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Objective clinical tools, including cognitive-motor integration (CMI) tasks, have the

potential to improve concussion rehabilitation by helping to determine whether or not

a concussion has occurred. In order to be useful, however, an individual must put forth

their best effort. In this study, we have proposed a novel method to detect the difference

in cortical activity between best effort (no-sabotage) and willful under-performance

(sabotage) using a deep learning (DL) approach on the electroencephalogram (EEG)

signals. The EEG signals from a wearable four-channel headband were acquired

during a CMI task. Each participant completed sabotage and no-sabotage conditions

in random order. A multi-channel convolutional neural network with long short term

memory (CNN-LSTM) model with self-attention has been used to perform the time-series

classification into sabotage and no-sabotage, by transforming the time-series into

two-dimensional (2D) image-based scalogram representations. This approach allows

the inspection of frequency-based, and temporal features of EEG, and the use of a

multi-channel model facilitates in capturing correlation and causality between different

EEG channels. By treating the 2D scalogram as an image, we show that the trained

CNN-LSTM classifier based on automated visual analysis can achieve high levels of

discrimination and an overall accuracy of 98.71% in case of intra-subject classification,

as well as low false-positive rates. The average intra-subject accuracy obtained was

92.8%, and the average inter-subject accuracy was 86.15%. These results indicate that

our proposed model performed well on the data of all subjects. We also compare the

scalogram-based results with the results that we obtained by using raw time-series,

showing that scalogram-based gave better performance. Our method can be applied

in clinical applications such as baseline testing, assessing the current state of injury and

recovery tracking and industrial applications like monitoring performance deterioration in

workplaces.
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1. INTRODUCTION

Mild traumatic brain injuries (mTBI) or concussions have
become an increasing public health concern, affecting an
estimated 42 million individuals annually (Gardner and Yaffe,
2015). As a brain injury, concussion affects many aspects of
function, including sensory, motor, and cognitive domains,
and can thus have major implications for participation in
activities of daily living. Approximately 15–20% of those who
sustain concussions develop chronic symptoms and functional
impairments that persist for months or years (Ellis et al., 2014;
McCrory et al., 2017). As a result, individuals affected by
concussion are seeking clinical and rehabilitation care in greater
numbers than ever, highlighting the need for such care to reflect
evidence based on objective metrics.

One issue with the current state of injury assessment and
recovery tracking is its reliance on self-report. By their nature,
symptoms are subjective: There is no way to measure a headache
other than to record what an individual reports. However,
there is evidence that subjective symptoms may resolve before
full neurological recovery has occurred, leading to vulnerability
to further injury (Hurtubise et al., 2016; Sergio et al., 2020).
Deficits have been reported in a wide range of laboratory
and neurophysiological outcome measures in asymptomatic
individuals after concussion (Thériault et al., 2009; Slobounov
et al., 2012; Baker and Cinelli, 2014; Tapper et al., 2016;
Adams et al., 2020; Manning et al., 2020). This reliance of
self-reported symptoms, therefore, means that diagnosis is less
precise, intervention targets are more difficult to identify, and
determining recovery is less clear than would be possible with
more objective measures.

A second issue around assessment and recovery tracking at
present is the use of pre-injury assessments. Objective measures
applied to the same person pre-and post-injury would be a
useful metric to assess injury effects and monitor recovery, since
they would allow for more personalized care. However, because
of their unreliability, the utility of “baseline measures” often
collected annually for those in athletics or lines of duty has
been called into question (Higgins et al., 2018; Rebchuk et al.,
2020). A primary contributor to this concern is the potential for
individuals to sabotage or willfully under perform their baseline
tests (i.e., deliberately perform poorly to erode or incapacitate
the assessment). For a variety of personal or social factors, such
as a desire to return to work, duty, sport, or the pressures of
impending litigation, individuals may not perform to the best
of their ability. Thus, any injury/recovery assessment approach
using baseline measures is only effective if both the pre- and post-
injury assessments capture the best effort of an individual. To this
end, a way to detect and prevent sabotage during baseline testing
would add considerable reliability to concussion assessment and
recovery metrics, improving care and preventing further injury.

Electroencephalography (EEG) has been used in several
previous studies examining deceit detection. There are many
studies that have worked on the problem of lie detection using
EEG data obtained while participants completed the Guilty
Knowledge Test (GKT), a psychophysiological questioning
technique that can be used to determine whether a person

is lying especially during a polygraph test. Abootalebi et al.
(2008) acquired data from participants while they answered GKT
questions, extracted various morphological and frequency-based
features from the EEG tracing, and then selectively fed features
to linear discriminant analysis algorithm for classification. They
achieved 86% correct detection of total subjects. Deep belief
network (Hinton et al., 2006) was used for deceit classification
by Bablani et al. (2018) based on GKT, and the highest subject
accuracy achieved was 83.4% using 16 channel EEG. A new
machine learning method referred to as F-score-based extreme
learning machine (ELM) was proposed by Gao et al. (2013) to
classify lying and truth-telling. The methodology used a nine-
channel EEG system to obtain signals during a GKT-based task
and achieved best accuracy of 98.97%. A support vector machine
(SVM) model was used to detect lies by Simbolon et al. (2015)
during a stimulus display task, achieving a best accuracy of
70.83% in this study. Cakmak and Zeki (2015) classified the
two states, i.e., lie and deception based on the EEG tracings,
while the participants were shown Pokemon cards and asked
whether or not a card belonged to them. They used short-time
fourier transform and multi-layer perceptron for classification
and achieved the accuracy of around 90%.

However, no studies have examined changes in the time-
frequency scalograms of EEG signals in response to sabotaging
a cognitive-motor integration task (a form of visuomotor skill
assessment). In our approach, we propose to use scalograms
of the EEG data as the input to our model. Previous studies
examining sabotage detection have all used traditional EEG
systems, collecting data from aminimumof nine scalp electrodes.
An important focus when considering the application of
our work to clinical concussion care and to workplace/clinic
assessment is the use of technologies that are deployable in
clinical environments. To this end, we used a portable EEG

headband (Muse2
TM

, InteraXon Inc., Toronto, Canada), a
commercially available and consumer-grade device, to collect our
EEG data. To our knowledge, this is the first time a portable EEG
system has been used to detect sabotage. Here, we use a deep
learning (DL) (Ian et al., 2016) approach to analyze EEG spectral
data. DL is a subfield of machine learning (ML) (Michie, 1968),
which is in turn a form of artificial intelligence (NJ, 2014) that
focuses on teaching computers how to learn without the need
to be programmed for specific tasks by training them on some
examples or data. DL is a class of machine learning algorithms
that uses complex multi-layered neural networks for a variety
of tasks, where the level of abstraction increases gradually by
non-linear transformations of input data. We have employed
a multi-channel attention-based CNN-LSTM (Hochreiter and
Schmidhuber., 1997; Krizhevsky et al., 2012) model to identify
sabotage, and the model has been trained on EEG data from
a cognitive-motor integration (CMI) task. A variant of the
proposed model has been used in the past (Ordóñez and Roggen,
2016; Kim et al., 2019) for classifying time-series data. Similar
multi-channel models have been lately used to classify time-series
data (Ruffini et al., 2019; Mukhopadhyay and Banerjee, 2020;
Mukhopadhyay and Litoiu, 2020). However, unlike models used
in the past, our model uses multi-channel CNN that accepts
inputs from all the EEG channels at the same time and also
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applies self-attention (Vaswani et al., 2017) to the data that helps
our model to identify and focus on the data that is relatively more
important for the given problem.

The objective of this study was to determine the possibility of
distinguishing willful underperformance (“sabotage”) from best
effort (“no-sabotage”) using a DL analysis of neurophysiological
data collected during a visuomotor skill assessment. We
hypothesized that these EEG spectral measures of neural activity
during the intentionally poor performance on a CMI task would
be significantly different from amaximal effort performance. The
rest of the study is organized as follows: section 2 shows our
methods. The evaluation metrics used in our study are discussed
in section 3. The results achieved are shown in Section 4. Finally,
section 5 presents the discussion and future work.

2. METHODS

In our proposed methodology, we first collected data from
participants performing a CMI task. We then performed data
cleaning, data preprocessing, and feature engineering on data.
The transformed data were fed to the model. We explain each
step in detail.

2.1. Participants
Electroencephalogram and behavioral data were collected from
12 healthy volunteers (8 female and 4 male) aged 22–50 years of
age. Participants had no history of substance abuse, neurological
illness or impairment, brain injury, psychoactive drug treatment,
or concussion. All procedures were approved by the York
University’s Human Participants Research Committee, and all
participants provided informed consent to participate.

2.2. Experimental Task
Participants completed two blocks of a computer-based

visuomotor skill assessment task (BrDI
TM

) that included one
standard and one non-standard conditions where vision and
action were decoupled. This latter condition required the
integration of spatial and cognitive rules and thus required
cognitive-motor integration (CMI). Participants sat at a desk so
they could comfortably reach a 10.1 inch tablet (Samsung Galaxy
Tab A) placed on the desk in front of them. All hand movements
were made on the tablet. The task required participants move
the index finger of their dominant hand along the touch screen
of the tablet to move a cursor (white dot, 5 mm diameter) from
a central location to one of four peripheral targets (up, down,
left, or right relative to center) as quickly and as accurately as
possible. To start a trial, participants guided the cursor to a
solid green 8 mm diameter circle in the center of the screen.
After a 2,000-ms center hold time, an open green peripheral 10
mm diameter target was presented, which served as the “Go”
signal for the participant to initiate movement. The participant
slid their finger along the touch screen to move the solid green
cursor onto the open green target. Once the cursor reached and
remained in the peripheral target for 500 ms, it disappeared,
signaling the end of the trial. The next trial began with the
presentation of the central target after an intertrial interval of
2,000 ms. Peripheral targets on the tablet were located 37.5 mm

from the central start target (center-to-center distance). There
were 20 trials for each task, 5 to each target. In the standard
condition, participants looked at the target and used their finger
to displace the cursor that was directly under their finger, thereby
directly interacting with the targets. In the non-standard CMI
condition, the display was split by a vertical white line. The
participant had to view the targets, and the cursor presented in
the left half of the tablet screen. To displace the cursor in this
task, however, they had to slide their finger within the right blank
half of the tablet screen. Furthermore, the cursor feedback was
180◦ rotated from finger motion, such that the participant had to
slide one direction to move the cursor in the opposite direction
to reach the target. They were instructed to view the targets on
the upper screen and not their (extrafoveally located) hand in the
blank lower screen. Participants completed two practice trials in
each of the four directions before each task was presented for the
first time in order to become familiar with the task requirements.
The task performed by the participants is shown in Figure 1.

For each condition, they were instructed to either complete
the task as quickly and as accurately as possible (true effort
condition) or to willfully perform poorly while still completing
the trials (sabotage condition). In summary, participants
completed two sets (true effort condition, and sabotage
condition) of the two tasks (standard task, and CMI task), for a
total of 80 trials. The entire behavioral task took approximately
10 min (2–3 min for each 20-trial individual task). Both the
conditions and the standard vs. CMI task within a condition were
randomized for each participant.

2.3. Data Acquisition and Recording
During the completion of the CMI task, EEG data were

collected from a portable EEG headband system (Muse2
TM

,
InteraXon Inc., Toronto, Canada) using Mind Monitor software
(mind-monitor.com) using Open Sound Control Protocol (Freed
and Schmeder, 2009). The Muse2 device recorded continuous
EEG data from four electrodes: TP9, TP10, AF7, and AF8,
which are placed in accordance with the International 10–20
System for electrode placement. Figure 2A shows 10–20 system
2 placement for Muse, and Figure 2B shows Muse 2 headband.
The EEG data from Muse 2 are collected at a frequency of 256
Hz. Data were collected and saved for subsequent analysis. The
“marker” function was used on the Mind Monitor software to
denote the start of the behavioral task. The recording software
was manually stopped immediately following completion of the
last trial.

2.4. Data Cleaning and Preprocessing
Artifacts such as blinks, muscle contractions, or eye movements
were labeled by Matlab’s EEGLAB software (Delorme and
Makeig, 2004) and Mind Monitor application. They were then
removed manually. We also divided the data into small time
windows of 50 ms and computed the variance of data in each
window. If it was more than a selected threshold (which was
equal to plus or minus 2 SD of the mean), the time window
was flagged and later discarded. We also examined the data of
the individual subject and used the trial that had a minimum
number of jaw clenches and eye blinks (which were detected
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FIGURE 1 | (A) Task 1 (simple sliding finger along the same direction); a white dot of 5 mm diameter appears on screen followed by a solid green 8 mm diameter

circle in the center of the screen; the user has to then slide the solid green dot to an open green peripheral target. (B) Task 2, A CMI task: A vertical white line (shown

as dark gray in the image) divides the screen in to two halves; a white dot of 5 mm diameter appears on the right half of the screen followed by a solid green on the left

side of the screen; the user has to then slide the solid green dot to an open green peripheral target by sliding the finger in the opposite direction of the open green

target on the right side of the screen.

FIGURE 2 | (A) The 10-20 system of electrode placement for Muse. (B) Muse 2 Headband.

using Mind Monitor) for further experimentation. We made
sure that there was proper contact with the electrodes with the
help of Mind Monitor application as it lets you know if you
have not made sufficient contact with the skin on the contact
points. For better conductivity, we also applied some water to
the electrodes before the start of the experiment. The data from
the four channels were normalized before extracting features in
time-frequency domain.

2.5. Feature Extraction
We have applied continuous wavelet transform as done in Wang
et al. (2010), Hyeon and Choi (2019), and Chaudhary et al.
(2020) using a morlet wavelet on the raw data from the four
channels of the Muse 2 headband. Figure 3 shows the approach
we used to get the morlet convolved signal from which we
generated scalograms, and Figure 4 has a visualization of the
normalized scalograms. A Morlet wavelet was obtained by the
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FIGURE 3 | Methodology used for scalogram conversion. The technique of fast fourier transform was used to get the time-frequency representation of the data.

FIGURE 4 | The normalized scalograms obtained for the two tasks from the four channels; we can observe that higher frequencies (alpha to beta measured in Hz) are

more active for sabotage task than for no-sabotage task.

multiplication of a Gaussian with a sine wave and is described
by the following equation.

9σ (t) = cσ π
− 1

4 e−
1
2 t

2
(eiσ t − κσ ) (1)

where κσ = e−
1
2 σ

2
, σ is duration of the wavelet, and the

normalization constant cσ is:

cσ =

(

1+ e−σ
2
− 2e−

3
4 σ

2
)− 1

2
(2)

The Morlet wavelet helped to reduce edge artifacts and noise
from the data. It also helped to obtain a balance in temporal
precision and frequency precision. The technique of Fast fourier

transform (FFT) (Nussbaumer, 1982) has been used to convert
the data into time-frequency domain. We first performed FFT
on the raw data to convert it into frequency domain as shown in
Equation 3.

x̂(ω) =

∫ +∞

−∞

x(t)e−iωtdt (3)

where x(t) is the time series signal, and then, we performed
FFT on the Morlet wavelet (the wavelet was formed from the
frequency of interest) following Equation 4.

9̂σ (ω) = cσ π
− 1

4

(

e−
1
2 (σ−ω)2

− κσ e
− 1

2ω
2
)

(4)
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After the two signals were obtained in the frequency domain, we
performed point-wise multiplication to get the entire signal in
frequency domain. The data were then converted back to time
domain using inverse Fourier transform using Equation 5.

Cw=
1

2π

∫ +∞

−∞

x̂(ω)9̂σ (ω)dω (5)

FIGURE 5 | The visualization of data using PCA in 3D; the above data are for

Subject 1.

The power of this signal was then calculated by finding the
magnitude of the complex signal and then squaring it to get
the absolute power component of the signal. The data were
then divided into overlapping (50% overlap) windows, each
consisting of 64 time points. A window size of 64 samples
was chosen after experimenting with different window sizes. An
overlap of 50% was taken for each window, and this was also
chosen after experimenting with no-overlap and different overlap
sizes. We discuss this in detail in the results section. We made
scalograms of dimension 64 by 64 from this time-frequency
transformation. For each scalogram representation of the data,
we firstly considered the data for a time window of 0.25 s (64
timepoints) and then we took data with 50% overlap, thus next
window was from 0.125 to 0.375 and then 0.25 to 0.50 and so on.
The window sizes were kept constant throughout. We did this for
all the four channels, and we gave all the four scalograms as input
to our model. In Figure 5, we see principle component analysis
(PCA) visualization of the data into two classes, such as sabotage
and no-sabotage, which are in well-defined clusters.

2.6. Deep Learning Approach
In our methodology, we used self-attention-based multi-channel
CNN-LSTM for the binary classification task. Figure 6 shows the
methodology we used. We will now discuss the proposed model
and its components in detail.

2.6.1. Self-Attention Based Multi-Channel

Convolutional Neural Network With Long Short Term

Memory (MC-CNN-LSTM-Att)
It has been seen that adding convolutional layers to capture local
and spatial pattern on top of LSTM layers can be immensely
helpful as the CNN-LSTM architecture as a whole involves using
CNN layers for feature extraction on input data combined with

FIGURE 6 | The methodology used in our approach. The raw data obtained were preprocessed, and scalograms were generated from the data. The scalograms from

all four channels were sent to the DL model for classification.
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LSTMs to support sequence prediction. The CNN-LSTM model
reads subsequences of the main sequence in as blocks, extracts
features from each block, then allows the LSTM to interpret the
features extracted from each block. We used a multi-channel
approach where we fed the input scalograms from all the four
channels altogether to our model. We now discuss the three
main components of the model in detail, i.e., CNN, LSTM, and
self-attention separately.

2.6.1.1. Convolutional Neural Network
A CNN (Krizhevsky et al., 2012) is a kind of artificial neural
network that uses a system much like a multilayer perceptron
that has been designed for reduced processing requirements. A
classical CNN may contain mainly a convolution layer, pooling
layer, fully connected layer, and normalization layer. Recently,
CNNs have shown state-of-the-art results on challenging activity
recognition tasks with very little or no data feature engineering,
by instead using feature learning on raw data; for this reason, we
used CNN in the present analysis. The full CNN framework and
formula derivation can be seen in the literature (Albawi et al.,
2017). In a CNN, the convolutional product between the image
and the filter is carried out and a 2D matrix is obtained where
each element is the sum of the elementwise multiplication of
the filter and of the given input in matrix form. Often a bias is
also added to the the result. For simplicity, we only provide the
formula for convolutional layer, which works as a filter and is
then activated by a non-linear activation function, as follows:

gx,y = f(6nH
i=16

nW
j=16

nC
k=1

Ki,j,kIx+i−1,y+j−1,k + b) (6)

where gx,y is the corresponding activation, Ki,j,k denotes the ixjxk
weight matrix of convolution kernel, Ix+i−1,y+j−1,k indicates the
activation of the upper neurons connected to the neuron (x, y),
(nH , nW , nC) is the dimension of the input (image), nH is the
height (64 in our case), nW is the width (64 in our case), and nC
is the number of channels (4 in our case b is the bias value, and f
is a non-linear function.

2.6.1.2. Long Short TermMemory
Long short term memory (Hochreiter and Schmidhuber., 1997)
network models are a type of recurrent neural network that are
able to learn and remember over long sequences of input. They
are intended for use with data that has long sequences and are
a good fit for time-series problem. The model learns to extract
features from sequences of observations (CNN-derived features
our case) and how to map the internal features to different
conditions (sabotage/no-sabotage). The benefit of using LSTMs
for time-series sequence classification is that, since LSTMmodels
able to learn directly from the raw time-series data, they do not
require domain experts to manually engineer input features. The
model can learn an internal representation of the time series and
can achieve comparable performance to models fit on a dataset
with engineered features.

A vanilla LSTM (Greff et al., 2015) block has three gates (input,
forget, and output), block input, a single cell, an output activation
function, and peephole connections. The output of the block is
recurrently connected back to the block input and all of the gates.

The vector formulas for LSTM layer forward pass are given in
Greff et al. (2015). The equations for the LSTM are below:

it = σ (xtWxi + ht−1Whi + ct−1Wci+ bi) input gate (7)

ft = σ (xtWxf + ht−1Whf + ct−1Wcf + bf ) forget gate (8)

ot = σ (xtWxo + ht−1Who + ct−1Wco+ bo) output gate (9)

ct = ft ∗ct−1+ it ∗ tanh(x
tWxc+ht−1Whc+bc) cell state (10)

ht = ot ∗ tanh(ct) block output (11)

In the above equations, σ is the sigmoid activation function, xt is
the input to the LSTM block, it , ft , ot , ct , and ht are the input gate,
the forget gate, the output gate, the cell state, and the output of
the LSTM block, respectively, at the current time step t.Wxi,Wxf ,
and Wxo are the weights between the input layer and the input
gate, the forget gate, and the output gate, respectively. Whf , Whi,
andWho are the weights between the hidden recurrent layer and
the forget gate, the input gate, and the output gate of the memory
block, respectively. Wci, Wcf , and Wco are the weights between
the cell state and the input gate, the forget gate, and the output
gate, respectively, and finally, bi, bf , and bo are the additive biases
of the input gate, the forget gate, and the output gate, respectively.

2.6.1.3. Self-Attention
The self-attention (Vaswani et al., 2017; Singh et al., 2021)
mechanism allows the inputs to interact with each other and
find out who they should pay more attention to or which
features are more important. The attention layer aims to learn the
important time points from the sensor time-series data that aid in
determining the state label. After leveraging both local contextual
features and temporal dynamics by fusing CNN layer and LSTM
units from the input time series, we used self-attention layer to
learn weight coefficients that were the importance of each feature
in input data samples. The attention score, s, for a sample is then
given by:

as = softmax(Vatttanh(Uatth
′
t) (12)

s = ash
′
t (13)

In the above equations, Uatt ∈R
D×E and Vatt∈ R F×D are weight

matrices forming the attentionmodule, F represents the attention
length, D represents the length of the output, represents the
number of hidden units in the previous layer (LSTM in our
case), and h′t is the encoded input from LSTM. Equation 12 finds
the softmax of the compatibility (similarity) of the input, and
Equation 13 gives the combination of the transformed input.
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2.6.1.4. Architecture Used for MC-CNN-LSTM-Att
In our proposed model, the input took the form of 64×64
scalogram-like matrix from each of the four channels. The overall
shape of input was 64×64×4, where the last dimension denotes
the number of channels. This input was fed to a Conv2D layer
(Conv1D in case of raw time-series input) with 32(5×5) filters
followed by a maxpool layer of 2×2, and the output of this layer
was fed to another Conv2D layer (Conv1D in case of raw time-
series input) with 32(3x3) filters followed by a maxpool again. A
dropout layer was then applied to avoid overfitting. The output of
the dropout layer and then flattened. The flattened data were then
sent to two LSTM layers, after which self-attention was applied to
the encoded data from LSTM. The last layer was a dense/fully
connected (FC) layer. The output of FC was passed through
softmax layer to get the prediction, i.e., sabotage or no-sabotage.
Batch normalization was applied in training to normalize the
outputs of the layer. The CNN acted as a frontend to the CNN-
LSTMmodel. The CNNmodel could handle a single image input.
It converted it from input pixels into a vector representation. This
was carried out with the help of Flatten layer that transformed
the image input into a 1D vector representation. In our case
of sequential image data, this operation was repeated across
multiple images in order to allow the LSTM to build up internal
state and update weights across a sequence of the internal vector
representations of input images. Each scalogram in our case is
treated as a single spatial image input, and the temporal aspect is
taken care of by successive overlapping scalogram inputs.

Although CNN and LSTM effectively capture spatio-temporal
information, there is a need to target specific information from
the embeddings generated by the combination of CNN and
LSTM and bring them together since multiple components
can together form relevant semantics for decoding the activity
being performed. This has been done using the self-attention
mechanism that forms a 2D matrix to represent the embedding
of the input such that each row of the matrix caters to a different
part of the time-series. Along with CNN and LSTM, we show that
self-attention leads to a statistically significant results.

3. EVALUATION METRICS

The accuracy, precision, recall, and F1 score of the model were
used as evaluation metrics. The accuracy indicates the samples
that were correctly classified from all the samples.

Accuracy =
TP+TN

TP+TN+FP+FN
(14)

where TP = TN = true negatives, FP = false positives, and
FN = false negatives. A TP is an outcome where the model
correctly predicts the positive class. Similarly, a TN is an outcome
where the model correctly predicts the negative class. A FP is
an outcome where the model incorrectly predicts the positive
class. FN is an outcome where the model incorrectly predicts the
negative class.

Precision expresses the proportion of the data points our
model says was relevant actually were relevant.

Precision =
TP

TP+FP
(15)

Recall is the ability of the model to find all the data points of
interest in a dataset. It is also called sensitivity or true positive
rate (TPR).

Recall =
TP

TP+FN
(16)

The F1 score is the harmonic mean of precision and recall taking
both metrics into account in the following equation.

F1 Score = 2×
Precision x Recall

Precision + Recall
(17)

4. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we performed several
experiments, which mainly consisted of classification and
statistical analysis. In order to analyze the benefit of time-
frequency analysis on classification result, we applied our
proposed model both on data with time-frequency analysis (raw
data scalograms) and on raw time-series data without time-
frequency analysis. We discuss the classification results on both
types of data in this section, and then, we perform the statistical
analysis of the results. As previously mentioned, we divided the
data into overlapping windows of 64 data points with different
values of overlap, and in Figure 7 we show the results for both
types of dataset with different overlap for different window
sizes. We experimented with different window sizes (32, 64,
128, and 256) and different overlap values (no-overlap, 25, 50,
and 75%) for the both the types of data, i.e., with and without
time-frequency analysis. We got the best average accuracy for
a window of 64 with 50% overlap, so we went ahead with this
time-window for further experimentation. We divided the data
into training data and test data. The train and test splits were in
the ratio 70 and 30%, respectively. The divide into train and test
for intra-subject was done in a manner that for each of the task
with 80 sets of trials, 24 (6 sets from each of the 4 conditions)
sets of trials were kept of test and 56 set of trials were kept
for training purpose. The data were trained using five-fold cross
validation on the training data with 20 epochs for each fold, and
after each epoch, the model was cross-validated on the validation
data. The metrics in the results are reported on the test data. We
performed intra-subject classification on individual participant
data and inter-subject classification on the data from all the
participants. In case of inter-subject classification, we trained the
model by combining data from all participants except one and
used these data for testing. For the training of model, we used
12-fold leave-one-subject-out cross validation.

4.1. Classification Results on Raw Data
In our experiments, we first used the raw data from the
four sensors of Muse to train our DL model. Table 1 shows
the performance of our model on raw EEG data, i.e., data
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FIGURE 7 | (A) The average intra-subject accuracy for different timewindows and overlap values for scalogram data. (B) The average intra-subject accuracy for

different timewindows and overlap values for raw data.

TABLE 1 | Performance of the model on raw data.

Subject Accuracy Precision Recall F1-Score

Subject 1 92.05 0.934 0.909 0.919

Subject 2 94.05 0.921 0.941 0.931

Subject 3 88.12 0.914 0.791 0.848

Subject 4 85.56 0.923 0.779 0.853

Subject 5 94.43 0.961 0.923 0.939

Subject 6 91.36 0.924 0.908 0.915

Subject 7 91.66 0.952 0.871 0.909

Subject 8 87.83 0.879 0.866 0.872

Subject 9 88.78 0.897 0.882 0.893

Subject 10 80.76 0.729 1.0 0.843

Subject 11 86.67 0.872 0.859 0.865

Subject 12 85.85 0.808 0.989 0.889

Inter-subject
82.50

(± (3.06))

0.862

(± (0.026))

0.785

(± (0.044))

0.821

(± (0.031))

Average Intra-subject
88.92

(± (3.97))

0.893

(± (0.067))

0.896

(± (0.069))

0.889

(± (0.033))

without scalogram representation. The highest intra-subject
accuracy obtained with this data set was 94.43% (Subject 5),
and the minimum intra-subject accuracy was 85.56% (Subject
4). The average intra-subject accuracy was 88.92%, showing that
the model performed relatively well for all the subjects. The
inter-subject accuracy obtained was 82.50%. The inter-subject
classification was carried out to see the generalized performance
of the model.

4.2. Classification Results on Scalogram of
Raw Data
The DL model was applied on the scalogram representation
of the raw data from the four EEG channels. Compared to
using raw EEG data, accuracy was higher when scalogram data
were used (Table 2). We got the highest intra-subject accuracy

TABLE 2 | Performance of the model on scalograms of raw data.

Subject Accuracy Precision Recall F1-Score

Subject 1 96.80 0.975 0.961 0.968

Subject 2 98.71 1.0 0.975 0.987

Subject 3 93.23 0.959 0.870 0.912

Subject 4 89.10 0.967 0.848 0.903

Subject 5 96.01 0.977 0.942 0.959

Subject 6 93.57 0.949 0.925 0.936

Subject 7 93.15 0.971 0.884 0.925

Subject 8 92.94 0.915 0.935 0.925

Subject 9 93.89 0.949 0.933 0.941

Subject 10 95.27 0.915 0.980 0.946

Subject 11 90.23 0.899 0.902 0.901

Subject 12 93.10 0.895 0.992 0.9414

Inter-subject
86.15

(± (2.03))

0.904

(± (0.043))

0.819

(± (0.026))

0.859

(± (0.014))

Average Intra-subject
93.83

(± (2.64))

0.943

(± (0.034))

0.928

(± (0.045))

0.936

(± (0.027))

of 98.71% (Subject 2) and the lowest intra-subject accuracy of
89.10% (Subject 4). The average accuracy of all subjects was
93.83% that shows that the performance of the model improved
the average accuracy for all subjects. The inter-subject accuracy
also improved and became 86.15%. The results were relatively
very good using scalograms and the performance of the model
improved on the scalograms.

4.3. Statistical Significance of the
Classification Results
In Figure 8, we show the results of one-way ANOVA (for p <

0.05) with the null hypothesis for the test being that the two
means are equal. We see that the results were significantly better
for scalogram representation of data for both inter-subject and
intra-subject cases with p = 0.012 and p = 0.004, respectively.
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FIGURE 8 | Statistical analysis (ANOVA) of the accuracy achieved from the two approaches, using raw data and using scalogram of raw data, with the p-value for

both inter-subject and intra-subject classification.

Our proposed model is scalograms with self-attention based
multi-channel CNN-LSTM.

5. DISCUSSION AND FUTURE WORK

The primary aim of this study was to determine whether
intentionally performing poorly on a specific CMI assessment
task could be detected by analyzing EEG data collected
during the assessment. Using a multi-channel DL approach,
we found that analysis of EEG spectral data enabled us to
differentiate intentionally poor task performance from maximal
effort performance with 98.71% accuracy. The present results
revealed that the time-frequency representation as the input to
the model led to better results than the use of raw data. For
future work, we recommend applying different feature extraction
techniques on the data or using topographical maps as input to
the model to further improve classification accuracy. We could
also use transfer learning in future, where we train the larger
network on group-level data and then adjust just the final layers
with some additional small training data to customize for an
individual subject.

The visuomotor skill assessment used in this study has shown
promise in as an objective tool to determine whether a concussion
has been sustained and as whether full recovery has occurred.
Used as a baseline test, individuals at known risk of concussion
would complete this assessment when they are known to be
concussion-free and then again once an injury is suspected.
However, this protocol is only useful if both tests reflect the best
effort of an individual, and the threat of litigation or a desire to
resume or avoid certain activities prevents some individuals from
doing so, under performing on a pre-injury test to enable earlier

return to activity or under performing on a post-injury test to
delay a diagnosis of recovery. The combination of consumer-
grade neural activity collection and DL-based spectral analysis
used here provides a potentially important tool for clinicians to
use with skill assessment.

A strength of this analysis was that it used technology

consumer-grade EEG technology (MUSE 2
TM

EEG headband),
along with a tablet-based task to assess cognitive-motor
integration. The technology is portable and affordable; as
a result, this is a protocol that can be easily translated
to clinical patient care settings. With the advancement in
wearable computing, more portable EEG devices are available
and future studies replicating these findings with such devices
would be useful to further expand the utility of this form of
performance monitoring.

The present experiment shares similarities with literature
examining the use of neuroimaging techniques as lie detectors.
In this study, as in many lie-detection studies, the experimental
paradigm had participants performing with low effort to follow
instructions rather than with intent to deceive. In a clinical
concussion assessment situation, willfully underperforming
would be done deceptively, which could alter the cortical activity
associated with the task performance. Similarly, in this study, the
emotional context did not differ between when the participant
was attempting to perform well as compared to when they
were not. In real life, concussion testing is personally relevant
and highly emotional for the individual being tested, as it is
used to make decisions about whether athletes can return to
play or whether litigants receive compensation for their injuries.
Heightened emotional value of one condition may also affect
the neuroimaging results (Greely and Illes, 2007; Farah et al.,

Frontiers in Human Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 662875

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Chaudhary et al. Sabotage Detection Using DL

2014). However, the present experiment also differs from the
lie detection literature. The present experiment shows that
there are detectable differences in cortical excitability between
conditions when participants perform to their fullest ability on a
specific CMI task and when they do not. These two conditions
represent different levels of effort, arousal, and attention, but
the goal of the was to not to identify which neurocognitive
mechanism was most responsible for differences between the
conditions. Rather, the goal of this study was to determine
whether underperforming on purpose could be detected through
machine learning analysis of EEG data, as this has important
implications for assessment paradigms in sports medicine and
health-care.

We acknowledge that while similar eye-hand coordination
was required to successfully complete both experimental
conditions, it could be that subtle motor performance differences
may have also affected the EEG signals associated withmovement
control, in addition to the cognitive sabotage aspect to the
study. However, the features of the EEG signal that distinguished
true- from under-performance conditions were time-frequency
scalograms taken from frontal and temporal EEG electrodes
recorded for the entire task.Within the spatial sensitivity limits of
EEG, we suggest that distinctions quantified by the classifier were
less likely related to small changes in the sensorimotor movement
coordination networks, which are localized over the parietal
lobes, and more likely related to inhibition, behavioral control,
and task monitoring functions that are localized to frontal and
temporal/limbic regions. Thus, we believe this approach would
be useful for classifying effort-related behavior using frontally
and temporally generated signals over a wide range of motor
tasks. To confirm this assertion, future work will explore true
vs. sabotage performance as a function of performance to more
clearly distinguish motor aspects from cognitive effort aspects of
the task.

This proof-of-concept study showed that a portable EEG
headband, combined with a multi-channel CNN-LSTM model,
can be used on EEG data to detect sabotage at an average
approximately 93% of the time during the performance of a
cognitive-motor integration task. Expanding our data collection
to a larger sample size will allow for further refinement of the
model, as well as the development of a user interface and standard
operating procedure to translate this work into clinical practice.
Future work can validate the paradigm, establishing sensitivity
and specificity in larger groups of people and clinical populations,
including those with cognitive impairments or mental illnesses
(e.g., depression) and across groups with different individual
traits (e.g., extraversion or introversion) (Farah et al., 2014). For
example, in applying the present approach to baseline testing
performance in athletes, it will be important to validate these

findings in groups affected by concussion to distinguish sabotage

differences from injury-related differences. This validation would
be required before widespread use. In addition, validation
studies need to examine the effect of emotion and context, as
discussed above, to determine whether willfully underperforming
for personal gain changes the EEG profiles associated with the
task conditions. The history of lie detection holds lessons about
the potential harms of over-reliance on a method to detect
deception before the accuracy of that method was established
(Greely and Illes, 2007; Farah et al., 2014). Finally, privacy issues
must also be considered. Greely and Illes (2007) point out that
society “rightly places limits on the collection and use of personal
information,” and the benefit of collecting neurophysiological
data during a concussion assessment must be considered against
the privacy cost to the patient. Future work will also focus on
applying this sabotage detection process to a range of brain-
computer interfaces for real-time, in-situ deceit detection. Such
an application would increase the utility of both injury diagnosis
and recover assessment using behavioral performance measures.
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