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ABSTRACT
Although the vast majority of patients with papillary thyroid cancer (PTC) have a favorable prognosis 
when conventional treatments are implemented, local recurrence and distant metastasis of advanced 
PTCs still hamper the survival and clinical management in certain patients. As immune checkpoint 
blockade (ICB) therapy achieves a great success in some advanced cancers, we aimed to investigate the 
immune landscape in PTC and its potential implications for prognosis and immunotherapy. In this study, 
different algorithms were conducted to estimate immune infiltration in PTC samples. A series of bioinfor-
matic and machine learning approaches were performed to identify PTC-specific immune-related genes 
(IRGs) and distinct immune clusters. Differences in intrinsic tumor immunogenicity and potential immu-
notherapy response were observed between distinct immune clusters. A prognostic immune-related 
signature (IRS) was established to predict progression-free survival (PFS). IRS exhibited more powerful 
prognostic capacity and accurate survival prediction compared to conventional clinicopathological 
features. Furthermore, an integrated survival decision tree and a scoring nomogram were constructed 
to improve prognostic stratification and predictive accuracy for individual patients. In addition, altered 
pathways, mutational patterns, and potential applicable drugs were analyzed in different immune-related 
risk groups. Our study gained some insight into the immune landscape of PTC, and provided some useful 
clues for introducing immune-based molecular classification into risk stratification and guiding ICB 
decision-making.
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Introduction

Thyroid cancer is currently the most common malignancy of the 
endocrine system.1 In the past few decades, the incidence of 
thyroid cancer has increased steadily as a result of the technolo-
gical advancements in diagnostic imaging and popularity of 
screening.2 Among all the cases, papillary thyroid cancer (PTC) 
is the predominant histopathological subtype with an approxi-
mate proportion of 85%.3 PTC patients have a favorable prognosis 
with a 10-year survival rate greater than 90% when conventional 
treatments are implemented, including surgical section, thyroid- 
stimulating hormone suppression and radioactive iodine (RAI) 
therapy, alone or in combination.3,4 However, local recurrence 
and distant metastasis of advanced PTCs still hamper the survival 
and clinical management in certain patients.5,6 Therefore, further 
exploration of potential biomarkers and therapeutic targets for 
PTC is of great clinical significance to facilitate personalized 
treatment and management.

Bulk tumor tissues consist not only of tumor cells but also 
heterogeneous microenvironment constituents such as 
immune and stromal cells.7 The dynamic cross-talks between 
tumor cells and surrounding constituents exerts a dual role, 
either antitumor or protumor, at all stages of cancer develop-
ment, from tumorigenesis to metastasis.8,9 It is now well 
acknowledged that immune cells within the tumor microenvir-
onment (TME) could recognize and eliminate cancer cells 
through different immune mechanisms, which is known as 
immunosurveillance.10 However, by recruitment of immuno-
suppressive cell populations, downregulation of tumor immu-
nogenicity, or through other immunosuppressive mechanisms, 
cancer cells could modulate the host immune system to escape 
the immunosurveillance.9,11

Immunotherapy aims to exploit inherent immunosurveil-
lance and potentiate a patient’s immune system to kill cancer 
cells with minimal side-effects.12 Modulations of the immune 
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system attract great interest from oncologists and cancer 
immunologists, which promotes the development of immu-
notherapy. In recent years, some immunotherapeutic agents 
including immune checkpoint inhibitors such as anti-CTLA-4 
and anti-PD-L1/PD-1 have brought considerable clinical ben-
efits for some patients with advanced stages.13–15 At present, 
cutting-edge immunotherapies provide PTC patients with 
potential alternative strategies. Some in vitro and in vivo stu-
dies have demonstrated that immune checkpoint inhibitors 
could improve the effectivity of eliminating thyroid cancer 
cells.16,17 More importantly, several ongoing clinical trials 
have shed some light on the field of immunotherapy in 
advanced thyroid cancer.18,19 Although these findings indicate 
the importance of immunotherapy for PTC, the immune land-
scape and molecular characteristics of PTC TME remain 
unclear.

In this study, we aimed to investigate the immune land-
scape within PTC TME. A set of PTC-specific immune- 
related genes (IRGs) and two distinct immune clusters 
were identified. A series of bioinformatic and machine 
learning methods were conducted to evaluate potential 
immunotherapeutic implications and construct 
a prognostic immune-related signature. Differences in 
immune and mutational characterizations and their associa-
tions were further investigated in different histological var-
iants and risk cohorts. From these comprehensive analyses, 
we gained some insight into the immune landscape of PTC 
and its potential clinical utility in prognostic stratification 
and immunotherapeutic implications for PTC patients.

Materials and methods

Data acquisition and preprocessing

The latest summary of 2,483 immune-related genes (IRGs) was 
downloaded from the Immunology Database and Analysis 
Portal (ImmPort, https://www.immport.org/home)20 for 
further study.

Publicly available transcriptome data of PTC and normal 
thyroid tissues with clinical annotations were systematically 
searched. In total, five microarray datasets named 
GSE33630,21 GSE60542,22 GSE3467,23 GSE3678 (unpub-
lished), and GSE27155,24 and two RNA-sequencing (RNA- 
seq) datasets named TCGA-THCA25 and GTEx-thyroid26 

were included in our study. All the raw CEL files and clinical 
information of microarray databases were downloaded from 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih. 
gov/geo/). Probe IDs were mapped to gene symbols according 
to the corresponding annotation file, and the maximal mea-
surement was selected as the final gene expression value if one 
gene symbol has multiple probes. All the microarray and RNA- 
seq data included in this study were normalized and log2 
transformed as previously reported.27–29

Somatic mutation data of TCGA-THCA, which were 
identified using MuTect2, were sorted in the mutation anno-
tation format (MAF) files and analyzed using R package 
‘maftools’. The common frequent mutations (≥5%) shared 
by different PTC variants were visualized using R package 
‘igraph’. Tumor mutational burden (TMB) was calculated 

with non-synonymous somatic mutations using 38 Mb as 
the estimate of the exome size.30

Immune infiltration analysis

Three algorithms named xCell,31 ESITMATE,32 and 
CIBERSORT33 were used to quantify the relative or absolute 
abundance of immune and stromal cell populations in hetero-
geneous samples with transcriptome data. The tumor purity of 
PTC samples was estimated using R package ‘ESTIMATE’.

The T cell infiltration score (TIS) was defined as the sum of 
absolute abundance of CD8 + T cell, CD4+ naïve T cell, CD4 
+ memory T cell, T follicular helper cell, regulatory T cell, and 
γδ T cell. Cytolytic activity (CYT) score was defined as the 
geometric mean of PRF1 and GZMA.34

Identification of PTC-specific immune-related genes (IRGs)

Two approaches were combined to screen for PTC-specific 
IRGs. Weighted gene co-expression network analysis 
(WGCNA)35 was used to construct a scale-free co-expression 
network using the R package ‘WGCNA’ and to identify a gene 
module that is mostly correlated with tissue types (PTC or 
normal thyroid). On the other hand, differentially expressed 
immune-related genes (DE-IRGs) were identified between 
PTC and normal thyroid samples with a filtering threshold of 
FDR Q value less than 0.01. The overlapping genes in the 
intersection of the “WGCNA-identified gene module” and 
“DE-IRGs” were considered as PTC-specific IRGs.

Establishment of the immune-related risk score (IRS)

Firstly, WGCNA was used to construct a gene module that is 
mostly correlated with both “innate immune response” and 
“adaptive immune response”. Then, the ‘sample’ function in 
R was used to randomly divide the total of 496 TCGA PTC 
patients into two parts (7:3) for training and testing. Using 
R package ‘coxph’, the values of hazard ratio (HR) and P were 
calculated for each gene involved in the “immune module” 
identified by WGCNA. Then, candidate genes with P value < 
.05 were used as the input of the least absolute shrinkage and 
selection operator (LASSO) Cox regression model. LASSO 
regularization adds a penalty parameter (λ) to Cox regression 
model, and this action can lead to zero coefficients, i.e. some of 
the candidate genes are completely neglected for evaluation of 
output. In our analysis, 15 genes retained their Cox coefficients 
after LASSO regularization. Based on their expression values 
and Cox coefficients, an immune-related risk score (IRS) for 
each sample was calculated as follows: 

IRS ¼
X

i
Coefficient mRNAið Þ � Expression mRNAið Þ

Survival analyses

The Kaplan–Meier method was used to draw survival curves, 
and the log-rank test was performed to evaluate survival dif-
ference. The ‘surv_cutpoint’ function of the R package ‘surv-
miner’ was used to determine the optimal cutoff point based on 
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the maximal log-rank statistics. Multivariate Cox regression 
analysis was performed to evaluate the risk significance of 
each variable for survival. Time-dependent concordance 
index (C-index) and time-dependent receiver operating char-
acteristic (tROC) analysis were used to compare the predictive 
capacity of survival among different variables with R packages 
‘survConcordance’ and ‘survivalROC’.

Construction of integrated prognostic models

Based on IRS and clinicopathological features, recursive parti-
tioning analysis was performed to build an integrated survival 
decision tree for risk stratification with R package ‘rpart’. Using 
R package ‘rms’, a scoring nomogram was generated with 
detailed parameters including radiotherapy, gender, BRAF sta-
tus, histological variant, age, TNM stage, and IRS, and calibra-
tion curves for 3- and 5-year PFS were plotted and compared 
with actual PFS.

Additional bioinformatic and statistical analyses

Differentially expressed genes were identified using R package 
‘limma’ for microarray data or ‘DESeq2ʹ for RNA-seq reads 
count data. The correlation network involving different 
immune cell types was generated using R package ‘corrr’. 
Different immune clusters were identified with the PTC- 
specific IRGs expression matrix using non-negative matrix 
factorization (NMF, R package ‘NMF’), and the optimal fac-
torization of k value was selected when the magnitude of the 
cophenetic correlation coefficient begins to fall. Principal 
component analysis (PCA) was used to visualize dissimilarity 
among different groups. The levels of innate and adaptive 
immune activity were quantified using a single-sample gene 
set enrichment analysis (ssGSEA) algorithm based on the 
transcriptome data and corresponding gene sets retrieved 
from Molecular Signatures Database (MSigDB).36 Random 
forest algorithm (R package ‘randomForest’) was applied to 
screen for the most important candidates correlated with 
different PTC variants with two parameters ‘mtry’ and 
‘ntree’ of optimal values. Potential immune checkpoint block-
ade (ICB) therapy response was predicted with the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm.37 

Gene Ontology enrichment analysis was performed using 
a webtool named Metascape (https://metascape.org/).38 

Protein–protein interaction (PPI) network was generated to 
reflect the interactions among representative genes involved 
in a specific biological process using R package ‘STRINGdb’. 
Connectivity Map (CMap)39 was used to explore potential 
targets and applicable drugs for IRS-high PTC patients. 
CMap is a resource that uses transcriptional expression data 
to probe relationships between disease, cell physiology, and 
therapeutics. The most significantly upregulated 150 genes in 
IRS-high PTC samples were chosen for analysis because 
CMap has a gene list size restriction of less than 150. 
Student’s t-test or one-way analysis of variance (ANOVA) 
was used to analyze differences between groups in variables 
with a normal distribution. Categorical variables between the 
two groups were compared using the chi-square test. A value 
of P < .05 was considered statistically significant.

Results

Identification of a set of 307 PTC-specific IRGs

Firstly, GSE33630 including 49 PTC and 45 normal thyroid 
samples was used as a discovery cohort due to its appropriate 
sample size. To evaluate the infiltrating levels of immune and 
stromal cells involved in tumor microenvironment (TME), two 
algorithms xCell and ESTIMATE were applied based on the 
transcriptome data of the 49 PTC samples. Figure 1a and 1b 
illustrate that cumulative proportion curves of immune scores 
(red lines) were continuously distributed at the right side of 
stromal scores (blue lines) in both xCell and ESTIMATE ana-
lyses, which means immune scores are always significantly 
higher than stromal scores, indicating the predominant role 
of immune infiltration in PTC TME. The infiltrating abun-
dance of various immune cells was estimated using xCell, and 
the correlation network reflects the comprehensive relation-
ships among different immune cell types (Figure 1c). 
Subsequently, WGCNA was performed with the IRGs expres-
sion matrix of 94 samples and their sample category (tumor or 
normal thyroid) to construct a scale-free co-expression net-
work (Figure 1d). Three gene modules were generated with 
a power of 2 as the optimal soft threshold (Figure 1e). Among 
these modules, the blue module exhibited the highest correla-
tion with sample category (|r| = 0.9, P = 4e-35) and was 
considered as “PTC-specific module” (Figure 1e). On the 
other hand, limma algorithm was used to identify a total of 
492 DE-IRGs between PTC and normal thyroid samples with 
a filtering threshold of FDR Q value less than 0.01 (figure 1f). 
Finally, 307 overlapping genes in the intersection of “PTC- 
specific module” and “DE-IRGs” were considered as “PTC- 
specific IRGs” (Figure 1g) and the detailed information is 
shown in Supplementary Table 1.

PCA analysis demonstrated that PTC and normal thyroid 
samples were clearly separated as two distinct groups in the 
discovery cohort with the 307 PTC-specific IRGs expression 
matrix (Figure 1h). Furthermore, three datasets (GSE60542, 
GSE3467, GSE3678) were used to validate the discriminative 
capacity of the 307 PTC-specific IRGs, and the dissimilarity 
between different sample categories was visualized in PCA 
analysis (Figure 1i-k). These evidences demonstrated that the 
307 PTC-specific IRGs were unique IRGs of PTC, and had 
a strong discriminability for PTC and normal tissues.

Two distinct immune clusters were identified with 
PTC-specific IRGs

Then, we attempted to classify PTC samples into different 
immune clusters using the identified 307 PTC-specific IRGs. 
Based on the expression matrix of 307 PTC-specific IRGs, the 
TCGA PTC cohort (n = 496) were divided into two distinct 
immune clusters (C1 and C2, Figure 2a) with the optimal NMF 
k value of 2 (supplementary Figure 1). GSEA analysis demon-
strated that C2 exhibited significantly higher activity of various 
immune processes compared with C1, and the most signifi-
cantly altered pathway was presented as “adaptive immune 
response” among all the gene sets from Gene Ontology 
(Figure 2b). A comprehensive heatmap illustrates the differ-
ences of clinicopathological features, immune checkpoints, 
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cytolytic activity signature, and IFN-γ response signature 
between the two clusters (Figure 2c). A Sankey diagram depicts 
the flow from the two immune clusters to different variants and 
pathological stages, in which the width of the flow rate is 
proportional to the patient number (Figure 2d). In the TCGA 
PTC cohort, TCPTC exhibited worse PFS than FPTC and 
CPTC (supplementary Figure 2), and we observed that all the 
tall-cell variant PTC (TCPTC) samples were exclusively classi-
fied to C2 while most follicular variant (FPTC) samples were 
classified to C1 (Figure 2d). Further, TIDE algorithm was 
applied to evaluate the potential ICB response of each PTC 
sample, and we observed the proportion of responders is 

significantly elevated in C2 (P = .004; Figure 2e). However, 
no significant difference of TMB distribution was observed 
between either the two immune clusters (P = .891) or patients 
with different ICB responses (P = .237) (supplementary 
Figure 3a & b). A stacked barplot illustrated the distinct pat-
terns of the relative abundance of 22 immune cell types in the 
two immune clusters, and we observed macrophage M2 
accounts for the highest proportion among all the immune 
cells (figure 2f). Most of the immune cell types were differen-
tially distributed between the two immune clusters (Figure 2g). 
The T cell infiltration score (TIS) was significantly elevated in 
C2 compared with C1 (P < .001; Figure 2h), and this result is 

Figure 1. A set of 307 PTC-specific IRGs were identified. Cumulative proportion curves showed that the immune scores were continuously distributed at the significantly 
higher side compared with stromal scores in both (a) xCell and (b) ESTIMATE outputs, indicating the predominant role of immune infiltration in PTC tumor 
microenvironment (TME). (c) A correlation network reflects the comprehensive relationships among different immune cell types involved in PTC TME. (d) The weighted 
gene co-expression network analysis (WGCNA) was performed with the IRGs expression matrix of 94 samples and their sample category (tumor or normal thyroid) to 
construct a scale-free co-expression network. (e) Three gene modules were generated, and a blue module exhibited the highest correlation with sample category (| 
r| = 0.9, P = 4e-35) and was considered as “PTC-specific module”. (f) Limma algorithm was used to identify a total of 492 DE-IRGs between PTC and normal thyroid 
samples with a filtering threshold of FDR Q value less than 0.01. (g) 307 overlapping genes in the intersection of “PTC-specific module” and “DE-IRGs” were considered as 
“PTC-specific IRGs”. DE-IRGs: differentially expressed immune-related genes. (h) PCA analysis demonstrated that PTC and normal thyroid samples were clearly separated 
as two distinct groups in the discovery cohort with the 307 PTC-specific IRGs expression matrix. (i-k) Three datasets (GSE60542, GSE3467, GSE3678) were used to validate 
the discriminative capacity of the 307 PTC-specific IRGs, and the dissimilarity between different sample categories was visualized in PCA analysis.
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mainly attributed to significant increases of naïve CD4+ cells 
and Tregs in C2 (Figure 2g). These evidences indicated sig-
nificant differences in intrinsic tumor immunogenicity and 
potential immunotherapy response between the two immune 
clusters.

Mutational landscape and immune characterization in 
PTC variants

Considering immune infiltration is always strongly associated 
with mutation in solid tumors, we investigated the immune 

characterization, mutational landscape, and their relationships 
in different PTC variants. Oncoplots were generated for the 
three variants including FPTC, classical type (CPTC) and 
TCPTC respectively, and top 10 frequently mutated genes in 
each variant were ranked (Figure 3a-c). A community structure 
plot depicts the common frequent mutations shared by the 
three variants, and BRAF mutation was observed as the only 
overlapping mutation (Figure 3d). Interestingly, BRAF muta-
tion frequency was stepwisely increased along with the malig-
nant level of variants (from 0.18 to 0.94; Figure 3e). 
CIBERSORT and ESTIMATE were used to estimate the 

Figure 2. Two distinct immune clusters were identified with PTC-specific IRGs. (a) Based on the expression matrix of 307 PTC-specific IRGs, the TCGA PTC cohort (n = 496) 
were divided into two distinct immune clusters (C1 and C2) with the optimal NMF k value of 2. (b) GSEA analysis demonstrated that C2 exhibited significantly higher 
activity of various immune processes compared with C1. GO: gene ontology; NES: normalized enrichment score; padj: adjusted P value. (c) A comprehensive heatmap 
illustrates the differences of clinicopathological features, immune checkpoints, cytolytic activity signature and IFN-γ response signature between the two clusters. (d) 
A Sankey diagram depicts the flow from the two immune clusters to different variants and pathological stages, in which the width of the flow rate is proportional to the 
patient number. (e) TIDE algorithm was applied to evaluate the potential ICB response of each PTC sample, and the proportion of responders is significantly elevated in 
C2 (P = .004). ICB: immune checkpoint blockade; NR: non-responder; R: responder. (f) A stacked barplot illustrated the distinct patterns of the relative proportion of 22 
immune cell types in the two immune clusters, and macrophage M2 accounts for the highest proportion among all the immune cells. (g) Most of the 22 immune cell 
types were differentially distributed between the two immune clusters. NS: no significance. (h) T cell infiltration score (TIS) was significantly elevated in C2 compared 
with C1 (P < .001).
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immune infiltration for each sample, and the immune infiltra-
tion scores estimated by the two algorithms were stepwisely 
elevated along with the malignant level (figure 3f & G; both 
P < .001), which might be caused by the higher heterogeneity 
and immunogenicity in more malignant variants.

Random forest (RF) algorithm was applied to screen for the 
most important IRGs correlated with variants. With optimal 
parameter settings (mtry = 268, ntree = 2,000), the RF algo-
rithm screened for the most important candidates based on the 
307 PTC-specific IRGs expression matrix and variant classifi-
cation (Figure 3h). 307 PTC-specific IRGs were ranked accord-
ing to their importance, and nine genes (MANF, AKT1, 

SEMA4B, CCL13, CRLF2, TMPRSS6, MET, CTSB, PGR) 
were overlapped in two ranking methods (highlighted in red; 
Figure 3i). In addition, we analyzed and compared their 
expression profiles among different PTC variants, and all 
nine genes exhibited significant differences in expression (sup-
plementary Figure 4). Furthermore, GSE27155 including 15 
FPTC, 26 CPTC and 10 TCPTC samples was used to validate 
the discriminative capacity of the nine representative IRGs. 
PCA analysis demonstrated the dissimilarity among the three 
variants based on the nine IRGs expression matrix in Figure 3j. 
These evidences revealed different mutational and immune 
characterizations in PTC variants.

Figure 3. Characterizations of immune and mutational landscape were analyzed in different PTC variants. (a-c) Oncoplots were generated for the three histological 
variants including FPTC, CPTC and TCPTC respectively, and top 10 frequently mutated genes in each variant were ranked. FPTC: follicular variant PTC; CPTC: classical PTC; 
TCPTC: tall-cell variant PTC. (d) A community structure plot depicts the common frequent mutations shared by the three variants, and BRAF mutation is the only 
overlapping mutation. (e) BRAF mutation frequency was stepwisely increased along with the malignant level of variants. (F & G) The immune infiltration score was 
stepwisely elevated along with the malignant level in both CIBERSORT and ESTIMATE algorithms (both P < .001). (h) Random forest algorithm was applied to screen for 
the most important IRGs correlated with variant classification. OOB: out-of-bag; ntree: number of decision trees. (i) Nine genes were overlapped in two ranking methods 
(highlighted in red). (j) GSE27155 including 15 FPTC, 26 CPTC and 10 TCPTC samples was used to validate the discriminative capacity of the nine representative IRGs, and 
PCA analysis demonstrated the dissimilarity among the three variants based on the nine IRGs expression matrix.
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Establishment and validation of immune-related risk score 
(IRS) in PTC patients
In the light of above findings that immune infiltration corre-
lates with various clinicopathological features in PTC, we 
aimed to construct a gene expression-based scoring tool to 
predict PFS for PTC patients. Firstly, the performances of 
“innate immunity” and “adaptive immunity” in each sample 
were quantified using ssGSEA algorithm with corresponding 
gene sets retrieved from MSigDB. Then, WGCNA was per-
formed with transcriptome data of the TCGA PTC cohort, and 

a green module that is mostly correlated with both innate and 
adaptive immunity was identified as the “immune-related 
module in PTC” (Figure 4a). The cohort of 496 TCGA PTC 
patients were randomly divided into two parts (7:3) for train-
ing and testing. Univariate Cox regression analysis was per-
formed to calculate the HR and P values for the 1,562 genes 
involved in the “immune-related module in PTC”, and the 
results are shown in Figure 4b. With a filtering threshold of 
P value less than 0.05, 81 candidates remained and entered into 
LASSO Cox regression model (10-fold cross-validation). With 

Figure 4. Establishment and validation of the immune-related risk score (IRS) in PTC patients. (a) WGCNA was performed with transcriptome data of the TCGA PTC 
cohort, and a green module which is mostly correlated with both innate and adaptive immunity was identified as the “immune-related module in PTC”. (b) Univariate 
Cox regression analysis was performed to calculate the HR and P values for the 1,562 genes involved in the “immune-related module in PTC”. (c) With a filtering 
threshold of P value less than 0.05, 81 candidates remained and entered into LASSO Cox regression model, and (d) 15 genes were finally filtered with their individual 
coefficients to construct a prognostic immune-related signature. coef: Cox coefficient. (e) Kaplan-Meier analysis demonstrated that patients with higher IRS exhibited 
worse prognosis in the training set (HR = 15.90, 95% CI = 7.991–31.63, P < .001). PFS: progression-free survival. (f) In the multivariate Cox regression, IRS was the only 
independent risk factor among all the variables (P < .001). M: male; F: female; Mut: mutation; WT: wild type; C: CPTC; F: FPTC; TC: TCPTC. (g) IRS’s C-index ranked first 
among all the variables. C-index: concordance index. (h) In the testing cohort, Kaplan-Meier analysis showed that patients with higher IRS exhibited worse prognosis 
(HR = 4.707, 95% CI = 1.819–12.18, P = .0071), and (i) multivariate Cox regression analysis demonstrated that IRS was the only independent risk factor (P = .019), and (j) 
IRS’s C-index ranked first among all the variables.
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an optimal λ value (Figure 4c), 15 genes (LCLAT1, DSC1, 
NUP210, C17orf99, TFR2, MMP23A, LYSMD1, C10orf54, 
LEF1, HNMT, NLRP3, C6orf114, BMP6, EID3, PLEKHA2) 
retained their individual Cox coefficients after LASSO regular-
ization (Figure 4d).

Using the established formula, the immune-related risk 
score (IRS) was calculated for each sample. With a best cutoff 
value, the training set is divided into IRS-low and -high groups. 
Kaplan–Meier analysis demonstrated that patients with higher 
IRS exhibited worse progression-free survival (PFS) in the 
training set (HR = 15.90, 95% CI = 7.991–31.63, P < .001; 
Figure 4e). Multivariate Cox regression analysis was performed 
on six variables including IRS (continuous value), age (contin-
uous value), gender (male or female), BRAF status (mutation 
or wild type), variants (FPTC, CPTC, or TCPTC) and patho-
logical stage (I–IV), and result showed that IRS was the only 
independent risk factor among all the variables (P < .001; figure 
4f). In addition, IRS’s C-index ranked first among all the 
variables (Figure 4g). As expected, similar results were 
observed in the testing cohort. The Kaplan–Meier analysis 
showed that patients with higher IRS exhibited worse prog-
nosis (HR = 4.707, 95% CI = 1.819–12.18, P = .0071; Figure 4h), 
and multivariate Cox regression analysis demonstrated that 
IRS was still the only independent risk factor (P = .019; 
Figure 4i). In the testing cohort, IRS’s C-index still ranked 
first, which suggested the most powerful predictive capacity 
among all the variables (Figure 4j). In addition, univariate Cox 
regression analysis was performed on the 15 IRS-relevant genes 
in the total 496 TCGA PTC patients, respectively. The results 
were summarized as a forest plot in supplementary Figure 5. In 
other words, the established immune-related risk score is not 
only an independent risk factor for PFS, but also a promising 
survival predictor superior to conventional clinicopathological 
features.

Construction of integrated prognostic models for 
individual PTC patients

Next, we proposed an integrated prognostic model via the 
combination of IRS and other clinicopathological features to 
improve risk stratification and to personalize risk assessment. 
A total of 461 TCGA PTC patients with full-scale clinical 
annotations including radiotherapy (or not), gender, age, var-
iant, pathological stage, and BRAF status were extracted to 
construct integrated prognostic models. Firstly, recursive par-
titioning analysis was performed to build a survival decision 
tree to optimize the risk stratification. As shown in the decision 
tree (Figure 5a), three risk subgroups were defined based on 
two components including IRS as the leading parameter 
together with pathological stage. In detail, patients with low 
IRS were defined as “low risk” group, while “intermediate risk” 
and “high risk” groups were defined as “High IRS & stage I/II” 
and “High IRS & stage III/IV”, respectively. Significant differ-
ences of PFS were observed among the three risk subgroups 
(P < .001; Figure 5b).

With a goal of quantifying the risk assessment for individual 
PTC patients, a personalized scoring nomogram was generated 
to predict 3- and 5-year PFS probability with the seven para-
meters, and the arrow shows an example (Figure 5c). 

Calibration curves of 3-year (blue dotted line) and 5-year 
(red dotted line) PFS prediction were close to the ideal perfor-
mance (45-degree line), which indicated the predictive accu-
racy of the nomogram (Figure 5d). Time-dependent ROC 
analysis demonstrated the nomogram exhibited much more 
powerful capacity of survival prediction compared with other 
clinicopathological characteristics, with an average AUC above 
0.8 during a follow-up of 5 years (Figure 5e). Overall, the 
integrated prognostic models could greatly optimize risk stra-
tification and predict PFS for PTC patients accurately.

Genomic alterations and altered pathways were 
compared in different immune-related risk groups

To explore the genomic alterations, altered pathways and 
potential applicable drugs correlated with different immune- 
related risk groups, we performed further bioinformatic ana-
lyses. Compared with IRS-high samples, some representative 
immune checkpoints including LAG3, TIGIT, CTLA4, and 
PDCD1 were significantly elevated in IRS-low ones 
(Figure 6a-d). In addition, IRS-low cohort was characterized 
with significantly higher IFNG expression, CYT score and 
immune score, and lower tumor purity (Figure 6e-h). As 
regards mutational features, more co-occurrence mutations 
were observed in IRS-low cohort when compared with IRS- 
high cohort (Figure 6i). With a threshold of P < .05 using 
Fisher’s exact test, differentially mutated genes were detected 
between the two cohorts. Interestingly, HRAS and NRAS were 
the only two significant differentially mutated genes detected 
between IRS-high and -low cohorts (Figure 6j). When com-
pared with HRAS and NRAS wild-type samples, IRS was sig-
nificantly elevated in HRASMut or NRASMut samples 
(Figure 6k).

To investigate the altered pathways underlying IRS in PTC, 
DEGs between IRS-low and -high samples were identified and 
submitted for Gene Ontology enrichment analysis, respec-
tively. Most of the significantly downregulated genes in IRS- 
high samples were enriched in immune-related biological pro-
cesses such as “leukocyte migration” as the most important 
term (Figure 7a). Based on the STRING database, a PPI net-
work was generated to reveal interactions among representa-
tive genes involved in “leukocyte migration” (Figure 7b). 
Considering IL-6 acts as a pivotal regulator in both innate 
and adaptive immunity, we therefore investigated its expres-
sion profile in normal thyroid and different IRS groups 
(P < .001; Figure 7c). Similarly, significantly upregulated 
genes in IRS-high samples were identified and were mainly 
enriched in cellular responses to external environment such as 
“DNA repair” (Figure 7d). Representative genes involved in 
“DNA repair” were used to construct a PPI network 
(Figure 7e), and the expression profile of a critical checkpoint 
gene CHEK1 was further investigated in normal thyroid and 
different IRS groups (P < .001; figure 7f). Considering high IRS 
indicated an increased ability of “DNA repair”, we performed 
GSEA with gene set “response to radiation therapy” and 
observed that IRS-high samples exhibited weaker response to 
radiation therapy compared with IRS-low samples (Figure 7g). 
To confirm this finding, 299 TCGA PTC patients who received 
radiation therapy in record were divided into two parts (IRS- 
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low and -high), and we observed that patients with higher IRS 
exhibited much worse prognosis (HR = 19.63, 95% CI = 10.39– 
37.11, P < .001; Figure 7h), which suggested IRS might serve as 
a potential indicator to predict resistance to radiation therapy. 
Univariate Cox regression analysis was applied to measure the 
prognostic performances of the 15 IRS-relevant genes in the 
299 TCGA PTC patients who received radiation therapy, and 

the results were summarized as a forest plot in supplementary 
Figure 6.

Recent polypharmacology studies suggest the need to design 
compounds that target multiple genes or molecular pathways. 
A list of top 150 upregulated genes in IRS-high samples were 
submitted to CMap to identify potential drugs applicable for 
IRS-high patients. CMap mode-of-action (MoA) analysis 

Figure 5. Construction of integrated prognostic models for individual PTC patients. (a) A survival decision tree was built to optimize the prognostic stratification. (b) 
Significant differences of PFS were observed among the three risk subgroups (P < .001). (c) A personalized scoring nomogram was generated to predict 3- and 5-year 
PFS probability with the seven parameters, and the arrow shows an example. (d) Calibration curves of 3-year (blue dotted line) and 5-year (red dotted line) PFS 
prediction were close to the ideal performance (45-degree line). (e) Time-dependent ROC analysis demonstrated that the nomogram exhibited much more powerful 
capacity of survival prediction compared with conventional clinicopathological characteristics, with an average AUC above 0.8 during a follow-up of 5 years. AUC(t): 
time-dependent area under the ROC curve.
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revealed 39 mechanisms of action shared by 50 compounds with 
the highest prediction scores (Figure 7i). In particular, four 
compounds, namely GR-103691, trifluoperazine, l-stepholidine 
and fluphenazine, shared the MoA of dopamine receptor 
antagonist. Their chemical structural formulas were shown in 
supplementary Figure 7a-D, and a common target named HRH1 
was shared by the four compounds (supplementary Figure 7e).

In summary, immune checkpoints and cytolytic activity 
were significantly elevated in IRS-low group, while higher 
mutation frequency of HRAS and NRAS was observed in 
IRS-high group. High IRS might contribute to DNA repair 
in PTC and thus to promote resistance to radiotherapy. In 
addition, some potential targets and applicable drugs were 
probed using CMap database.

Figure 6. Different immune characteristics and mutational patterns were observed between IRS-high and -low cohorts. (a-d) Compared with IRS-high samples, 
representative immune checkpoints including LAG3, TIGIT, CTLA4 and PDCD1 were significantly elevated in IRS-low ones, and (e-h) IRS-low cohort was characterized 
with significantly higher IFNG expression, CYT score and immune score, and lower tumor purity. RSEM: RNA-Seq by Expectation-Maximization. (i) More co-occurrence 
mutations were observed in IRS-low cohort when compared with IRS-high cohort. (j) With a threshold of P < .05 using Fisher’s exact test, HRAS and NRAS were the only 
two significant differentially mutated genes detected between IRS-high and -low cohorts. (k) IRS was significantly elevated in HRASMut or NRASMut samples compared 
with HRAS and NRAS wild type samples. NS: no significance.
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Discussion

To avoid immune destruction is a hallmark of cancer.40 In the 
initial step of developing malignancy, a normal cell must 
acquire not only intrinsic characteristics such as activation of 
driver genes, uncontrolled proliferation and resistance to apop-
tosis, but also an important external factor: escape from 
immune killing. While developed into malignant cells, cancer 

cells continue evading the anti-cancer immune response and 
proceed to form tumors. On the other hand, the immunosur-
veillance exerted by heterogenous immune cells within the 
TME allows the immune system to monitor potentially dan-
gerous neoplasia in the body and typically prevents the man-
ifestation of cancerous growth.10 The unity of opposites 
between cancer cells and immune system proposed 
a promising strategy: Positive modulations of the immune 

Figure 7. Altered pathways and potential applicable drugs underlying IRS were investigated. (a) Most of the significantly downregulated genes in IRS-high samples were 
enriched in immune-related biological processes such as “leukocyte migration” as the most important term. (b) A protein-protein interaction network was generated to 
reveal interactions among representative genes involved in “leukocyte migration”. (c) IL-6 acts as a pivotal regulator in both innate and adaptive immunity, and its 
expression profile was investigated in normal thyroid and different IRS groups (P < .001). (d) Significantly upregulated genes in IRS-high samples were mainly enriched 
in cellular responses to external environment such as “DNA repair”. (e) Representative genes involved in “DNA repair” were used to construct a protein-protein 
interaction network, and (f) the expression profile of a critical checkpoint gene CHEK1 was investigated in normal thyroid and different IRS groups (P < .001). (g) GSEA 
showed that IRS-high samples exhibited weaker response to radiation therapy compared with IRS-low samples. ES: enrichment score. (h) Among 299 TCGA PTC patients 
who received radiation therapy, patients with higher IRS exhibited much worse prognosis (HR = 19.63, 95% CI = 10.39–37.11, P < .001). (i) CMap mode-of-action (MoA) 
analysis revealed 39 mechanisms of action shared by top 50 compounds potentially applicable for IRS-high patients.
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system such as enhancement of immunosurveillance in quan-
tity or/and quality could inhibit tumorigenesis and tumor 
progression.

Aiming to interrupt the escape from immune surveillance, 
immunotherapeutic agents that target immune checkpoints 
including PD-L1/PD-1 and CTLA-4 have exhibited promising 
survival benefits in patients with metastatic melanoma, non- 
small cell lung cancer, and metastatic renal cancer in recent 
years.13–15 In consideration of these achievements, there has 
been a strong interest in the immunotherapeutic effects across 
other solid cancers. However, the potential relationships 
among the immune infiltration, somatic mutations and clinical 
outcomes in PTC still remain unclear.

In this study, we investigated the immune landscape in 
PTC. Different algorithms including xCell, ESITMATE, and 
CIBERSORT were, respectively, conducted to estimate 
immune scores, stromal scores, absolute or relative infiltrat-
ing abundance of heterogeneous immune cells in PTC sam-
ples. A set of PTC-specific IRGs were identified, and these 
representative IRGs could discriminate PTC and normal thyr-
oid tissues effectively in different datasets. Based on the NMF 
algorithm, two distinct immune clusters (C1 and C2) were 
identified in the TCGA PTC cohort, and significantly differ-
ent immune activities were observed between the two clusters. 
In addition, the landscapes of immune checkpoints, cytolytic 
activity signature and IFN-γ signature were further investi-
gated in the two NMF-identified immune clusters. We 
observed that all the gene markers were significantly elevated 
in C2, which indicated the differences in intrinsic tumor 
immunogenicity. More importantly, TIDE algorithm predicts 
significantly higher proportion of ICB responders in C2, 
which suggests different potential responses to ICB therapy 
in the two immune clusters. Interestingly, in contrast, no 
significant difference of TMB distribution was observed 
between either the two immune clusters or patients with 
different ICB responses. These findings indicated that at 
least in PTC, TMB might not be a promising biomarker for 
ICB therapy.

Different characterizations of immune and mutational land-
scapes were also observed among different PTC histological 
variants. For example, all the TCPTC samples were classified 
into C2, while most of the FPTC samples were classified into 
C1. Random forest algorithm was applied to screen for the 
most important IRGs correlated with variant classification, and 
nine IRGs (MANF, AKT1, SEMA4B, CCL13, CRLF2, 
TMPRSS6, MET, CTSB, PGR) were finally identified. The 
discriminative capacity of the nine representative IRGs was 
further validated in a GEO dataset. These results shed some 
light on the revelation of the immune and mutational land-
scape characterizations, and their relationships in different 
PTC variants.

Based on innate and adaptive immunity, a prognostic 
immune-related signature was established and tested in the 
TCGA PTC cohort. Univariate and LASSO Cox regression 
models were combined to screen for the most robust candidate 
genes to establish the immune-related risk score (IRS) for 
individual PTC patients. After adjustment of other clinico-
pathological features in multivariate Cox regression analysis, 
IRS still exhibited powerful prognostic capacity and accurate 

survival prediction. The mutational landscapes, altered path-
ways and potential applicable drugs were further analyzed and 
compared in different risk groups.

Some IRS-relevant genes have been investigated in cancer 
prognosis. For instance, DSC1, one risk biomarker in our 
study, was reported to predict worse prognosis in head and 
neck squamous cell carcinoma and anal carcinoma.41,42 BMP6 
acts as a protective biomarker for PTC in our study, and 
similarly, Katsuta E et al. reported BMP6 was significantly 
downregulated in breast cancer, and high expression of 
BMP6 predicts better survival and correlates with high 
immune infiltration in estrogen receptor-positive samples.43 

Dysregulation of NLRP3 inflammasome activation is involved 
in tumor pathogenesis, but its role in cancer development and 
progression remains controversial.44 In our study, NLRP3 
tends to function as a protective biomarker for PTC patients.

Furthermore, CMap database was utilized to probe potential 
targets and applicable drugs for IRS-high patients. Four dopa-
mine receptor antagonists were highlighted with highest pre-
diction scores, and HRH1 is a common target shared by the 
four compounds. HRH1 is a member of histamine receptor 
family, and it has been reported that inhibition of HRH1 could 
not only enhance antitumor therapeutic response in breast 
cancer,45 but also suppress colonic tumorigenesis.46 These evi-
dences indicate that HRH1 may also be a potential target in 
IRS-high PTC patients.

Some previous studies have reported gene expression-based 
immune landscape of PTC using the TCGA data. For example, 
Na et al. established a thyroid differentiation score (TDS) for 
PTC. They observed that high TDS was significantly correlated 
with immune infiltration, BRAF mutation, and expression of 
immunosuppressive markers.47 In our study, in addition to 
transcriptome analysis, a series of bioinformatic and machine 
learning methods were used to reveal immune characterization 
and genomic alteration in different histological variants and 
risk cohorts, and two integrated prognostic models (a survival 
decision tree and a scoring nomogram) were constructed to 
improve prognostic stratification and survival prediction for 
PTC patients. Moreover, among patients who received RAI 
therapy, those with higher IRS exhibited much worse prog-
nosis, indicating high IRS might serve as a promising indicator 
for resistance to RAI therapy. Radiotherapy-induced cell death 
is thought to be immunogenic and results in modulation of 
lymphocyte effector function in TME.48 These evidences indi-
cate that RAI therapy synergizing with immunotherapy to 
enhance antitumor effects can be considered a novel promising 
strategy for advanced PTC.

Despite comprehensive investigation in immune and muta-
tional characterizations of different PTC variants and risk 
subgroups, multimodal analyses including histopathological 
examination and clinical trials should be a future work to 
elucidate our findings and promote clinical utility as biomar-
kers. Compared to PTC, more malignant subtypes such as 
poorly differentiated thyroid cancer (PDTC) and anaplastic 
thyroid cancer (ATC) call for a higher demand for immu-
notherapy, and this issue is worth further investigation. In 
addition to immune infiltration abundance, the immune- 
evasive mechanism also acts as a characteristic of immune 
system dysregulation and plays an important role in PTC 
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progression.49,50 The combined effects of immune cell infiltra-
tion and cancer immune evasion on PTC should be considered 
in future studies.

In conclusion, our study gained some insight into the 
immune landscape within PTC TME, and provided useful 
clues for introducing immune-based molecular classification 
into risk stratification and guiding ICB therapy decision- 
making.
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