. Synthetic results (Gamma distribution): The number of sub-regions on the left plot is 10 and on the right is 100. In each, we study the distribution of errors 

between the true R 0 and inferred values when the time-delays and severity of infection with the sub-regions are varied. We find that the S-SIR systematically obtains better 

results across all settings. 

Fig. 5. Synthetic results (Uniform distribution): The number of sub-regions on the left plot is 10 and on the right is 100. In each, we study the distribution of errors 

between the true R 0 and inferred values when the time-delays and severity of infection within subregions are varied. We find that the S-SIR systematically obtains better 

results across all settings but does particularly well when there are larger time-delays in the sub-regions. 
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se of the S-SIR model which has a lower (on average) error in the 

stimation of R 0 than the SIR model. 

Accuracy in the presence of time-delays: 

When time-delays in sub-regions are larger (right two columns 

n the subplots of Figs. 4 and 5 , we continue to find that the S-SIR

odel outperforms the SIR model. The improvements yielded by 

he S-SIR model are particularly visible when all the sub-regions 

ave consistent shifts in the start of the epidemic and when the 

pidemic is more severe. 

Over or under-estimation: 

Across all the results we find that there can be a degree of 

nder-estimation of R 0 when the sub-regions have time-delays, re- 

ardless of the method used. This is problematic; an underestima- 

ion of the epidemic severity can result in worse consequences on 

ffected population than an overestimation of the severity. 

The results on synthetic data demonstrate that the S-SIR model 

oes improve the estimation of R 0 realizing values closer to the 

round truth. The results also characterize scenarios when we can 

xpect the use of such models to be of benefit: namely, when the 
6 
elays in onset are large across sub-regions. We next discuss the 

nsights gained from the synthetic data on characterizing the sever- 

ty of epidemics from real-world influenza data. 

uantifying the severity of seasonal influenza 

Influenza is a respiratory, viral, infectious disease which spreads 

ia air. Seasonal influenza is recurrent; the young and the aged are 

articularly vulnerable to developing serious complications. Char- 

cterizing the severity of an epidemic both when it is ongoing as 

ell as a posteriori is vital for public health management. We study 

ow offset in epidemic onset times in aggregated data gathered 

rom subregions in the United States affects the estimation of the 

everity of epidemics nationally. Epidemic data is collected in a hi- 

rarchical structure that spans multiple levels. Here, we focus on 

wo levels of the hierarchy. The sub-regions will contain incidence 

ounts available at the state level. The regional incidence counts 

orrespond to those at the national level. 
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Fig. 6. Influenza outbreaks of 2017: On the right, across different states, each (green) curve represents the fraction of people in the infected (I) compartment. On the left is 

the aggregated National level infection curve. The comparison of the abilities of the SIR and S-SIR models to capture the influenza incidence curves is shown. 

Fig. 7. Error on national – aggregated – level infection data: Across all the years we find that the S-SIR model incurs a lower error than that of the SIR model. 
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Setup: We obtained incidence reports for influenza from the 

DC [40] . The data contains dates and raw counts of individuals di- 

gnosed with influenza-like-illness (ILI) each week. For each state 

nd year, we define time zero using the CDC’s classification of the 

eginning of the flu year, which is the 40th week in the calen- 

ar year [25] . We self-normalize the raw counts (for example in 

ig. 1 ) to create incidence curves where each point represents the 

raction of the population in the Infected (I) compartment. The 

nfluenza data represents the incidence of the disease. Here, this 

s the number of new cases reported each week. Compartmental 

odels typically involve prevalence: the number of infected indi- 

iduals a given time. The two do not always coincide but since re- 

overy from influenza typically takes five to seven days, this du- 

ation maps well with the temporal granularity of the available 

eekly case data. Thus, we make the assumption in this work that 

he two are interchangeable and learn the parameters of the com- 

artmental models herein using the incidence data, similar to prior 

tudies of influenza [41] . 

The first value of the incidence curve is used as the initial con- 

ition of Equations (1) and (2) . For the S-SIR model, the τmax was 

imited to 20 weeks. 

For this data, we no longer have access to the ground truth val- 

es of R 0 . Therefore, as one proxy to measure how well the result- 

ng model explains the data, we measure absolute error between 

he raw data and the curves simulated under each model with the 

earned parameters. Denoting I s as the (vector of) data simulated 

rom a model with learned parameters and I as the raw incidence 
d 

7 
ata, we denote the absolute error E: 

 = 

1 

T 

T ∑ 

t=1 

| I t s − I t d | . (3) 

 smaller absolute error implies that the parameters fit by the 

odel more closely align with the observed data. 

The effects of aggregation: Are there delays in sub-regional 

pidemics for influenza? We visually inspect the incidence curves 

mong sub-regions in Fig. 6 to answer this question. We find a 

ew instances where the epidemic onset is delayed. For example in 

opulous states such as Illinois, California and Georgia, there is a 

arge and sudden spike in the number of infected individuals over 

 short two or three week window. We can therefore suspect that 

he national aggregated level epidemic is affected as well. 

In Fig. 6 , we compare the results from SIR and S-SIR models 

earned on the incidence data both at the state level and at the 

ggregated national level. Here we verify that (a) the S-SIR model 

akes use of the parameter τ and (b) that doing so enables it to 

apture more accurately capture the peaks of the epidemic the na- 

ional data and the sub-regional data. Both of these observations 

uggest that delays in sub-regional epidemics do play a role in how 

ell R 0 is inferred on aggregated data. We conjecture this happens 

ecause the underlying epidemic data exhibits heterogeneity in the 

tart of the epidemic among the sub-regions it is aggregated from 

relative to the CDC’s fixed point of observation for the start of the 

pidemic season). When the SIR model is fit directly to such data, 
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Fig. 8. R 0 estimated from regional and national Incidence curves: For six years, we visualize the values of R 0 estimated from regional (green) and national (red) levels 

incidence curves. The data was extracted and processed based on the incidence counts released by the CDC [42] . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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t uses β, γ to fit early trends in the epidemic curve leaving it un- 

ble to capture the peak of the epidemic well. In contrast the S-SIR 

oes not use β, γ to model the data until τ time has elapsed giv- 

ng it the ability to model the peak of the epidemic curve more 

ccurately. 

Quantifying model performance: In Fig. 7 , we quantify the ab- 

olute error obtained on national incidence curves for years rang- 

ng from 2012 to 2018. Across many of the years, we find that the 

-SIR model has a lower error than the SIR model. In the supple- 

ental material, we repeat this exercise at the sub-regional level –

veraging the results across years from 2012 to 2018 – where we 
8 
ontinue to find that the S-SIR captures the data better than the 

IR model. 

Comparing estimated reproduction numbers: We visualize 

he values of R 0 estimated by both algorithms in Fig. 8 . On the

-axis are the results from the SIR model and on the y-axis are the 

esults from the S-SIR model. In green are the (paired) estimates 

rom each sub-region while in red are the estimates obtained from 

he national level incidence curves. We see a large degree of cor- 

elation between the values of R 0 inferred by the two algorithms. 

cross several years however, the value of R 0 estimated using the 

IR model is always smaller than that estimated with the S-SIR 
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Fig. 9. United States Federal Regions [43] . 

Fig. 10. R 0 estimated from ongoing epidemics: For two years, 2013 and 2014, we visualize the epidemic curve corresponding to the values of R 0 estimated from each year’s 

national level incidence curve while limiting the length of the curve to 10 , 15 , 20 weeks. In each case, we visualize the results from the SIR and S-SIR models to infer R 0 and 

assess their model fit. 

9 
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Fig. 11. Visualizing τ (unit of week) inferred by the S-SIR model across sub- 

regions (states) : States are grouped based on the United States Federal Regions 

shown in Fig. 9 . 
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10 
odel. Since we do not know the ground truth, it is impossible to 

now for certain which model is more accurate; however, the ob- 

ervation that the S-SIR model provides a better fit to the epidemic 

urve data ( Fig. 7 ) along with Fig. 8 , suggests that the SIR model

nderestimates R 0 . We provide further evidence to support this hy- 

othesis by looking at Fig. 12 where we visualized the learned τ
rom the S-SIR model. We see that years in which the S-SIR model 

erforms better than the SIR model in Fig. 7 correspond to years 

here the inferred value of τ is largest. 

Infectivity in ongoing epidemics: In the previous experiments, 

ur analysis of the data was retrospective – i.e. the epidemic had 

ome and gone. Using retrospective data, we can simulate an ongo- 

ng epidemic by limiting the length of the infection curve used to 

stimate the model parameters. For the national incidence curves 

or four years, we estimate the parameters of the SIR and S-SIR 

odel using data up to weeks 10 , 15 , 20 . For each choice, we cal-

ulate the value of R 0 and display it in Fig. 10 . The top row de-

icts the results obtained from the SIR model while the bottom 

ow contains the results from the S-SIR model. There are two ob- 

ervations of note – first, the S-SIR model captures best the peak of 

he epidemic; and second, the values of R 0 obtained, even during 

stimation of an ongoing epidemic, are higher than those obtained 

y the SIR model. Both observations suggest again that the S-SIR 

odel yield more conservative, higher, estimates for R 0 . 

Heterogeneity in τacross states: Having studied how the S-SIR 

mproves estimates of R 0 from regional data, we study the spa- 

ial patterns in the inferred values of τ from sub-regional data. We 

roup the sub-regions based on standard federal regions and av- 

rage the values of τ for states in each group. We visualize the 

ederal regions in Fig. 9 and the results in Fig. 11 . Across both time

nd space, we find that the S-SIR model infers a non-zero value 

f τ suggesting that the underlying epidemic is indeed beginning 

ater than week 40, with large variations from region to region, 

nd with several regions showing an increase in epidemic onset 

ime in the 2015–2018 window (e.g., regions I, V, VII, VIII, and X). 

his can result in delays in onset of the national epidemic curve, 

s witnessed in Figs. 6 and 12 , which subsequently interferes with 

he accuracy of the estimation of R 0 from national aggregated data. 

Robustness of τ When only given access to the regional epi- 

emic data, how robust are our estimates of τ to observational 

oise in the data? To answer this question, we use the national 

evel epidemic curves, perturb the raw counts using additive Gaus- 

ian noise (with standard deviation set to a varying percentage 

f the peak infection counts during that year) while restricting 

urselves to valid epidemic curves by using the absolute value 

hen the addition of noise results in negative counts. Then, we 

e-estimate τ over one-hundred random trials. We visualize the re- 

ults in Fig. 12 . We vary the percentage of the peak infection count 

etween 1% and 5% both of which represent a significant amount 

f observational noise added to the epidemic curve. Note that the 

oise (which is a constant function of the peak infection count) 

esults in larger variation during the early and late stages of the 

pidemic curve than in the middle. 

This experiment serves to assess the feasibility of using τ to 

nticipate whether the model we propose can assess the existence 

f time-delays from regional epidemic data. When the observa- 

ional noise lies around 1% of the peak epidemic curve, we find 

hat the variation is distributed tightly around the value of τ esti- 

ated from the noise-free regional data, implying that the use of τ
s within reasonable limits for a practitioner to assess whether or 

ot time-delay is an important effect in the data. When the stan- 

ard deviation of the noise is increased to around 5% of the peak 

nfection counts, we continue to find that in over 50% of the trials, 

he value of τ inferred indicates that one can expect time-delays 

n the underlying data. 
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Fig. 12. τ inferred from national (regional) level infection data: Across all the years we show the τ from the S-SIR model. The intervals showcased are from re-estimating 

τ from epidemic curves with additive Gaussian noise . 
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pplication to the ongoing COVID-19 pandemic 

COVID-19 has spread over the globe, has infected over 251 mil- 

ion people worldwide, more than 5 million of whom have died 

6] . Here, we compare the fit obtained to data from an S-SIR model 

ith an SIR model on infection data collected from Italy at the 

arly stage of the epidemic. It is important to note that by now, we 

now that the dynamics of COVID-19 is more complex than an SIR, 

ut here we use only this approach to illustrate how the methodol- 

gy can help reduce errors at early stages of epidemics even when 

nderstanding of the underlying disease dynamics is not yet clear. 

iven that the SIR model is the one initially typically used with 

ew epidemics of unknown pathogens, we use an SIR rather than 

ther models to make this illustrative point. Of course as knowl- 

dge of the disease evolution improve, we can use the same time- 

hifted approaches with more complex epidemic models, and this 

s beyond the scope of this manuscript. 

The data we use for this illustration was updated daily, at 

he time, from the National civil protection department and can 

e downloaded from the official GitHub repository github.com/ 

cm- dpc/COVID- 19.git . The data include information on those who 

ere infected, recovered, and died. The epidemic began in Lom- 

ardy, a region in the north of Italy, and spread over the course 

f a month to the rest of the country. Fig. 13 (large panel) shows

ow R 0 changes as a function of the amount of data used to in-

er its value (on the x-axis) in the early stage of the epidemic. 

he error bars around the values of R 0 quantify the uncertainty on 

he estimate which is obtained by perturbing the infection curve 

ith observational noise, and repeatedly estimating the reproduc- 

ion number. The figure illustrates the significantly higher R com- 
0 

11 
ared to that of influenza. The estimation is consistent with other, 

ndependent, estimates [44] . The figure also shows that the esti- 

ates start high, and decrease over time. The SIR and S-SIR es- 

imates diverge in the early stages of the outbreak (large panel) 

ut converge to consistent values further on (small panel). Further- 

ore, early estimate of R 0 from the S-SIR are significantly more 

obust than initial estimate from the SIR model. This suggest that 

he time-shift parameter of the S-SIR captures useful information 

n the early stages of an epidemic when data are scarce, prone to 

iss-reporting errors and when the underlying dynamics of the 

isease are not well understood. 

Since the onset of COVID-19, our knowledge evolved and of 

ourse now we know that an SEIR may be more appropriate and 

hat policy interventions over time have to also be accounted for 

o account for changes in the values of R 0 over time. Hence, we 

onjecture that in the early stage of the pandemic and onset of 

ts various recurrent waves, the S-SIR could be a good model to 

stimate R 0 , keeping in mind its limitations when complex inter- 

entions are being used. 

iscussion 

There is a large body of work studying various sources of het- 

rogeneity that arise in the estimation of R 0 from data using epi- 

emiological models. Extensions of the SIR model, such as the SEIR 

odel [35] , tackle heterogeneity due to differences in how diseases 

ffect individuals in populations. Others focused on relaxing the 

ssumptions made by typical compartmental models by incorpo- 

ating variation in population sizes and the effect of vaccination 

45] into the model of disease dynamics. In [46] , heterogeneity in 

http://github.com/pcm-dpc/COVID-19.git
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Fig. 13. R 0 estimated from the 2020 COVID-19 pandemic: the large panel shows the estimation of the R 0 using the national level curve data from the SIR versus S-SIR 

models in the early stage of the outbreak. The small inset panel shows the estimate in later stages. These estimates are not as reliable as in the later stages of the pandemic 

there were complex dynamics (e.g. policy intervention) in place. 
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emoval from the Infected compartment is studied and its effect on 

 0 is derived. [32] studies rates of infection in diseases where there 

s population heterogeneity (such as the level of social activity dis- 

layed by individuals), social-distancing and changes in hygiene. In 

he context of the Ebola outbreak in West Africa, [47] discusses the 

mportance of accounting for uncertainty in the estimated model 

arameters. Variation in epidemiological curves and its parameters 

s a function of the variation in assumptions about the contact net- 

orks were also studied [4 8,4 9] . 

Biases incurred due to inferences made at the level of aggregate 

ata is referred to as aggregation bias [50,51] . For example, [51] ex- 

mined changes in regression coefficients (for prediction problems) 

n the presence of data aggregation. Here, we identify a form of 

uch bias in the estimation of R 0 that arises from the offset in 

emporal onset of epidemics in sub-regions used to produce ag- 

regated epidemic data. Without fine-grained mobility information 

etween sub-regions as in [52] , the offset captures some degree 

f spatial information about how the virus spreads – for example, 

iven sub-regional data, sorting the regions by their values of τ
ay prove useful in understanding how a new disease is spread- 

ng due to mobility. Closely related to our work in spirit is that of 

53] , who studies the effect of the incubation period for soilborne 

lant pathogens and the resulting differences in the understanding 

f the spread of plant diseases. Similarly, albeit with a different 

ocus, [54] explore methods to model epidemic waves composed 

f overlapping sub-epidemics. They use generalized-logistic growth 

odels to forecast trajectories of emerging epidemics. Among sta- 

istical approaches, [51] examined change in regression coefficients 

sed for prediction as a function of data aggregation. Note also 

hat Bayesian hierarchical models [55] have been used to capture 

nowledge about how epidemic curves in previous seasons might 

ictate the behavior of the epidemic in the following season. How- 

ver, while [55] does experiment with a scaled and shifted SIR 

odel, their analysis does not touch upon when and why such a 

odel might be warranted, and the kinds of biases it corrects for. 

Our work focuses on elucidating the effect of shift or delay be- 

ween sub-units of data on the predictions done on the aggregated 

ata. We showed how a mismatch between the generative assump- 

ions of epidemiological models and how data is gathered can bias 

nferences made about the reproduction number and thus, the es- 

imation of severity of epidemics. In particular, we quantified er- 

ors accrued when estimating R 0 in the presence of delayed epi- 

emic onset as well as when the sub-regional epidemic data have 

elayed onsets. Our work illustrates how the lack of alignment be- 

ween the assumptions made in a model and the data generating 

rocess can distort decisions made using the estimated parame- 
12 
ers. To address and correct for this distortion, we introduced and 

alidated the Shifted-SIR (S-SIR) model and provided an algorithm 

or parameter estimation, as a means to correct for the effect of 

elays in epidemic onset. 

The subsequent analysis on synthetic data showcases the 

trength of the S-SIR model where we see that by explicitly ac- 

ounting for time-delays within the compartmental model, we are 

ble to correct and mitigate some of the bias in the estimation of 

 0 . 

In its current form however the S-SIR model is limited to mod- 

ling time-shifted dynamics arising from an SIR model. Extend- 

ng the approach to more general classes of compartmental mod- 

ls (e.g. the Susceptible-Exposed-Infected-Recovered model) may 

e appropriate for infectious disease that are known to undergo 

ore complex dynamics. 

When should the S-SIR model be used? If one has access to 

ub-regional local data, then policy decisions should be made sep- 

rately for each sub-region. However, sub-regions can be sparsely 

opulated, their data can be noisy or otherwise unavailable. In 

uch scenarios policy decisions must be made from aggregated re- 

ional data. Recall from our earlier example, that serious hetero- 

eneity in onset can introduce a systematic under-estimation of R 0 . 

n under-estimation of 1.8 instead of 2.3 ( Fig. 2 ) translates to a 

ifference of 20 0,0 0 0 cases in a population of 1 million, in other

ords 20% error, which can be dramatic when estimating bed- 

apacity match to cases in time of pandemics. It is thus clear, that 

he best course of action would be to account for offsets with the 

-SIR model when learning from regional – aggregated – epidemic 

urves. Doing so can mitigate some of the bias incurred in the esti- 

ation of R 0 with important implications for planning of response 

nd management of cases. 

Finally, as different modalities of data collection [56] are inte- 

rated for epidemiological modeling, it is vital to rethink our mod- 

ling framework to take into account the different levels of the 

ata generation hierarchy [57] . Here, we presented one approach 

o mitigate errors, and systematic under-estimation in particular, 

n inferring R 0 due to heterogeneity in epidemic onset, particu- 

arly at early stages of epidemics when data is scarce and pooling 

ata is common, while understanding of the underlying dynamics 

f the disease is not developed. Using our validated proposed S-SIR 

odel and methodology, we hope that more accurate estimates of 

he reproduction number that matters on the ground can be used 

o improve planning and intervention, and mitigate mortality and 

orbidity rates in seasonal diseases such as influenza [58] and par- 

icularly at the early stages of newly emerging diseases such as 

hose we are experiencing with COVID19 [6] . 
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