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activity, was identified as the human pathogen Lis-
teria monocytogenes through 16S rRNA sequencing. 
Further exploration revealed that this organism was 
resistant to solvents ranging from log P − 0.81 to 4.0. 
Moreover, in the presence of these solvents, L. mono-
cytogenes secreted an extracellular, solvent tolerant, 
lipase activity. This lipase retained approximately 
80% activity when incubated in 30% (v/v) methanol 
for 24 h.
Conclusion These findings identify L. monocy-
togenes as a potentially useful organism for biotech-
nological applications. However, the fact that Listeria 
is a pathogen is problematic and it will require the 
use of non-pathogenic or attenuated Listeria strains 
for practical applications. Nonetheless, the ability to 
adapt to rapidly changing environmental conditions, 
to grow at low temperatures, to resist solvents and 
to secrete an extracellular solvent tolerant lipase are 
unique and highly useful characteristics. The poten-
tial application of L. monocytogenes in wastewater 
bioremediation and plastics degradation is discussed.

Keywords Extracellular lipase · Listeria 
monocytogenes · Polyester degradation · Solvent 
tolerant · Wastewater

Abstract 
Purpose The emerging biobased economy will 
require robust, adaptable, organisms for the produc-
tion and processing of biomaterials as well as for 
bioremediation. Recently, the search for solvent toler-
ant organisms and solvent tolerant enzymes has inten-
sified. Resilient organisms secreting solvent stable 
lipases are of particular interest for biotechnological 
applications.
Methods Screening of soil samples for lipase-pro-
ducing organisms was carried out on Rhodamine 
B plates. The most productive lipase-producing 
organisms were further screened for their resist-
ance to solvents commonly used in biotechnological 
applications.
Results In the course of screening, one of the iso-
lated organisms that exhibited extracellular lipase 
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Introduction

The shift away from a petroleum-based raw materi-
als economy to a biobased economy will require 
systems innovations. It is likely that robust, solvent 
tolerant, organisms will be central components of 
emerging technologies for the sustainable produc-
tion and processing of biomaterials (Mohedano et al. 
2022; Schalck et  al. 2021; Kusumawardhani et  al. 
2018). Currently, significant effort is being expended 
to either identify new solvent tolerant organisms or to 
engineer existing organisms for specific solvent envi-
ronments (Mohedano et  al. 2022; Tian et  al. 2022; 
Kyoungseon et al. 2021; Schalck et al. 2021; Srivas-
tava et al. 2021; Wang et al. 2021; de Carvalho et al. 
2019; Wynands et  al. 2019). Extensive engineering 
of Pseudomonads, for example, has yielded a solvent 
stable iso-butanol (biofuel) producing strain and a 
strain capable of converting cyclohexane to 6-hydrox-
yhexanoic acid, a polycaprolactone monomer (Anken-
bauer et al. 2021; Bretschneider et al. 2021). Another 
area that requires robust solvent tolerant organisms is 
the processing of wastewater; specifically, there is a 
need for organisms that produce extracellular lipases 
to degrade wastewater lipids (Aktar et al. 2021; Pri-
yanka et al. 2019a, 2019b).

Concurrently, there is significant interest in the 
application of solvent stable lipases, and closely-
related cutinases, in a variety of areas (Ismail et  al. 
2021; Priyanka et al. 2019a, 2019b) including; plas-
tics breakdown in the environment, ester synthesis 
and biodiesel production (Singh et al. 2019; Imanpar-
ast et al. 2018; Malekabadi et al. 2018). Lipases have 
also been applied to the treatment of lipid-rich waste-
waters to alleviate environmental problems associated 
with high lipid loads (Nimkande and Bafana 2022; 
Patel et  al. 2020; Boran et  al. 2019). Thus, fats, oil 
and grease (FOG), as triglycerides, are discharged 
in wastewater from food industries, oil refineries, 
meat processing plants, cosmetics and pharmaceuti-
cals industries. Dairy wastewater, for example, con-
tains 8,288 mg/L of FOG. The FOG content of oil 
refineries, food packaging and domestic wastewater 
ranges between 110–264,150; 100–1,000 and 50–100 
mg/L respectively. Untreated lipids from these indus-
tries form an oily layer on water preventing oxygen 
and sunlight penetration thereby harming aquatic 

ecosystems. These lipids can also accumulate to 
block sewer lines and hinder treatment processes (see 
Nimkande and Bafana (2022) for review).

Identifying sources of appropriate lipases is an 
ongoing area of research and even pathogenic bac-
teria such as Listeria monocytogenes are now being 
re-examined for their application potential sup-
ported by enhanced sequence and metagenomic 
approaches.  Listeria monocytogenes is a Gram-pos-
itive foodborne pathogen that causes listeriosis in 
humans. It is an unusually robust and highly adaptable 
organism with the ability to grow over a wide range 
of temperatures, from 4 °C to 45 °C, and to thrive in 
a wide variety of ecological niches (Lopes-Luz et al. 
2021, Ingeborg et  al. 2011). The ability to adapt to 
changing temperatures is largely due to its capacity 
to rapidly alter membrane composition in response to 
stressors (Najjar et  al. 2007). The response to stress 
is mainly controlled by the alternative sigma factor 
SigB (σB), which influences environmental survival 
within the gastrointestinal tract and virulence (Dorey 
et al. 2019; Guerreiro et al. 2020). L. monocytogenes 
is known to secrete lipolytic enzymes to break down 
host cell membranes during cell invasion (Smith et al. 
1995).

Ongoing studies in this laboratory have sought to 
identify solvent tolerant enzymes for biotechnologi-
cal applications (Priyanka et al. 2019a, 2019b, 2020). 
While screening for solvent tolerant lipase-produc-
ing organisms from soil samples it was observed 
that Listeria monocytogenes, enriched from soil and 
confirmed by 16S rRNA sequencing, was stable in 
the presence of common solvents. In this report we 
suggest that it is the unique robustness of Listeria 
that allows it to grow over a wide range of tempera-
ture and pH values, combined with its solvent toler-
ance, that makes it of interest for biotechnological 
applications.

Materials and methods

Chemicals and materials

All chemicals were analytical grade and were pur-
chased from Sigma-Aldrich.
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Enzyme assays

Plate assay

Rhodamine B agar plates were used for the detec-
tion of lipolytic activity from microbial strains. Rho-
damine B agar plates (20 ml volume) were prepared 
using the method described by Kouker and Jaeger 
1987).

Spectrophotometric assay

p-NPP (para--Nitrophenol Palmitate) was used as the 
substrate for the estimation of lipase activity as per 
Glogauer et  al., (2011). Lipase activity was meas-
ured after 30 mins of incubation at 28°C.  Liberated 
para--Nitrophenol was monitored by its absorb-
ance at 410nm. Briefly, a 20 mM stock solution 
of p-NPP (Stock A) was prepared in a 1:4 ratio of 
Acetonitrile:Isopropanol. Stock B, containing Tris-
HCl,  CaCl2 and Triton X-100 at pH 7.5, was used to 
prepare the substrate for the lipase assay. The sub-
strate was prepared directly before the assay by the 
addition of Stock A to a preheated (60 °C) Stock B, 
under continuous stirring. Then, 0.54 mL of Stock A 
was added to 9.46 mL of stock B to achieve a final 
concentration of components as follows: 50 mM Tris-
HCl, pH 7.5, 1 mM  CaCl2, 0.30% (v/v) Triton X-100, 
1 mM p-NPP. To initiate the reaction, 230 µL of assay 
substrate was added to 20 µL of lipase sample, in trip-
licate, in a sterile flat bottom U-shaped 96-well plate. 
The mixture was incubated at 28 °C for 30 min. After 
incubation, the absorbance was measured at 410 nm 
using a Powerwave Microplate spectrophotometer.

Isolation and identification of solvent tolerant lipase 
producing strains

Sample enrichment and culture

Soil samples, collected from various locations in 
the Wicklow mountains in Ireland, were cultured in 
enrichment media (Priyanka et al. 2019) for 72 h at 
28 °C, 200 rpm. The supernatants of the enriched 
samples were serially diluted  (10−1 to  10−11) with 
autoclaved double distilled water. 100 μl of each 
diluted sample was spread on Rhodamine B plates 

and incubated at 28°C for 48 h. Individual lipase 
producing colonies were aseptically picked from 
the Rhodamine B plates and were sub-cultured 10 
times on LB agar plates at 28 °C until pure colo-
nies were isolated. The pure colonies were grown 
in LB media overnight at 28 °C, 200 rpm and were 
re-screened for the presence of lipase by streaking 
on Rhodamine B plates and statically incubating 
the plates at 28 °C overnight (16 h). The stability of 
lipase producing cultures in different solvents was 
determined by a “Plate overlay method” (see 2.3.2) 
using various solvents ranging from log P < 0.2 to 
log P > 2.

Plate overlay method

The method described by Patel et  al., (2014) was 
used. Briefly, pure cultures of lipase producing strains 
were grown overnight (16 h) at 28 °C, 200 rpm. 20µL 
of this culture was spot inoculated onto an LB agar 
plate and allowed to dry in a sterile laminar flow 
hood for 30 min. The plates were then overlaid with 
10 ml organic solvent and incubated at 28 °C for 6 h. 
Excess solvents were then removed with sterile tips 
and the plates incubated overnight at 28 °C to observe 
any growth in the spotted cultures. The ability of the 
cultures to grow and produce lipase following solvent 
exposure was observed.

Isolate identification

Lipolytic strains stable in multiple solvents were 16S 
rRNA sequenced (Eurofins, Germany).

Lipase production

Fermentation methods

1–15% (v/v) of an overnight grown culture in LB 
media  (pH 7.5) was added to basal lipase produc-
tion media containing 50  g/L bacteriological  pep-
tone, 2 g/L sodium chloride, 0.4 g/L magnesium sul-
fate, 0.5 g/L ammonium sulfate, 0.3 g/L dipotassium 
hydrogen phosphate, 0.03  g/L potassium hydrogen 
phosphate and 10 g/L olive oil at pH 7.0 ± 0.2. After 
every 24 h of fermentation, the cell free supernatant 
was analysed for lipolytic activity by the spectropho-
tometric assay (see“Spectrophotometric assay”).



1142 Biotechnol Lett (2022) 44:1139–1147

1 3
Vol:. (1234567890)

Results

Biodiscovery of lipase-producing solvent tolerant 
organisms

Soil samples were screened for extracellular lipase 
production in a medium containing triglyceride 
and Rhodamine B (see Supplemental Table 1 for a 
list of sampling sites and coding of samples). This 
method relies on hydrolysis of lipids to release 
fatty acids which react with the Rhodamine B dye 
to form fluorescent complexes. Figure 1a shows an 
example of initial screening of a soil sample on a 

Rhodamine B plate with lipase-producing colonies 
forming fluorescent halos around the colonies. The 
size of the fluorescent halo is proportional to lipase 
activity. Figure 1b shows an example of the growth 
of some of these organisms in the presence of neat 
n-hexane.

At the outset, 36 organisms that displayed extra-
cellular lipase activity were identified on Rhoda-
mine B plates. Single colonies were prepared and 
cultured to an OD of 0.6 and a 20 µl sample of each 
was inoculated onto a Rhodamine B plate. Of these, 
25 showed evidence of sufficient lipase production 
(a fluorescent halo of greater than 1 cm diameter was 
arbitrarily chosen as a cut-off point) to justify further 
exploration (see Supplemental Table 2). All 25 were 
examined for growth in the presence of solvents (see 
Table 1). The log P is a measure of the hydrophobic-
ity of a solvent. A solvent with a  low log P will have 
greater water solubility. Log P determines a solvent’s 
toxicity towards a microbe and solvents with lower 
log P will generally have a greater detrimental effect 
(Segura et al. 2012). These are solvents such as etha-
nol, methanol and isopropanol. Thus, these were used 
at levels of 20% (v/v) in this study since higher levels 
significantly inhibited growth. Table  1 shows that 8 
cultures (A1, A2, I3 A3, D1, D5, H1 and H3) were 
stable in a broad range of solvents. In a preliminary 
test, the cultures A1, A2 and I3 showed the lowest 
activity in 30% (v/v) methanol (data not shown) and 
were not explored further.

Five cultures (A3, D1, D5, H1 and H3) showed 
growth in the broadest range of solvents were selected 
for further characterisation. In this study, an incuba-
tion time of 6 h in the respective solvent was consid-
ered sufficient to challenge the microbial colonies. 

(a) (b)

D5

Fig. 1  Screen for solvent tolerant organisms secreting extra-
cellular lipase activity: a Example of initial screening of soil 
samples for lipase producing organisms. UV illuminated 
olive oil-Rhodamine B agar plate with serially diluted  (10–6) 
enriched soil media. Orange-pink fluorescence emitting colo-
nies that confirm the production of lipase activity by these 
strains appeared after 2  days of incubation at 28  °C. Plates 
were prepared as described in Methods (see “Plate assay”). b 
Example of growth of strains in the presence of solvent (n-hex-
ane in this case) using a plate overlay method (see “Plate over-
lay method” for the method). The organism annotated as D5 
was subsequently identified as L. monocytogenes. The other 
organisms shown on this plate were not further characterized

Table 1  Test for growth of lipase producing organisms in selected solvents categorized by hydrophobicity (log P)

The coding refers to the sites from which the organisms were sourced (see Supplemental Table 1)

Solvent nature Solvent Log P % (v/v) Organisms showing growth in solvent

Non-polar/ Hydrophobic Ethyl acetate 0.68 100 –
Toluene 2.5 100 –
Cyclohexane 3.2 100 A1, A2, A3, D1, D5, H1, H3, I3
n-Hexane 3.5 100 A1, A2, A3, C3, D1, D2, D3, D4, D5, E2, E3, F2, H1, H3, I3
Heptane 4.0 100 A1, A2, A3, C3, D1, D2, D3, D4, D5, E2, E3, F2, H1, H3, I3
Isopropanol 0.54 50 –

Polar/ hydrophilic Ethanol − 0.18 20 A1, A2, A3, A4, B1, B2, C3, D1, D2, D3, D4, D5, F2, F3, G1, H1, H3, I3
Methanol − 0.81 20 A1, A2, A3, A4, B1, B2, C3, D1, D2, D3, D4, D5, F2, F3, G1, H1, H3, I3
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This aligned with previous research where 6 h of sol-
vent treatment was sufficient to identify solvent sta-
bility in Pseudomonas aeruginosa in the presence of 
n-hexane, n-heptane, styrene, xylene isomers and eth-
ylbenzene (Lazaroaie, 2009).

16S rRNA sequencing of cultures

Five solvent stable, lipase-producing cultures (A3, 
D1, D5, H1 and H3) which demonstrated growth in 
the presence of a number of solvents were examined 
by 16S rRNA sequencing using a commercial service 
(Eurofins, Germany). The sequences (see Supplemen-
tal data) were compared to those in NCBI database by 
nBLAST. The sequencing data revealed A3 as a Pseu-
domonas sp. BIM B-86, D1 as a Sphingomonas sp., 
D5 as Listeria monocytogenes, H1 as Pseudomonas 
reinekei and H3 as Pseudomonas brenneri. Studies 
of the solvent stable enzymes from P. brenneri and 
P. reinekei have previously been reported (Priyanka 
et  al. 2019a, b, 2020). The finding that L. monocy-
togenes was among the solvent tolerant organisms 
identified by the screening process was somewhat 
surprising since no reference to this property of Lis-
teria was found in the literature.

Solvent stable lipase activity

The five promising isolates that were identified were 
further examined for extracellular lipase solvent 
stability. The cell free supernatants of these five, 

(a) (b)

Fig. 2  Solvent stability of secreted extracellular lipase activ-
ity. UV-illuminated Rhodamine B agar plates a cell free 
supernatant of cultures (A3, D1, D5, H1 and H3) treated with 
n-hexane by plate overlay method; b typical screen of cell free 
supernatants of a H3 culture treated with 50% (v/v) of vari-
ous organic solvents for 24h at 28°C. The presence of fluores-
cence in a and b indicates the stability of crude lipases towards 
n-hexane, n-heptane and cyclohexane. The coding for these 
samples is shown in Supplemental Table 1

Fig. 3  The relative activity of extracellular lipase activity 
when treated with 20% (v/v) and 30% (v/v) methanol for 24 h 
at 28  °C and 40  °C. a Shows relative activity after incuba-
tion at 28 °C in 20% (v/v) and 30% (v/v) methanol while (b) 
shows 30% (v/v) methanol at 40  °C for 24  h. All activities 
were expressed as a percentage of the activity in the absence 
of methanol. A sample of 30  mg/mL of porcine pancreas 
lipase (Aldrich) was used as a standard for comparative pur-
poses (denoted STND in the graph). The assay was performed 

in triplicate using p-NPP as substrate and relative activity was 
calculated by comparing the activity of lipase in 20% (v/v) 
and 30% (v/v) methanol at different temperatures to a sample 
with no methanol at 28  °C or 40  °C. Data represented here 
are the mean of three independent experiments with error 
bars indicating standard deviation. (****, ***, **, * repre-
sents significance changes in activity where ****p < 0.0001; 
***p = 0.0001–0.001; **p = 0.001–0.01, *p = 0.01–0.05 by 
t-test)
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containing the secreted lipase activity, were tested 
against a range of solvents ranging from log P < 0.2 
to log P > 2 by the plate overlay method (see Table 1). 
Figure 2a shows that the extracellular lipase activities 
produced by these strains are n-hexane tolerant. Fig-
ure 2b shows a typical screening for solvent resistant 
lipase activity using Rhodamine B plates.

In addition to the plate overlay data, it was neces-
sary to directly quantify the effects of each solvent on 
enzyme activity. Figure  3a shows treatment of cell 
free supernatants with methanol. In this experiment 
the crude lipase extracts were treated with either 20% 
(v/v) or 30% (v/v) methanol for 24 h at 28 °C. Metha-
nol was chosen since it is one of the solvents that 
showed greatest ability to inhibit cell growth.

It was clear that, while not quite as robust as the 
other strains tested, the L. monocytogenes (D5) extra-
cellular lipase showed good stability in the presence 
of methanol retaining approximately 80% of its activ-
ity after incubation in 30% (v/v) methanol for 24 h. 
A lipase standard, the lipase from porcine pancreas, 
was used as a comparator and showed much greater 
sensitivity to methanol than the lipases identified by 
the screening methods employed. Additionally, the L. 
monocytogenes enzyme displayed good resistance to 
an increase in temperature (see Fig. 3b).  

Discussion

In these studies, our objective was to identify sol-
vent tolerant organisms secreting solvent stable 
lipases. The initial screen of soil samples identi-
fied a number of interesting isolates, among them 
the human pathogen L. monocytogenes. The fact 
that this organism was solvent tolerant has not 
been reported previously and is, potentially, a 
highly important characteristic. Solvent tolerant 
organisms are useful for production of biomateri-
als (Mohedano et  al. 2022; Kusumawardhani et  al. 
2018). The ability to survive solvent exposure can 
be especially useful for two-phase fermentation sys-
tems (Heipieper et  al. 2007) and biofuels produc-
tion (Nicolaou et al. 2010). Moreover, such solvent 
tolerance has a range of potential applications in 
bioremediation (e.g. Gao et al. 2020).

Somewhat surprisingly, Listeria was not tolerant 
to toluene (Log P = 2.5). Some Pseudomonads, for 
example, show very high resistance to toluene being 

able to tolerate saturating levels (Molina‐Santiago 
et  al. 2017). Listeria also showed no tolerance to 
the ester ethyl acetate: it is possible that the excreted 
lipase (which is essentially an esterase) is inhibited by 
ethyl acetate and that this inhibition served to curtail 
Listeria growth. This toluene and ethyl acetate sensi-
tivity indicates that Listeria may not be suitable for 
some biobased applications, such as biofuels pro-
duction. In common with many bacteria, L. monocy-
togenes was also not stable in greater than 30% (v/v) 
methanol or similar solvents with a low log P. Despite 
these limitations, this organism could be useful for 
applications where a robust extracellular lipase was 
required, such as in the breakdown of environmental 
polyester plastics and lipid breakdown in wastewater 
streams (Aktar et al. 2021; Tan et al. 2021).

Examination of the cell free supernatant of L. 
monocytogenes cultures showed that its extracellular 
lipase activity was also quite stable to solvent expo-
sure and a significant increase in temperature did not 
reduce its solvent tolerance. This finding has not been 
previously reported and may be an important factor 
in the survival of the organism. This lipase activity 
is, itself, of potential biotechnological interest and 
could be cloned and directly used in applications such 
as polyester degradation, environmental lipid break-
down or biocatalysis (Priyanka et al. 2019a, 2019b).

It is of some interest that the growth of Listeria is 
well known to be inhibited by certain esters, such as 
monoacylglycerols, quercetin esters and 4-hydroxy-
phenylacetic acid, all of which are potentially lipase 
inhibiting compounds (Wang et al. 1993; Gatto et al. 
2002; Shi et  al. 2021). It is tempting, therefore, to 
suggest that its extracellular lipolytic activity may be 
growth regulating. Thus, the extracellular lipase of 
this organism may be useful as a target to inhibit Lis-
teria growth.

While solvent tolerance of Listeria has not, to the 
best of our knowledge, been specifically described 
previously, its robustness and ability to withstand 
cleaning agents is known, therefore, this solvent toler-
ance is not entirely surprising (Wiktorczyk-Kapischke 
et  al. 2021). However, the fact that its extracellu-
lar lipase is solvent stable has not been previously 
reported.

The exact identity of the lipase(s) secreted in the 
presence of solvents is not known with certainty 
although the secretion of lipases by this organism is 
well-known (Mohedano et al. 2022; Kusumawardhani 
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et  al. 2018). Two extracellular lipase activities have 
been described for L. monocytogenes and one of these 
is a broad range phospholipase C (Smith et al. 1995)
that is essential for cell to cell spread of the pathogen. 

Finally, the fact that Listeria can withstand a sol-
vent treatment step during its isolation from soils may 
be useful. Thus, in environments where Listeria isola-
tion is challenging due to its presence at low amounts 
among other bacteria, it may be helpful to be able to 
use a solvent step to selectively enrich for Listeria 
species.

While further studies are clearly needed, this 
work indicates that this organism may potentially 
find application in wastewater treatment, where lipid 
accumulation causes severe problems for waste deg-
radation (Aktar et al. 2021). The ability of Listeria to 
grow at low temperatures and low pH in the presence 
of high amounts of salt is particularly advantageous 
in this regard. Another potential area of application is 
in the area of plastic degradation in soils where low 
temperature growth is a significant hindrance to other 
organisms (Zhang et  al. 2022). However, since the 
cultivation of a pathogen for biotechnological pur-
poses is problematic, it will be necessary to explore 
the use of non-pathogenic strains (Mohedano et  al. 
2022) or to alter strain pathogenicity by ablation of 
virulence genes (Shi et al. 2021).

For many organisms, the requirement to operate 
in real world conditions where temperature control 
is not available is a significant challenge. The adapt-
ability of Listeria would appear to offer significant 
advantages for such application areas. There are 
looming environmental problems in the treatment of 
wastewater with high lipid loads and in environmen-
tal polyester degradation (even for so-called biode-
gradable plastics). The adaptability of Listeria would 
appear to offer significant advantages for such appli-
cation areas. The findings reported herein may stimu-
late further exploration of this organism for sustain-
able, biotechnological applications.
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