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Abstract

Motivation: We addressed the problem of inferring gene regulatory network (GRN) from gene ex-

pression data of knockout (KO) experiments. This inference is known to be underdetermined and

the GRN is not identifiable from data. Past studies have shown that suboptimal design of experi-

ments (DOE) contributes significantly to the identifiability issue of biological networks, including

GRNs. However, optimizing DOE has received much less attention than developing methods for

GRN inference.

Results: We developed REDuction of UnCertain Edges (REDUCE) algorithm for finding the optimal

gene KO experiment for inferring directed graphs (digraphs) of GRNs. REDUCE employed ensem-

ble inference to define uncertain gene interactions that could not be verified by prior data. The

optimal experiment corresponds to the maximum number of uncertain interactions that could be

verified by the resulting data. For this purpose, we introduced the concept of edge separatoid

which gave a list of nodes (genes) that upon their removal would allow the verification of a particu-

lar gene interaction. Finally, we proposed a procedure that iterates over performing KO experi-

ments, ensemble update and optimal DOE. The case studies including the inference of Escherichia

coli GRN and DREAM 4 100-gene GRNs, demonstrated the efficacy of the iterative GRN inference.

In comparison to systematic KOs, REDUCE could provide much higher information return per gene

KO experiment and consequently more accurate GRN estimates.

Conclusions: REDUCE represents an enabling tool for tackling the underdetermined GRN infer-

ence. Along with advances in gene deletion and automation technology, the iterative procedure

brings an efficient and fully automated GRN inference closer to reality.

Availability and implementation: MATLAB and Python scripts of REDUCE are available on

www.cabsel.ethz.ch/tools/REDUCE.

Contact: rudi.gunawan@chem.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulatory networks (GRNs) describe the regulatory inter-

actions among genes in a cell, i.e. how the transcription of one gene is

regulated by those of the others. Such networks are often described as

a directed graph with nodes representing genes and edges representing

gene regulations. Perturbations to the GRN in a cell, for example

because of gene mutations, could lead to changes in the gene expres-

sion profile and correspondingly in the cellular phenotype. The under-

standing of gene–gene interactions and their pathological alterations

could shed light on the mechanism underlying genetic diseases such as

cancer. For this reason, the inference of GRNs has garnered much at-

tention in systems biology. Further fueled by the ever-growing public

VC The Author 2015. Published by Oxford University Press. 875
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(6), 2016, 875–883

doi: 10.1093/bioinformatics/btv672

Advance Access Publication Date: 14 November 2015

Original Paper

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv672/-/DC1
Deleted Text: -
http://www.oxfordjournals.org/


databases of gene expression profiles, hundreds of algorithms have

been developed for inferring GRNs from such data. These methods

borrow and extend techniques from different fields, such as statistics,

machine learning and systems model identification.

Despite the large number of available methods, the inference of

GRN from gene expression data still remains unsolved to date. The

crux of the problem is the underdetermined nature of this inference,

leading to the lack of network identifiability or inferability

(Szederkényi et al., 2011; Ud-Dean and Gunawan, 2014). This issue

often leads to the existence of multiple equivalent solutions to the in-

ference problem, i.e. there exist a family of network graphs that are

consistent with the available expression data. We recently developed

an ensemble inference algorithm called Transitive Reduction and

Closure Ensemble (TRaCE) with the goal of generating an ensemble

of digraphs that are consistent with a given gene knockout (KO)

dataset (Ud-Dean and Gunawan, 2014). More specifically, TRaCE

produces upper and lower bound digraphs of the ensemble where

any network in the ensemble is a subgraph of the upper bound and a

supergraph of the lower bound. Edges in the upper bound that are

missing from the lower bound are deemed uncertain as these edges

could not be verified by the provided data. The GRN is therefore in-

ferable when there exists no uncertain edges (i.e. the upper and

lower bounds meet). Using TRaCE, we demonstrated that system-

atic KO experiments such as performing single-gene KOs (SKOs)

and double-gene KOs (DKOs) is a strongly suboptimal strategy for

inferring GRN (Ud-Dean and Gunawan, 2014).

The attention given to designing experiments for GRN inference

pales in comparison to developing inference methods. Only a handful

of strategies having been proposed previously. For example, Ideker

et al. (2000) proposed an optimization of perturbation experiments

for a Boolean model of acyclic GRNs using minimum set cover.

Tegnér et al. (2003) formulated a heuristic strategy of ranking gene

perturbations where genes with weaker differential expression or

those associated with more uncertain interactions are more likely se-

lected for KOs. Meanwhile, Spieth et al. (2004) employed an evolu-

tionary strategy to create an ensemble of S-system models of GRN.

The design of experiments (DOE) involved performing virtual gene

KOs using the model ensemble and choosing the most informative

KO experiment. On the other hand, Steinke et al. (2007) developed a

DOE strategy based on Bayesian linear regression with a sparse prior

distribution of the GRN, where experiments were selected according

to the possible information gain. More recently, Lang et al. (2014)

proposed a DOE strategy for cellular reaction networks based on se-

lecting a set of measurements, using which low confidence reactions

are isolated in disjoint subnetworks or modules. Finally, Birget et al.

(2012) used a graph theory concept called node cut-sets or vertex sep-

arators, to formulate a systematic procedure for inferring GRN di-

graphs. Briefly, the strategy involves systematically knocking out the

vertex separators of gene pairs with an indirect regulation, i.e. gene

pair i and j where gene i regulates gene j through other gene(s). The

authors showed theoretically that the inference of acyclic GRN with n

genes would require OðnÞ gene KO experiments, while those with

cycles would need Oðn2Þ experiments.

In this work, we developed an algorithm called REDuction of

UnCertain Edges (REDUCE) for selecting the optimal gene KO experi-

ment based on an ensemble of GRNs, particularly using the upper and

lower bounds of the ensemble. REDUCE was formulated as a con-

strained optimization problem to maximize the number of uncertain

edges that could potentially be verified. We introduced the concept of

edge separatoid, similar to vertex separators, as the basis to count the

number of possible edge verification associated with a given gene KO

combination. Finally, we proposed an iterative procedure for the GRN

inference, in which the upper and lower bounds of the ensemble are

continually updated during iterations of wet-lab KO experiments and

dry-lab optimal DOE using REDUCE. As a proof of concept, we

applied the iterative procedure to infer the GRN of E.coli under ideal

conditions. We further demonstrated the efficacy of REDUCE using

benchmark gene expression simulator GeneNetWeaver (GNW)

(Schaffter et al., 2011) in the inference of five 100-gene gold standard

networks from DREAM 4 in silico network inference challenge

(Schaffter et al., 2011). We compared the performance of the iterative

inference with performing systematic KO experiments.

2 Methods

2.1 Definitions
In this section, we review several basic concepts of graph theory

which will be used in the development of the DOE algorithm. A

graph G is defined by the pair (V(G),E(G)), where V(G) denotes the

set of vertices (nodes) and EðGÞ � VðGÞ � VðGÞ denotes the set of

edges. The number of vertices n(G) and edges m(G) are called the

order and size of the graph, respectively. In a digraph, an edge is

defined by an ordered pair of vertices (i,j) denoting the edge direc-

tion, from vertex i pointing to vertex j. In this case, vertex i is a par-

ent of vertex j, and correspondingly vertex j is a child of vertex i.

Here, we consider a digraph model of GRN where the edges are un-

signed and unweighted. In such a digraph, the nodes represent genes

while the edges describe the gene regulatory interactions. The dir-

ected edge (i,j) indicates that gene i regulates gene j. In the following,

the graph G; denotes the digraph of the GRN of interest, which is

also referred to as wild-type GRN. Meanwhile, the digraph corres-

ponding to knocking out or deleting a set of genes VKO � VðG;Þ is

denoted by GVKO
: Figure 1a shows an example of a GRN digraph G;

with 7 genes (n(G)¼7) and 7 gene interactions (m(G)¼7). Here,

genes B and C are parents of gene D, and genes D and E are children

of gene C. Figure 1b further shows the digraph GfA;Eg corresponding

to knocking out genes A and E from the GRN G; in Figure 1a.

A directed path in a digraph is a sequence of vertices where a dir-

ected edge exists from one vertex to the next. For example, in

Figure 1a the vertex sequence ACDEF gives a directed path from

vertex A to vertex F. A vertex j is said to be accessible from a vertex i

when there exists a directed path from vertex i to vertex j. In this re-

gard, vertex i is an ancestor of vertex j, and vertex j is correspond-

ingly a descendant of vertex i. The accessibility matrix of a digraph

G, denoted by Acc(G), is an n(G)�n(G) matrix with Acci,j¼1

when vertex j is accessible from vertex i, and Acci,j¼0 otherwise. In

Figure 1a, gene F is accessible from gene A. Furthermore, genes A,

Fig. 1. (a) Example of a digraph of GRN G;. (b) The GRN GfA;Eg resulting from

knocking out genes A and E from G;
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B, C, D and E are the ancestors of gene H, while genes D, E, F and

H are the descendants of gene B.

2.2 TRaCE
To address the underdetermined nature of GRN inference, we previ-

ously developed TRaCE with the goal of identifying the ensemble of

digraphs that are consistent with steady-state expression data from

gene KO experiments. TRaCE is based on the assumption that gene

KOs cause steady-state differential expressions among genes that are

downstream or accessible from the deleted genes (i.e. all genes that

are directly or indirectly regulated by the deleted genes). Thus, in the

first step of TRaCE, we construct the perturbation graphs

corresponding to the accessibility matrices of G; and all appropriate

GVKO
0s from gene KO data. For example, given the differential gene

expression of SKO experiments, one could construct the accessibility

matrix of G;. Here, the accessibility matrix represents the largest

network (in size) that agrees with the data and is an estimate of the

transitive closure of G; (Aho et al., 1972). However, many digraphs

can share the same transitive closure. This ambiguity illustrates the

underdetermined nature of the GRN inference problem. For directed

acyclic graphs (DAGs), one can identify the smallest digraph among

those sharing the same transitive closure by applying a transitive re-

duction algorithm (Aho et al., 1972). In the second step, TRaCE

applies a modified transitive reduction called Condensation,

Transitive Reduction and Expansion (ConTREx) to the accessibility

matrices. ConTREx involves the condensation of a perturbation

graph into a DAG of the strong components (strongly connected

components), the transitive reduction of this DAG and the expan-

sion of the resulting reduced graph where edges associated with

cycles are removed (see Ud-Dean and Gunawan, 2014 for more de-

tails). In the last step of TRaCE, the accessibility matrices and their

reductions are combined to produce the upper and lower bound di-

graphs of the ensemble, denoted by GU and GL, respectively. Edges

in every member digraph of the ensemble are a subset of those in the

upper bound and a superset of those in the lower bound. If desired,

the ensemble of digraphs can be constructed from GU and GL.

Edges in GU that do not appear in GL, defined by the set EU¼ {(i, j):

(i, j) 2GU, (i, j) 62GL}, are referred to as uncertain edges since their

existence could not be verified by the available data. The number of

uncertain edges (i.e. the cardinality of EU or N(EU)) gives a measure

of the uncertainty in a particular GRN inference problem.

2.3 DOE by REDUCE
The premise behind REDUCE is to identify the optimal set of genes

whose KO or deletion would enable the verification of the highest

number of uncertain edges. As inputs, REDUCE requires the upper

and lower bounds of the ensemble, such as those generated by

TRaCE. We will illustrate the main concept of REDUCE using the

following example. Consider the upper and lower bound digraphs

shown in Figure 2. Here, there are two uncertain edges (A, F) and

(B, H) since these edges appear in GU but are missing from GL. To

confirm the uncertain edge (A, F), we consider knocking out (discon-

necting) all indirect paths from gene A to gene F in GU. Removing

any one of the genes in the set {C, E} or both genes would accom-

plish this task. When there exists no indirect path from gene A to

gene F, the verification of the edge (A, F) becomes simple. For ex-

ample, if perturbing gene A leads to a differential expression of gene

F in the background of gene C KO, then we can confirm the exist-

ence of (A, F). Otherwise, the edge (A, F) does not exist. Similarly,

for the edge (B, H), knocking out one of the genes in the set {D, E}

or both genes would remove all indirect paths from B to H in GU. In

this exercise, the optimal KO experiment would therefore be to

knock out gene E as this would simultaneously disconnect the indir-

ect paths from A to F and from B to H. Note that we still need to

perturb or knock out gene A and B individually in the background

of gene E deletion to verify the uncertain edges.

In the earlier illustration, we call the sets of genes {C}, {E} and {C,

E} as the edge separatoids of (A, F). More precisely, we define an edge

separatoid of (i, j)2EU as the set of nodes whose removal would dis-

connect all indirect paths from node i to node j in GU. There could be

more than one (edge) separatoid for an uncertain edge as demon-

strated in the previous example. In addition, two or more uncertain

edges could share the same separatoid as in the case of gene E with re-

spect to the uncertain edges (A, F) and (B, H). In REDUCE, we con-

sider the following separatoids for each uncertain edge (i, j)2EU:

1. S1(i, j)¼ children of i in GU \ ancestors of j in GU

2. S2(i, j)¼descendants of i in GU \ parents of j in GU

3. S3(i, j)¼descendants of i in GU \ ancestors of j in GU

For the example in Figure 2, we have S1(A,F)¼ {C}, S2(A,F)¼ {E}

and S3(A,F)¼ {C,D,E}. The separatoids S1(i, j) and S2(i, j) are both

subsets of S3(i, j), and S3(i, j) is the largest separatoid of (i, j). For the

optimization of gene KO, we further define the following sets of

separatoids:

1. S1¼ {S1(i, j): (i, j) 2EU}

2. S2¼ {S2(i, j): (i, j) 2EU}

3. S3¼ {S3(i, j): (i, j) 2EU}

The three separatoids above do not, by any means, represent the

complete set of separatoids for an uncertain edge (i, j). Rather, they

are selected because of the ease in computing and storing them. One

could also consider the grandchildrens of i or grandparents of j and

so on. However, delineating all possible separatoids would consti-

tute finding the longest path between two nodes in a graph, a prob-

lem which is known to be NP-hard (non-deterministic polynomial-

time hard) (Bjorklund et al., 2004). In addition, the memory require-

ment would become prohibitively large as the separatoids are com-

puted a priori and stored in memory during KO optimization.

As mentioned earlier, REDUCE involves finding the optimal

combination of nodes whose removal would enable the verification

of the highest number of uncertain edges. Given the aforementioned

sets of edge separatoids S1, S2 or S3, we solve the following opti-

mization problem

ðq�;V�KOÞ ¼ arg max
q2f1;2;3g

max
VKO

N
�

ET;qðVKOÞ
�

where ET,q(VKO)¼ {(i, j): (i, j) 2 EU, Sq(i, j) ( VKO, i, j 62 VKO} and

N(ET,q(VKO)) is the cardinality of ET,q(VKO). In this optimization,

Fig. 2. Example of upper and lower bounds of a GRN
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ET,q(VKO) represents the set of uncertain edges that could potentially

be verified by GVKO
according to the set of separatoids Sq (q¼1, 2, 3).

One can impose constraints in the earlier optimization, such as to ex-

clude essential genes or combinations of genes whose KOs are lethal,

and to limit the number of KO genes (i.e. the cardinality of VKO or

N(VKO)). In the implementation of REDUCE, the optimization is car-

ried out for each Sq (q¼1, 2, 3) separately using a modified genetic al-

gorithm (GA) (Holland, 1992), the maximum of which is selected

after the completion of the GA optimizations (see pseudo-code in

Supplementary Information).

Following the simple illustration earlier, the verification of un-

certain edges involves obtaining gene expression data from the fol-

lowing experiments:

1. deletion of genes in the set V�KO

2. perturbation of KO of each gene i from the set I* in the back-

ground V�KO deletion, where

I*¼ {i: (i, j) 2 ET;q� ðV�KOÞ}

Using the data from the earlier experiments, we perform a two-sam-

ple t-test to determine if the perturbation of gene i leads to a differ-

ential expression of gene j in the background of V�KO KO for each

edge (i, j) 2 ET;q� ðV�KOÞ: Based on the t-test, we update the ensemble

bounds as follows:

1. if the null hypothesis is rejected, then we add (i, j) to the lower

bound GL;

2. otherwise, we remove (i, j) from the upper bound GU.

One can repeat applying REDUCE, carrying out KO experiments

and updating the ensemble bounds until the upper and lower bounds

of the ensemble converge or until the distance between these bounds

does not reduce further or until a given number or budget of experi-

ments is reached. As outlined in Figure 3, the inference of GRN can

therefore be carried out iteratively. The total number of KO experi-

ments is thus given by the summation between the number of

iterations and the cumulative number of elements of I*s. In our ex-

perience, when the GRNs contain cycles, the sets of edge separatoids

defined earlier may become sensitive to errors, particularly to false

negatives (FNs) in the upper bound GU. In the implementation of the

iterative procedure, we employed the following sets for REDUCE:

1. S1(i, j)¼ children of i in GU;k \ ancestors of j in GU;0

2. S2(i, j)¼descendants of i in GU;0 \ parents of j in GU;k

3. S3(i, j)¼descendants of i in GU;0 \ ancestors of j in GU;0

where GU;k denotes the upper bound of the ensemble in the k-th iter-

ation and is GU;0 the initial upper bound.

In practice, multiplex assay such as in RNA sequencing plays an

important role in cost- and time-saving by processing a large number

of samples simultaneously. If desired, the iterative inference procedure

can be adapted for multiplexing. Briefly, the modified procedure in-

volves running REDUCE sequentially without bound updates until the

uncertain edges are exhausted or until no feasible solution can be

found or until a desired number of KO experiments is produced

(Supplementary Information). In each iteration, we thus obtain a

ranked list of fV�KO;lg; instead of a single optimal V�KO, with non-

increasing N
�

ET;q� ðV�KO;lÞ
�

whose analyses can be parallelized using

multiplex assay.

2.4 Comparison to other DOE strategies
A direct comparison between REDUCE and several existing DOE al-

gorithms for GRN inference in the case studies is complicated by (i)

differences in the modeling framework used to represent GRNs (e.g.

Boolean acyclic graph (Ideker et al., 2000) and ordinary differential

equations (Spieth et al., 2004)), (ii) the types or the parameteriza-

tions of network perturbations (e.g. using network input functions

(Steinke et al., 2007)) and (iii) ambiguity in the published procedure

(e.g. in the generation of ensemble of solutions to the linear regres-

sion problem in the method by Tegnér et al. (2003)). For these rea-

sons, in the next section we compared REDUCE to systematic gene

Fig. 3. Iterative procedure for GRN inference. The procedure starts with an initial GU and GL, for example from the outputs of TRaCE. REDUCE uses the ensemble

bounds to find the optimal set of gene KOs V*
KO for the subsequent experiments. The resulting gene expression data are then used to update the ensemble

bounds. The procedure is repeated until convergence
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KO procedures, including the complete set of DKOs, DKOs from

ancestor–descendant (AD) pairing and the DOE proposed by

Birget et al. (2012) which used a similar graph theoretic concept to

edge separatoids, namely vertex separators. In DKOs from AD pair-

ing, we knock out a gene pair i and j, if gene j is accessible from gene

i and if there exist at least one gene k (k 62 {i, j}) which is accessible

from both i and j. When the KO of genes i and j leads to a differen-

tial expression of gene k with respect to the KO of only gene j, then

we add the edge (i, k) to the lower bound. Otherwise, we remove the

edge (i, k) from the upper bound.

3 Results

In this section, we demonstrate the performance of REDUCE by

applying the iterative procedure in Figure 3 to three case studies,

involving 100-gene random scale-free networks under ideal condi-

tions, E.coli GRN under ideal conditions and five 100-gene gold

standard GRNs from DREAM 4 challenge using GNW data

(Schaffter et al., 2011). As the starting point, we assume that the

complete set of SKO experiments have been performed. We used

TRaCE to construct the initial GU and GL from the expression data

from SKO. Note that in this case GU,0 is the accessibility matrix of

G;. For the 100-gene DREAM 4 GRNs, we employed GNW for the

data generation using the same settings as in the challenge. In the im-

plementation of REDUCE, we used GA with a population size of

100 and a maximum generation of 50, which we found to give a

good balance between finding globally optimal solution and reduc-

ing computational cost. All other GA optimization parameters were

set to the default values (see Supplementary Information).

3.1 Comparison to the DOE by Birget et al.
We first compare REDUCE to the KO design procedure by Birget

et al. using vertex separators. We applied the DOEs under the ideal

scenario where we can accurately detect differential expressions of

genes that are accessible from the deleted genes. In this case data

noise does not play any role in the inferability of GRN. REDUCE

has several key advantages over this strategy. First, REDUCE allows

constraints of practical significance in the gene KO optimization,

such as excluding essential genes whose KO would leave the cell in-

viable. In addition, prior knowledge and expression data could be

easily taken into account in the ensemble bounds input for

REDUCE (see Section 4). Meanwhile, the systematic KO procedure

of Birget et al. was developed specifically for GRN digraphs without

cycles. The procedure also did not consider any constraints nor

allow incorporation of prior data.

As shown in Table 1, for 10 randomly generated 100-gene scale-

free acyclic GRNs (Albert and Barab�asi, 2002), the DOE of Birget

et al. prescribed significantly more KO experiments than the itera-

tive inference using REDUCE. Furthermore, the KO experiments

from the systematic procedure involved a very high number of genes

(up to 50 genes). Using our iterative network inference procedure,

we could consistently reach the true GRNs using fewer KO experi-

ments, while limiting the number of KO genes in a given experiment

(up to 10 genes). Because of the clear advantages of REDUCE over

the DOE of Birget et al., in the remaining case studies we will com-

pare REDUCE only to strategies using DKOs.

3.2 Inference of E.coli GRN under ideal condition
As a proof of the applicability of REDUCE to large realistic GRNs,

in this case study, we used the E.coli GRN reported in GNW with

1565 nodes and 3758 edges (Schaffter et al., 2011). Here, we again

considered data under ideal conditions. Assuming that we started

with data from the complete SKO experiments, we constructed the

accessibility matrix of G; and its reduction by ConTREx and set

these as the initial ensemble bounds GU,0 and GL,0, respectively. We

constrained REDUCE such that the optimal solution excludes essen-

tial genes, whose KOs are detrimental to E.coli viability (Kato and

Hashimoto, 2007). We implemented two versions of the iterative

procedure. The first implementation used a fixed maximum number

of 10 genes in VKO (N(VKO)�10). In the second implementation,

we started with a maximum of one gene in VKO and gradually

increased this limit when the GA optimization could not find any

feasible solution (i.e. when the remaining separatoids involved more

genes than the prescribed limit). The ensemble bounds update fol-

lowed a modified procedure as outlined in Supplementary

Information.

Figure 4 shows the Jaccard distances between GU and G; and be-

tween GL and G;. The Jaccard distance between two digraphs

G1 and G2 is a measure of the difference between the sets of edges in

G1 and G2, defined by (Levandowsky and Winter, 1971):

dJðG1;G2Þ ¼
N
�

EðG1Þ [ EðG2Þ
�
�N

�
EðG1Þ \ EðG2Þ

�

N
�

EðG1Þ [ EðG2Þ
�

A Jaccard distance of 1 means that there exist no common edge in

G1 and G2, while a Jaccard distance of 0 means that G1 and G2

have the same sets of edges. When limiting the number of genes

in the VKO to 10, the iterative procedure converged to the true G;
in 166 iterations with a total of 437 KO experiments, as shown in

Figure 4a. We could also obtain the true GRN by gradually

increasing the limit of genes in VKO (Fig. 4b), but not surprisingly,

this implementation required more iterations and more KO experi-

ments (247 iterations and 539 KO experiments). Meanwhile, GU

and GL from the complete set of DKO experiments with a total of

�1.22 million KO experiments did not meet (see dotted lines in

Fig. 4). The DKOs from AD pairing produced ensemble bounds

GU and GL with Jaccard distances similar to those using the com-

plete DKOs (see dashed lines in Fig. 4) but using much fewer ex-

periments (700 KO experiments). This case study thus

demonstrated that the iterative network inference using REDUCE

could provide much more informative experiments than systematic

designs using DKOs.

Table 1. Inference of random 100-gene scale-free acyclic GRNs

under ideal conditions

Network Number of

KO experiments:

iterative DOE

(at most 10

genes in VKO)

Number of

KO experiments:

Birget et al. (2012)

Maximum number

of genes in KO

experiments:

Birget et al. (2012)

1 678 1320 35

2 626 1884 28

3 644 1292 36

4 666 1574 37

5 744 2120 46

6 738 2222 26

7 760 2138 50

8 747 2766 44

9 666 2234 24

10 670 1830 39

The inference was carried out until completion, leading to the true GRN in

all cases.
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3.3 Inference of 100-gene DREAM 4 challenge GRNs
In this case study, we applied the iterative procedure to infer five

100-gene gold standard networks in the DREAM 4 in silico network

inference challenge (Prill et al., 2011; Schaffter et al., 2011). For

each KO experiment, we simulated 10 replicates of steady-state gene

expression data using GNW (Schaffter et al., 2011). GNW em-

ployed two types of biological noise: inherent stochastic noise asso-

ciated with gene transcription process and additive measurement

noise. The intrinsic stochastic noise was simulated using stochastic

differential equations with independent Gaussian white-noise, while

log-normal measurement noise was added to the simulated expres-

sion data (Stolovitzky et al., 2005).

As before, we started with initial data from the complete set of

SKO experiments and constructed GU,0 and GL,0 using TRaCE. The

differential expression analysis in TRaCE was performed using a

procedure described previously (using zcutoff¼3 and zthreshold¼2)

(Ud-Dean and Gunawan, 2014). We applied the iterative procedure

using a¼0.01 for the two-sample t-test during the ensemble bounds

update. Here, we gradually increased the maximum number of genes

in VKO, starting from 1, and incremented this number by 1 when

REDUCE could not find any feasible solution. For all five gold

standard networks, the iterative procedure terminated in the conver-

gence between GU and GL. The iterations for the inference of these

networks involved at most three gene KOs (N(VKO) �2), except for

Network 2 which required only two gene KOs (N(VKO)¼1). The

accuracy of the resulting GRNs is summarized in Figure 5. For each

gold standard network, we compared the iterative procedure to per-

forming the complete set of DKO experiments and DKOs based on

AD pairing.

Under non-ideal scenario, we could not obtain the true GRN

even when using the iterative procedure. For all gold standard net-

works, GU and GL from the iterative procedure converged to a

GRN that was different from G;. Nevertheless, as shown in

Figure 5a, the iterative procedure consistently led to the verification

of more uncertain edges than DKO data (paired t-test P¼0.001

against complete DKOs and P¼0.003 against DKOs using AD

pair). The fractions of false positives (FPs) and FNs among the veri-

fied edges did not significantly correlate with the number of

uncertain edges (for FP: q¼0.46, P¼0.43; for FN: q¼�0.20,

P¼0.75). The numbers of experiments using the iterative procedure

were between 30 and 110 times lower (Table 2) than the complete

DKOs (4950 experiments) but were higher than the DKO experi-

ments using AD pairing. Again, we did not notice significant correl-

ations between the number of uncertain edges and the number of

iterations as well as the number of KO experiments (for iterations:

q¼0.75, P¼0.14; for KOs: q¼0.69, P¼0.20). Figure 5b shows

the total distance (TD) among GU, GL and G;; which is calculated

as follows:

TDðGU;GL;G;Þ ¼ N
�

EðGUÞ [ EðGLÞ [ EðG;Þ
�
�N

�
EðGUÞ

\ EðGLÞ \ EðG;Þ
�

The TD gives a combined measure of uncertainty and accuracy of

the ensemble with respect to the gold standard network. As shown

in Figure 5b, for all five GRNs, the iterative inference procedure

could provide lower TDs than the complete DKOs (paired t-test

P¼0.009) and DKOs from AD pairs (P¼0.001).

Additionally, we computed the Jaccard distances between GU

and G; and between G; and GL, which are shown in Figure 6. The

upper bounds GU from the proposed iterative inference had similar

Jaccard distances to those from the complete DKOs (P¼0.48) des-

pite using much fewer experiments. On the other hand, the optimal

DOE consistently produced lower Jaccard distances for the lower

bound GL than the complete DKOs (P¼0.005). In comparison to

DKOs from AD pairs, the iterative procedure led to lower Jaccard

distances for both GU (paired t-test P¼0.006) and GL (P¼0.001).

We also implemented the modified iterative procedure for multiplex

assay where we again gradually increased the cardinality of VKO.

The resulting GRNs were of similar accuracy as those from the ori-

ginal procedure (see Supplementary Fig. S2). The use of multiplex

assay expectedly led to fewer iterations (�5-fold decrease), while

the total number of KO experiments did not change appreciably (see

Supplementary Table S1). Taken together, the results of the case

studies demonstrated the power of REDUCE for inferring GRN and

further suggested that systematic KOs of genes can be severely sub-

optimal for such a purpose.

Fig. 4. Iterative inference of E.coli GRN under ideal conditions. The plots show the Jaccard distances of GU and G;, and the negative Jaccard distances of GL and

G;. The number of genes in VKO is limited to 10 genes in (a), and increased from 1 to 9 genes (demarcated by vertical lines) in (b)
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3.4 Runtime and computational complexity
The computational complexity of the optimization problem in

REDUCE depend on the number of genes n; the number of uncertain

edges (N(EU)); the GA parameters, specifically the population size

(npop) and the number of generations (ngen), and the constraint on

the maximum number of genes (Nmax) allowed in VKO. Specifically,

the calculation of the separatoids prior to the GA optimization has a

computational complexity that scales linearly with the number of

gene n. Furthermore, the complexity of GA optimization scales lin-

early with the population size and the number of generations, while

the computation of the objective function N
�

ET;qðVKOÞ
�

(see

Supplementary Information) scales with O
��

NðEUÞ
�2

Nmax

�
.

Meanwhile, the memory requirement of REDUCE is dominated by

the storing of separatoids, which scales with O
�

nNðEUÞ
�

. For the

E.coli GRN example with 1565 genes and 11 411 initial uncertain

edges, the GA optimization in REDUCE completed in around 90 s

on a workstation with 3.33 GHz Intel Xeon W3680 Processor

(6 cores), and used 1.4 GB of RAM.

4 Discussion

In this work, we developed a method called REDUCE for optimizing

gene KO experiments for the purpose of inferring GRN digraphs. The

method builds on the ensemble inference of GRNs using gene expres-

sion data (Ud-Dean and Gunawan, 2014). In particular, REDUCE

uses the upper and lower bounds of an ensemble of GRNs to find the

optimal set of gene KOs which would potentially reduce the most

number of uncertain edges. We further proposed an iterative proced-

ure which cycled over performing gene KO experiments, updating en-

semble bounds and optimizing gene KO by REDUCE. As a proof of

principle, we successfully applied the iterative procedure to infer the

GRN of E.coli under ideal conditions (no data noise, infinite sensitiv-

ity). The iterative inference could converge to the true GRN, whereas

performing all combinations of DKOs or DKOs based on AD pairing

could not despite the larger number of experiments.

Using benchmark data generator and 100-gene gold standard net-

works of DREAM 4 challenge, the proposed iterative inference proced-

ure could significantly outperform DKO experiments providing

informative data, as judged by network distances from the true GRNs.

In particular, the iterative procedure could converge to a unique di-

graph with a lower TD than the ensemble bounds from the complete

set of DKO experiments, while using 1–2 orders of magnitude fewer

experiments. For roughly the same number of experiments, DKO ex-

periments based on AD pairing led to verifications of fewer uncertain

edges and much larger TDs from the gold standard network.

We recommend implementing the iterative inference procedure

using a gradual increase of KO genes, i.e. starting with N(VKO)¼1

and increasing N(VKO) when REDUCE could not find any feasible

solution. Such a strategy is preferred because knocking out a large

number of genes simultaneously could be detrimental to cell viabil-

ity. As shown in Figure 4b, even with limiting the number of KO

genes to no more than three (VKO with at most two genes), the itera-

tive procedure could verify a large fraction (93%) of the uncertain

edges in E.coli GRN. Also, in practice one would not necessarily

Fig. 5. Comparison of REDUCE DOE and DKOs on DREAM 4 100-gene networks: (a) number of uncertain edge verifications and (b) total network distance (TD).

(a) The number of uncertain edges verified by the iterative procedure using REDUCE, in comparison to the complete set of DKO experiments and to DKOs based

on AD pairing. (TN, true negative; FN, false negative; TP, true positive and FP, false positive) (b) The TD among GU , GL and G;. TDs are reported as a fraction of

the size (the number of edges) of G;

Table 2. Number of iterations and total KO experiments in the

iterative inference of 100-gene DREAM 4 GRNs

Network Number of

iterations using

REDUCE

Number of

KO experiments

using REDUCEa

Number of

KO experiments

using AD pairinga

1 34 48 41

2 21 22 22

3 55 106 57

4 80 120 64

5 54 77 57

anot including KOs involving single gene.
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want to carry out the iterations until completion (e.g. due to budget

constraint). Here, REDUCE will still prove to be useful in maximiz-

ing the information return per KO experiment.

For the 100-gene networks in DREAM 4 challenge, the iterative

procedure produced a unique digraph (i.e. GU and GL converge) but

the inferred GRN deviated from the true GRN. Here, errors in the

input upper and lower bounds contributed significantly (79%) to

the total errors in the final GRNs (i.e. the majority of the errors

were not due to REDUCE). FNs dominated over FPs (86% of errors

were FN). We further noted that on average, 90% of the FNs were

associated with fan-in motifs where a gene was regulated by two or

more genes. The inference of such motif from steady-state gene KO

data is fundamentally challenging because perturbing one of the

regulators may not lead to any differential expression of the target

gene due to compensatory effects. Meanwhile, the remaining errors

were not associated with any particular network motifs. Since errors

in the initial input to REDUCE were not included in the set of uncer-

tain edges, the iterative inference could therefore not correct these

errors.

The issue of FN above could be addressed by considering other

types of data, for example time-series gene expression data and tran-

scription factor binding sites. When considering time-series data, we

ideally need (i) fast sampling to capture transient changes in the ex-

pression of target genes and (ii) slow compensation by other regula-

tors. Meanwhile, if the binding sites of transcription factors are

known (see for example FANTOM project Consortium, 2014), one

could then construct a transcriptional regulatory network. Any

edges in the transitive closure of this transcriptional network which

do not appear in the input upper bound, are possible FNs and

should be added to the upper bound.

Beside the FN issue, a recent study demonstrated that the ordering

of gene deletions aceA and pgi in E.coli could influence cell’s tran-

scriptomic profiles (Gawand et al., 2015). In the analysis of the data

from this study (Supplementary Data File), we found that the order of

deleting the two genes affected the expression of 53 out of 4690 genes

(at false discovery rate<5%). Furthermore, gene aceA showed a dif-

ferential expression upon deleting gene pgi, suggesting that aceA is

accessible from pgi. However, pgi was not differentially expressed in

the KO of aceA. Consequently, by analyzing the differential expres-

sion of DKO Dpgi and DaceA in the background of DaceA, we should

be able to verify edges emanating from pgi to all genes that are access-

ible from both pgi and aceA. Among the verifiable edges satisfying the

condition above (ignoring antisense transcripts), the transcriptomic

discrepancy between deleting DaceA-then-Dpgi and Dpgi-then-DaceA

did not cause any difference in the verification outcomes of these

edges (0 out of 3). Nevertheless, the influence of the order of gene de-

letions demonstrated in the above study could complicate the GRN

inference, which future DOEs and network inference algorithms

would need to address.

The initial ensemble bounds for the iterative procedure in the case

studies came from applying TRaCE to expression data of SKO ex-

periments. If the transcription factor genes are known a priori, then

TRaCE requires only the SKO data of each transcription factor gene

to construct the initial upper and lower bounds of the GRN ensem-

ble. Beside using TRaCE, one could also construct the initial upper

and lower bounds of the ensemble from prior knowledge. When the

members of the initial ensemble are known a priori, the upper and

lower bounds could be constructed by taking the union and intersec-

tion of the members, respectively. For example, one could obtain the

initial ensemble from the GRN predictions using different network

inference algorithms, following the idea of wisdom of crowds

(Marbach et al., 2012). When observational data (as opposed to KO

data) are available, one could also construct a Markov equivalence

class, for example using PC algorithm (Kalisch and Bühlmann, 2007;

Maathuis et al., 2010). The Markov equivalence class represents the

ensemble of DAGs encoding the same independence and conditional

relationships that result from a Bayesian network learning using such

data. Again, the upper and lower bound could be constructed by tak-

ing the union and intersection of the DAGs in this equivalence class.
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