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Air quality prediction models 
based on meteorological factors 
and real‑time data of industrial 
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With the rapid economic growth, air quality continues to decline. High-intensity pollution emissions 
and unfavorable weather conditions are the key factors for the formation and development of air 
heavy pollution processes. Given that research into air quality prediction generally ignore pollutant 
emission information, in this paper, the random forest supervised learning algorithm is used to 
construct an air quality prediction model for Zhangdian District with industrial waste gas daily 
emissions and meteorological factors as variables. The training data include the air quality index 
(AQI) values, meteorological factors and industrial waste gas daily emission of Zhangdian District 
from 1st January 2017 to 30th November 2019. The data from 1st to 31th December 2019 is used 
as the test set to assess the model. The performance of the model is analysed and compared with 
the backpropagation (BP) neural network, decision tree, and least squares support vector machine 
(LSSVM) function, which has better overall prediction performance with an RMSE of 22.91 and an 
MAE of 15.80. Based on meteorological forecasts and expected air quality, a daily emission limit for 
industrial waste gas can be obtained using model inversion. From 1st to 31th December 2019, if the 
industrial waste gas daily emission in this area were decreased from 6048.5 million cubic meters of 
waste gas to 5687.5 million cubic meters, and the daily air quality would be maintained at a good 
level. This paper deeply explores the dynamic relationship between waste gas daily emissions of 
industrial enterprises, meteorological factors, and air quality. The meteorological conditions are 
fully utilized to dynamically adjust the exhaust gas emissions of key polluting enterprises. It not only 
ensures that the regional air quality is in good condition, but also promotes the in-depth optimization 
of the procedures of regional industrial enterprises, and reduces the conflict between environmental 
protection and economic development.

Air quality is a critical issue related to people’s health and livelihoods, and one of the obstacles to regional 
economic development and social progress. In addition to air quality monitoring and management, air qual-
ity forecasting during periods of polluted weather has also become a focus of environmental management. 
Especially during major events and heavy pollution emergencies, timely and accurate air quality prediction and 
pollution source analysis can provide a decision-making basis for management departments. If the exhaust gas 
emissions of enterprises can be determined according to the requirements of regional ambient air indicators and 
meteorological conditions, and then it could guide enterprises to adjust production processes accordingly. Air 
pollution caused by unfavorable meteorological factors can be effectively avoided, and enterprises can expand 
the production of heavy pollution processes when the weather conditions are favorable. Based on air quality 
prediction and pollution source analysis, it is of great practical significance to make full use of meteorological 
conditions to coordinate the relationship between air quality and regional development.

Some scholars at home and abroad have conducted qualitative analysis research on factors affecting air quality 
from the perspective of the environment, society, and economic activity, considering various factors such as waste 
incineration, vehicle exhaust emissions, population growth, coal combustion, industrial waste gas discharge and 
industrial flue gas dust. These studies confirmed that air pollution results from environmental degradation that 
has been majorly generated from urban population growth, industrial activities, and road fleet1. Industrial waste 

OPEN

1Departments of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610000, 
China. 2IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Corporation 
Limited, Chengdu 610000, China. *email: 642823770@qq.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-13579-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9253  | https://doi.org/10.1038/s41598-022-13579-2

www.nature.com/scientificreports/

gas discharge is the main cause of air pollution in developing countries2. Thermal power plants and manufactur-
ing industries are the largest sources of urban air pollution3,4. Other studies have selected meteorological factors 
such as average temperature, relative humidity, visibility, wind force scale, sun exposure, and wind direction to 
research the correlation between these meteorological factors and air quality. Research results indicated that 
average temperature, relative humidity, visibility, and wind force scale are the principal factors that affect air 
quality5. The variation in pollutant emissions affects an area within a hundred-kilometers radius from the source, 
depending also on local meteorological and geomorphological conditions6.

There is also quantitative analysis of air quality based on pollutant transport, and diffusion processes. Cur-
rently, there are two main types of air quality prediction model: mechanism models and non-mechanism models. 
Mechanism models involve complex physical and chemical processes, which all possess great uncertainty. They 
require the establishment of a relatively complete emission source inventory, accurate meteorology fields, and 
related models of physical and chemical processes, such as pollutant transport and diffusion. Non-mechanism 
models, represented by statistical models and machine learning models, do not require complex pollutant bound-
ary fields or meteorological boundary fields, nor do they need the investigation of complex mechanism processes 
generated by the results. This approach can determine the trend of pollution at a certain stage only by the extrac-
tion of data characteristics. Compared with mechanism models, non-mechanism models are more convenient 
and practical. The most commonly applied classical statistical methods mainly include linear and nonlinear 
models7, multiple regression equation8, time series9, etc. Some conventional machine learning methods that are 
widely used include support vector machines10, decision trees11, Bayesian networks12, artificial neural networks13, 
backpropagation (BP) neural networks14, etc. With the continuous development of artificial intelligence, deep 
machine learning models has been successfully implemented to forecast air quality using time series air pollutant 
and meteorological datasets with excellent performances15.

Some scholars also look forward to the research on air quality prediction, pointing out that the existing 
research on the impact of industrial waste gas emissions on air quality is qualitative analysis, and the air qual-
ity prediction research ignores the emission information of pollution sources1–3. Some extensive studies can be 
further conducted to gasses emission estimating and its impact on the surrounding environments16. Urban air 
pollution mainly comes from industry, transportation and daily life. Industrial waste gas discharge are the larg-
est sources of urban air pollution17. Traffic and household emissions are relatively stable and can be regarded as 
constant, with little impact on fluctuations in air quality. From the daily emissions data of industrial waste gas 
in Zhangdian District in 2018, it can be seen that the daily emissions of industrial waste gas fluctuate greatly 
(Fig. 1). Air quality prediction results will inevitably be inaccurate if pollutant variable emissions are not taken 
into account. Individual studies use source emission inventories, which treated industrial pollutant emissions 
as constant18,19. The emission inventory of pollution sources is compiled based on the base year. According to 
the technical guidelines for the compilation of air pollutant emission inventory of various industries, it is mainly 
calculated by the emission coefficient method. The estimation is difficult to be accurate, and generally lags by 
2–3 years. The data is constant and cannot be updated dynamically, and cannot reflect the impact of real-time 
changes in emissions from pollution sources.

Because the existing air quality prediction research ignores the real-time emission effect of industrial pollut-
ants in the model establishment, and cannot establish a quantitative correlation between air quality and indus-
trial pollution sources, it cannot expand the application value of air quality prediction. This study uses machine 

Figure 1.   AQI and industrial waste gas emission statistics in Zhangdian District.
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learning algorithms to an air quality forecast model by considering real-time industrial waste gas emissions and 
meteorological factors as variables. The current weather forecast time frame (15 days) is considered a period. Dur-
ing this period, according to the weather forecast, the daily emission limit of industrial pollution is determined 
by model inversion. By increasing or reducing the output of polluting processes or sections within the enterprise 
and balancing the intensity of pollution emissions, it not only ensures that the regional air environment quality 
remains good, but also meets the company’s supporting production requirements. It not only ensures that the 
environmental quality meets the standard, but also meets the normal operation of the enterprise. Regarding the 
selection of model algorithms, the random forest algorithm has several advantages compared with other machine 
learning algorithms. Firstly, the random forest algorithm can evaluate the importance of input variables and accu-
rately predict output variables20 Besides, it has good anti-noise ability and does not easily fall into the problem of 
overfitting21. Finally, the random forest algorithm is suitable for modelling high-dimensional data and has strong 
adaptability to data sets22. However, a key problem with the random forest algorithm is that parameters cannot 
be accurately optimised. In this paper, we use the “RandomizedSearchCV” and “GridSearchCV” functions to 
solve this issue and realise the precise optimisation of parameters. Next, the BP neural network, decision tree, and 
least squares support vector machine (LSSVM) are used to compare their model performance with the random 
forest algorithm. To eliminate long-term cumulative systematic errors caused by factors such as inter-annual 
fluctuations in the number of motor vehicles, a multi-step sliding window method (using the first 365 days of 
data to predict the next day’s AQI) was adopted for the training set. By continuously incorporating measured 
data of air quality, meteorological conditions and industrial exhaust emissions into the training set and updating 
the training set in real time, the impact of long-term changes in traffic emissions on air quality can be reflected.

Study area and data
Zhangdian District is located in the middle of Zibo City, Shandong Province. It is located in the junction of the 
Shandong Zhongshan Mountains and the North Shandong Plain. It belongs to the warm temperate monsoon 
type semi-dry and semi-humid continental climate. Zibo City is one of the five traditional architectural ceramics 
production areas in China, and its architectural ceramics enterprises are mainly located in Zhangdian District. 
Zhangdian District has a total of 60 key industrial enterprises above designated size, including 41 non-metallic 
mineral products (37 building ceramics enterprises and 4 cement production enterprises), 12 chemical products 
manufacturing enterprises, 3 non-ferrous metal smelting and processing enterprises, and 4 other enterprises. 
For reference, a relief of the research area is shown in Fig. 2.

The input variables are meteorological factors and daily emissions of industrial waste gases, while the output 
variable is the AQI (Air Quality Index). According to the “Ambient Air Quality Index (AQI) Technical Regula-
tions (Trial)” (HJ 633-2012), the air quality index is divided into 0–50, 51–100, 101–150, 151–200, 201–300 
and greater than 300 the six levels, corresponding to the six levels of air quality (excellent, good, light pollution, 
moderate pollution, heavy pollution and serious pollution). Data sources are shown in Table 1. Measured data 
of the AQI and the daily emissions of industrial waste gases of major polluters were obtained from Zhangdian 
District Bureau of Ecology and Environment. Meteorological factors (precipitation, air temperature, relative 
humidity, wind scale, air pressure, total sunshine intensity and precipitation) were taken from the WheatA-Big 
Data on Agricultural Meteorology.

Methods
Establishment of the random forest model.  The random forest algorithm is a classification and regres-
sion algorithm that integrates multiple decision trees through ensemble learning23. First, the random forest 
algorithm uses the decision tree as the basic random forest classifier. Then, the second random forest classifier 
bagging method is used to generate the training data set and a random subspace is used to establish the classi-
fication of each strategic decision tree. The third random forest classifier randomly selects some attributes, then 
divides and combines the optimal attributes of each tree. The introduction of double randomisation makes it 
difficult for the random forest to fall into overfitting. Besides, there is diversity among classifiers, so the random 
forest has superior classification and regression performance24.

The AQI prediction model is obtained by fitting training samples. The random forest modelling process is 
as follows:

(1)	 Define the AQI prediction training set, Xi → Yi , (i = 298) . Here, Yi is the real value in the random for-
est prediction model, which is mapped to the measured AQI value of the ith sample in the data. Besides, 
Xi represents meteorological factors and industrial waste gas emissions of the ith sample in the data. The 
established feature vector, {Ii1, Ii2, . . . Iin} → Xi represents the ith sample to the nth impact factor.

(2)	 Based on the training set, establish a single regression decision tree. Through the eigenvector X and its cor-
responding real value Y in the training sample, search for the splitting variables and splitting values. The 
regression decision tree divides the whole vector space into M partitions {R1, R2, . . .Rm} . Any partition 
can be mapped to model Cm, and the vector can be divided into two parts by the value of a feature. The 
expression is:

	   In the above equations, j represents an impact factor and s signifies the value when splitting. The objec-
tive function of the vector space split variable and split value search is:

(1)R1
(
j, s

)
=

{(
I|Ij ≤ s

)}
,

(2)R2
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)
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Figure 2.   Relief amplitude of research area. The map was generated with ArcGIS10.2 (https://​www.​esri.​com/​en-​
us/​arcgis/​produ​cts/​devel​op-​with-​arcgis/​overv​iew).

Table 1.   Data sources.

Data Data source

AQI Zhangdian District Bureau of Ecology and Environment

Meteorological factors WheatA—Big Data on Agricultural Meteorology

Daily emissions of industrial waste gas Environmental Statistics Yearbook of Zhangdian District

https://www.esri.com/en-us/arcgis/products/develop-with-arcgis/overview
https://www.esri.com/en-us/arcgis/products/develop-with-arcgis/overview
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	   Here, z is the minimum variance of the measured AQI value, yi represents the measured value of AQI in 
the ith sample, xi is the eigenvector of the ith sample, while c1 and c2 denote the mean value of the measured 
AQI values in the first and second parts.

(3)	 Construct a complete random forest model on the basis of a single decision tree, where the generated model 
is a multiple nonlinear regression analysis model. The predicted value of the AQI is the average value of all 
the predicted values of the decision trees.

Since the random forest algorithm cannot accurately find its optimal parameters, in this paper, the model is 
enhanced through the “RandomizedSearchCV” and “GridSearchCV” functions to find its optimal parameters. 
Among them, RandomizedSearchCV is used to obtain the best parameters by randomly selecting parameter 
values and performing assigned times parameter combinations within the assigned parameter range; Grid-
SearchCV is used to obtain the best parameters by exhaustively running through the given parameter values; 
CV is used for cross -validation, as well as parameter adjustment. Typically, RandomizedSearchCV is used first 
to obtain the optimal solution with a high probability of parameters, and then GridSearchCV is used to fine-
tune the parameters within a certain floating range to obtain the optimal combination of parameters. “Finding 
Parameters” in the above figure is what RandomizedSearchCV and GridSearchCV need to do, which is to find 
the optimal combination of parameters. The specific process is described in Figs. 3 and 4, as follows.

Importance evaluation of variables.  The importance evaluation of variables is a vital part of the random 
forest algorithm. It can evaluate the influence of input variables on output variables by using the mean square 
residual reduction in the decision-making process of the random forest. It is the result of continuous analysis 
and optimisation in the training process of the random forest. Based on various permutations, the mean-square 
residual reduction (%IncMSE) can be used to measure the influence of corresponding independent variables 
and is the standard for variable importance scoring25. The following is the calculation method of the mean 
square residual:

(1)	 Establish a regression tree for each training data set and then use this model to predict the OOB (out of 
bag) error. The mean square residual of b OOBs can be obtained: MSE1, MSE2, . . .MSEb.

(2)	 The number of variables selected by the self-help method in the random forest is random. Each variable 
Xi can be randomly transposed across b OOB datasets. This creates a new set of OOB tests. When the 
random forest regression model is used to predict the new test set, the mean square residual of the OOB 
after random replacement can be obtained. The matrix is as follows:

(3)	 Next, subtract from line of the equation. Then divide the mean by the standard error to obtain the mean 
square residual of variable, i.e., the variable importance score. The equation is expressed as follows:

Evaluation of model prediction accuracy.  In this study, the root mean square error (RMSE), mean 
absolute error (MAE), and coefficient of determination (R2) were used for comparison between the measured 
and modelled AQI values26,27. These values can be determined as follows:

In the above equations, ŷi represents the AQI forecast of the ith sample, yi is the measured AQI value of the 
ith sample, y denotes the average measured AQI value in all samples, and k is the sample size of the correspond-
ing sample (k = 298).

Results
AQI and variation trend analysis.  The graphs in Fig. 5 illustrate how meteorological factors, daily indus-
trial waste gas emissions, and AQI varied in Zhangdian District from 1st January 2017 to 31th December 2019. It 
can be seen that the period with the largest variations in AQI was from December to March, as there are multiple 

(4)
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peaks during this time. The minimum value of AQI during these three months was 13 while the maximum AQI 
value was 313. Between June and August, there were also significant variations in the AQI. In the other months, 
the range of change was relatively low, with the AQI remaining around 90. The relative humidity fluctuated 
greatly from February to May, with an average of 46.2%. However, between July and August, the relative humid-
ity only varied slightly, with an average value of 73.7%. The average temperature in February was the lowest, then 
from March to August it rose slowly, while from August to October it gradually decreased. The wind scale was 

Figure 3.   Schematic diagram of finding the optimal parameters of random forest model.
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relatively stable, although in March and April the wind scale was more erratic. In the other months, the wind 
scale was generally category 1 or 2. Visibility varied greatly throughout the study period. The average value was 
about 12.5 km, while the maximum value was 29.5 km and the minimum value was 1.0 km. The average pres-
sure in July was the lowest with an average of 98.7 kPa then from August to December it rose slowly, while from 
December to July it gradually decreased. Total sunshine intensity varied greatly throughout the study period. 
The average value was about 15.85 J/m2, while the maximum value was 28.59 J/m2 and the minimum value was 
0.66 J/m2. The precipitation fluctuated greatly from February to May, with an average of 46.2%. Finally, the aver-
age daily emissions of industrial waste gas over the whole study period were 153 million cubic meters, while the 
maximum value was 270 million cubic meters and the minimum value was 100 million cubic meters. Average 
daily emissions of industrial waste gas in 2019 were 33 million cubic meters and 85 million cubic meters more 
than in 2018 and 2017, respectively, but the AQI annual average in 2019 was lower than both 2018 and 2017. 
Because Shandong Province implemented several air pollutant emission standards (“Emission standard of air 
pollutants for building materials industry”, Effective January 1, 2019) (“Emission standard of air pollutants for 
industrial furnace and kiln”, Effective June 1, 2019) in 2019, stricter pollutant emission concentration limits were 
implemented.

AQI and variation correlation analysis.  To verify that meteorological factors and industrial waste gas 
emissions affect air quality, we conducted a correlation analysis of AQI, meteorological factors, and industrial 
waste gas emissions in this paper, with the results presented in Table 2. Results indicate that industrial waste gas 
emissions were positively correlated with AQI, while visibility were negatively correlated with AQI. A rise in 
industrial waste gas emissions leads to an increase in AQI and the deterioration of air quality. As the amount of 
particulate matter in the air increases, it leads to the occurrence of haze and reduces visibility. There is a negative 
correlation between AQI and precipitation in the year and most seasons. This is because raindrops in the cloud 
can absorb and absorb pollutant particles, and at the same time, rainwater can wash and wash pollutants, result-
ing in lower pollutant concentrations, improved air quality, and lower AQI values. The correlation in winter is 
not obvious, which may be due to less precipitation in winter and uneven spatial and temporal distribution. 
There is a positively correlation between AQI and air temperature in the year and most seasons. From the sea-

Figure 4.   Flow chart of random forest model.
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sonal scale, there is no obvious correlation between AQI and air temperature in spring. AQI in summer is signifi-
cantly positively correlated with air temperature, which may have a certain relationship with the activity of cold 
and warm air masses, because when warm air masses pass through, the temperature will increase and a large 
amount of pollutants will accumulate. When the cold air passes through, it will reduce the temperature and often 
accompanied by wind, which is conducive to the diffusion of pollutants. The activities of cold and warm masses 
often occur frequently in summer. In autumn, atmospheric turbulence activities will intensify with the increase 

Figure 5.   Trends of meteorological factors, industrial waste gas emissions, and AQI.

Table 2.   Correlation between seasonal and annual AQI and meteorological elements from 2017 to 2019.

Season
Air 
temperature Wind scale Visibility Air pressure

Total sunshine 
intensity

Relative 
humidity Precipitation

Industrial 
waste gas 
emissions

Spring 0.034  − 0.084  − 0.513  − 0.042 0.010  − 0.018  − 0.252 0.224

Summer 0.227 0.047  − 0.189  − 0.025 0.347  − 0.363  − 0.426 0.587

Autumn  − 0.292  − 0.063  − 0.610 0.210  − 0.248 0.068  − 0.34 0.252

Winter 0.456  − 0.208  − 0.646  − 0.353  − 0.164 0.498 0.129 0.315

Year 0.354  − 0.165  − 0.526 0.293  − 0.215  − 0.012  − 0.326 0.374
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of air temperature, which will dilute and diffuse pollutants in the vertical direction of the lower layer, and further 
lead to the decrease of AQI. While rises in temperature can cause the temperature inversion phenomenon in 
winter, and exacerbating the air pollution problem. Ye’s analysis of Fairbanks confirmed that air temperature and 
AQI were positively correlated, while visibility was negatively correlated with AQI28. Guo studied the correlation 
between meteorological factors and AQI and also verified that there was a positive correlation between tempera-
ture and AQI29. These are consistent with the correlation analysis results obtained in this paper.

Results indicate that the correlation of AQI with other meteorological elements (relative humidity, wind 
level, Air pressure, Total sunshine intensity and precipitation) is not the same on different time scales, because 
these meteorological elements vary greatly on different time scales. Taking relative humidity as an example, 
different scholars have studied the relationship between urban air pollution characteristics and meteorological 
conditions, and found that some cities have a positive correlation between pollutant concentrations and relative 
humidity30–33, and some cities have a negative correlation with relative humidity28,34–38. In Zhangdian District, 
there are different correlations between AQI and relative humidity in different seasons. There is an obvious posi-
tive correlation in winter, a negative correlation in summer, and no correlation in spring and autumn. Under 
low humidity conditions, the growth of condensation nuclei in the atmosphere aggravates pollution, and under 
high humidity conditions, it will have a scavenging effect on pollutants due to deposition39. On the other hand, 
relative humidity is negatively correlated with AQI. The reason may be that when the relative humidity is low, 
it is often accompanied by strong winds, which is easy to cause sand and dust weather and make the air quality 
worse. It can be seen that relative humidity is not the dominant factor affecting the development of pollution, 
and comprehensive judgments need to be combined with pollution emissions, meteorological conditions, and 
chemical processes.

Results of the random forest model.  The data samples selected in this paper include meteorological 
factors (average temperature, wind scale, relative humidity, and visibility), industrial waste gas emissions, and 
AQI in Zhangdian District. In this study, we obtained a total of 1095 sets of data, among which 1064 sets of data 
were used as the training data for the AQI prediction model. The final 31 sets were used as test data to verify the 
model. The prediction process of the random forest model was implemented using the Python programming 
platform. In the Python program, we used the “RandomizedSearchCV” function to approximate the random 
forest algorithm parameters. Then, the “GridSearchCV” function was used to accurately search the parameters 
of the random forest. The optimal parameters that we obtained are presented in Table 3.

The random forest model was established after searching the optimal parameters of the random forest. The last 
31 sets of original data were used as samples for prediction. The AQI prediction results are displayed in Table 4, 
which shows that the predicted AQI values are similar to the measured values, indicating that the predicted 
results are accurate.

Table 3.   Optimal parameters of the random forest model.

Parameter Value

max_depth 60

max_features 5

min_samples_leaf 2

min_samples_split 5

n_estimators 1400

Table 4.   AQI prediction results of random forest model.

Date Measured AQI values Predicted AQI values

1th Dec. 87 92

2th Dec. 62 67

3th Dec. 79 85

4th Dec. 112 99

5th Dec. 81 91

6th Dec. 79 90

… … …

26th Dec. 92 99

27th Dec. 71 86

28th Dec. 80 102

29th Dec. 69 137

30th Dec. 105 98

31th Dec. 54 61
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The AQI predicted by the random forest model was compared with the measured AQI. It can be seen from 
Fig. 6 that the trend of the predicted and measured AQI is fundamentally the same. Figure 7 illustrates that the 
R2 value is 0.90, and the scatter points are precisely distributed at both ends of the line, indicating that the linear 
fitting is accurate. We can conclude that in this region it is effective to use meteorological factors and daily emis-
sions of industrial waste gases to predict the AQI.

Variable importance evaluation.  In this study, we used Python to calculate the mean square residual 
(%IncMSE) in the random forest algorithm and determine the importance of each input variable. The Python 

Figure 6.   Comparison of modelled and measured AQI values.

Figure 7.   Linear fitting of predicted and measured AQI values.
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code and parameters are presented in Fig. 8. A larger mean square residual reduction value indicates that the 
input variable has a larger influence on the output variable. As shown in Table 5, industrial waste gas (X1) was 
the greatest variable affecting AQI, followed by visibility (X5), relative humidity (X4), total sunshine intensity 
(X8), air pressure (X7), air temperature (X2) and precipitation (X6). The mean square residual value of the wind 
scale (X1) is the smallest, indicating that the influence of the wind on AQI is negligible compared with the other 
variables.

Model prediction accuracy evaluation.  By comparing the random forest algorithm with other machine 
learning algorithms, we can verify the applicability of the random forest algorithm for air quality prediction in 
Zhangdian District. In this paper, four kinds of machine learning algorithms were used to predict AQI, and their 
results were compared to ascertain the most appropriate machine learning algorithm. The RMSE, MAE, and R2 
measures were used to evaluate the prediction accuracy of the four machine learning algorithms28. For these 

Figure 8.   Python code for importance evaluation calculations.

Table 5.   Tanking of importance of variable.

Input variable %IncMSE

X1 0.162371

X5 0.158647

X4 0.152212

X8 0.149604

X7 0.146946

X2 0.124643

X6 0.068793

X3 0.036784
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algorithms, lower RMSE and MAE values indicate higher prediction accuracy, while the closer the R2 value is 
to 1, the more accurate the prediction is. The results presented in Table 6 confirm that the prediction accuracy 
of the random forest model is better than the other three machine learning models, indicating that the random 
forest model is the most suitable algorithm for the AQI prediction model of Zhangdian District.

Control of industrial exhaust emissions based on target AQI.  It can be seen from Table 7 that the 
measured AQI value of this region on 9th December was 263 (heavy pollution), and the industrial waste gas 
emission on that day was 191.9 million m3. The modelled results show that if the daily industrial waste gas emis-
sions were controlled at 72.8 million m3, the air quality of the day could reach an acceptable level (AQI = 100). 
Conversely, on 18th December, the measured AQI value of the region was 49. The local meteorological condi-
tions were favourable on this day, so the production time of high-polluting manufacturing processes load could 
be appropriately increased, and the daily industrial waste gas emissions could be increased by 378.9 million m3.

Table 6.   Model prediction accuracy evaluation.

Model RMSE MAE R2

Random forest 22.91 15.80 0.90

BP neural network 26.72 17.53 0.81

Decision tree 29.85 18.11 0.76

LSSVM 26.29 17.37 0.80

Table 7.   Target industrial emissions at AQI of 100.

Air pollution Date Predicted AQI value Daily emissions of industrial waste gas (108 m3)
Daily emissions of industrial waste gas to reach target 
AQI of 100 (108 m3) Difference (108 m3)

1th Dec. 92 2.027 2.188  − 0.161

2th Dec. 67 1.972 2.907  − 0.935

3th Dec. 85 1.960 2.304  − 0.344

4th Dec. 99 1.946 1.950  − 0.004

5th Dec. 91 1.868 2.052  − 0.184

6th Dec. 90 2.029 2.245  − 0.216

7th Dec. 174 1.855 1.067 0.788

8th Dec. 201 1.966 0.978 0.988

9th Dec. 263 1.919 0.728 1.191

10th Dec. 237 1.897 0.797 1.1

11th Dec. 125 2.029 1.613 0.416

12th Dec. 92 2.028 2.203  − 0.175

13th Dec. 120 1.997 1.658 0.339

14th Dec. 72 1.891 2.628  − 0.737

15th Dec. 112 1.912 1.712 0.2

16th Dec. 128 2.017 1.576 0.441

17th Dec. 81 1.869 2.301  − 0.432

18th Dec. 49 1.857 3.789  − 1.932

19th Dec. 98 2.011 2.060  − 0.049

20th Dec. 148 1.987 1.343 0.644

21st Dec. 169 1.980 1.175 0.805

22nd Dec. 209 1.885 0.904 0.981

23rd Dec. 149 2.023 1.353 0.67

24th Dec. 126 1.960 1.559 0.401

25th Dec. 169 1.955 1.152 0.803

26th Dec. 99 1.884 1.897  − 0.013

27th Dec. 86 1.967 2.279  − 0.312

28th Dec. 102 2.004 1.960 0.044

29th Dec. 137 1.880 1.372 0.508

30th Dec. 98 1.988 2.015  − 0.027

31th Dec. 61 1.922 3.110  − 1.188
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It can also be seen from Table 6 that the air quality in this region was poor in December 2019. There were 
4 days of heavy air pollution, 3 days of moderate air pollution and 9 days of mild air pollution. According to 
the rationality of meteorological conditions, the air quality in this area could be maintained in good condition 
(AQI < 100) by increasing or reducing the industrial exhaust emission. It can also be seen from Table 6 that the 
total allowable exhaust emission in this area would be decreased by 361 million m3 compared with the actual 
emission in December 2019. The production capacity of enterprises would be decreased, but it would be bet-
ter than the direct shutdown. According to Zibo City’s Emergency Plan for Heavy Pollution Weather (imple-
mented in 2021), if the air quality index is greater than 200, these 60 key enterprises will directly stop work and 
production.

There are a large number of ceramic factories in this region, and there are two main sources of exhaust gases 
in the production of ceramics. The first is dust from crushing, screening, granulation, and spray drying in the 
manufacture of preformed moulds, glaze materials, and colouring materials. The second is high-temperature flue 
gas containing S02 and smoke produced in the operation of various kiln firing equipment. Due to the different 
operating times of each process in the different factories vary, the collective operational load and pollution load 
of the processes are not balanced. This leads to great fluctuations in the daily emissions of industrial waste gas. 
By reducing the scale of “firing” processes and appropriately increasing the level of “raw material preparation” 
or “moulding” in periods of adverse meteorological conditions, the daily emissions of industrial waste gas can 
be reduced to ensure that the local environmental air quality is maintained at an acceptable level. On the other 
hand, increasing the operation of “firing” processes in favourable weather can balance the requirements of enter-
prises, allowing them to reach production targets. Given this, factories could reasonably adjust their production 
processes depending on the coming meteorological conditions, especially adverse meteorological conditions, to 
ensure that the regional environmental air quality is preserved in an optimal state.

Feasibility analyze of enterprise process adjustment.  Because the production process of the enter-
prise has the characteristics of multi-section cooperation, multi-machine parallel, and random “fluctuation” 
and nonlinear interaction between unit sections, the production process network presents great complexity 
and uncertainty. Production scheduling optimization research has always been a research hotspot. But the cur-
rent research mainly focuses on the aspects of profit maximization40, time constraints41, capital constraints42, 
resource constraints43, energy constraints44, and production equipment constraints45. This research provides a 
new idea for the optimization of production scheduling in industrial enterprises.

The operation time of each production section within the enterprise is different, and the load is not balanced, 
so the sections that run every day are also different. The production process of some heavy air pollution indus-
tries (surface coating, pharmaceuticals, packaging and printing, building materials production, etc.) has certain 
discrete and intermittent sections, such as magnetic pole smears in motor manufacturers, purification in pharma-
ceutical companies, and burning in architectural ceramics companies. into the waiting section. These polluting 
sections have the characteristics of discontinuous intermittent, and the operation time is flexible and adjustable.

Adjustment of polluting processes or sections in the enterprise: (1) Verify the contribution index or scale 
model of each polluting process or section of the enterprise to the overall emission of the enterprise; (2) Insert 
the model index into the ERP (Enterprise Resource Planning) self-made parts material scheduling module to 
convert the process capability; (3) the process capability is adjusted by bringing the environmental prediction 
index in one cycle into the process capability calculation.

Conclusions
In this study, a random forest model is used to construct an air quality prediction model in Zhangdian District 
based on the real-time dynamic emission effect of industrial waste gas-meteorological conditions, and to quan-
tify the impact of industrial waste gas on air quality in the region. Using this model, the daily emission limit of 
industrial pollution can be determined according to the weather forecast inversion, and the air pollution risk 
caused by unfavorable meteorological factors can be effectively avoided by adjusting the production capacity of 
the internal production process of the enterprise. This research actively responds to the “Fourteenth Five-Year 
Plan for National Economic and Social Development of Zhangdian District and the Outline of Vision 2035”: 
by promoting the implementation of typical production scenarios, empowering actions, focusing on digital 
industrial applications, using cloud computing, big data and other new-generation information technologies, 
and guidelines for building a new industrialized strong city in the country. It provides a new idea for Zhangdian 
District’s “14th Five-Year Plan” to achieve an average annual growth rate of regional GDP of more than 7% and 
the harmonious development of industry and environment.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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