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Abstract

Angular head movements in vertebrates are detected by the three semicircular canals of the inner ear and their associated
sensory tissues, the cristae. Bone morphogenetic protein 4 (Bmp4), a member of the Transforming growth factor family
(TGF-b), is conservatively expressed in the developing cristae in several species, including zebrafish, frog, chicken, and
mouse. Using mouse models in which Bmp4 is conditionally deleted within the inner ear, as well as chicken models in which
Bmp signaling is knocked down specifically in the cristae, we show that Bmp4 is essential for the formation of all three
cristae and their associated canals. Our results indicate that Bmp4 does not mediate the formation of sensory hair and
supporting cells within the cristae by directly regulating genes required for prosensory development in the inner ear such as
Serrate1 (Jagged1 in mouse), Fgf10, and Sox2. Instead, Bmp4 most likely mediates crista formation by regulating Lmo4 and
Msx1 in the sensory region and Gata3, p75Ngfr, and Lmo4 in the non-sensory region of the crista, the septum cruciatum. In
the canals, Bmp2 and Dlx5 are regulated by Bmp4, either directly or indirectly. Mechanisms involved in the formation of
sensory organs of the vertebrate inner ear are thought to be analogous to those regulating sensory bristle formation in
Drosophila. Our results suggest that, in comparison to sensory bristles, crista formation within the inner ear requires an
additional step of sensory and non-sensory fate specification.
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Introduction

The ability to detect angular head movements in vertebrates lies

within the vestibular apparatus of the inner ear [1–3]. This portion

of the apparatus consists of three fluid-filled semicircular canals

(anterior, lateral and posterior) that are oriented in nearly

orthogonal planes (Figure 1A). Each canal contains an enlarged

ampulla that houses the sensory tissue, the crista ampullaris,

consisting of sensory hair cells and supporting cells. Within the

anterior and posterior cristae of many species such as birds and

mice, there is a non-sensory structure, the septum cruciatum,

which divides the sensory region into two equal halves [4,5]. This

septum cruciatum is not present in the lateral crista. Other

vestibular sensory organs that are common among all vertebrates

are the maculae of the utricle and saccule, which detect head

position and linear acceleration. In fishes, the macula of the

saccule is used for hearing as well [6].

All the sensory patches within the vertebrate inner ear including

the presumptive cristae are thought to arise from a common

prosensory (neural/sensory competent) region at the otic placode

and otocyst stages (Figure 1A, red and blue; [7,8]). This prosensory

domain also gives rise to the neurons that innervate various

sensory patches of the inner ear. The three semicircular canals are

non-sensory structures derived from two epithelial outpouches of

the developing otocyst. The vertical outpouch gives rise to the

anterior and posterior canals that are joined by the common crus,

whereas the horizontal outpouch gives rise to the lateral canal. In

the mouse, the morphogenesis of this apparatus starts around

10.5 days post coitum (dpc) and is completed by 13 dpc [9]. In

chicken, it starts at embryonic day 3.5 (E3.5) and is completed by

E7 [10].

Multiple factors are thought to regulate the formation of the

vestibular apparatus [11–15]. For example, Wnt signaling from

the dorsal hindbrain is required for the normal patterning of the

vestibular structures [12]. Within the inner ear, members of two

homeobox containing gene families, Dlx and Hmx, have also been

implicated [13,15]. The deletion of one or more members of these

gene families results in the lack of canal and crista formation.

Notably, the lack of Wnt, Dlx, or Hmx gene functions all result in an

early disorganization or absence of Bmp4 expression within the

presumptive cristae [12,13,15,16].

The expression of Bmp4 in the presumptive cristae is conserved

among several vertebrate species including the zebrafish, frog,

chicken, and mouse (Figure 1D; [9,17–19]). Studies in the chicken

have shown that the formation of the semicircular canals and

cristae is blocked by exogenous Noggin, a Bmp antagonist [20,21].

However, specific roles for Bmp4 in inner ear development cannot

be extrapolated unambiguously from these results because other

Bmp genes are also expressed in the developing inner ear, including

Bmp2 and Bmp7 [22]. In the mouse, the role of Bmp4 in inner ear
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development cannot be directly demonstrated either, since Bmp4

null mutant embryos die before significant vestibular development

[23]. More recent in vitro experiments of gain- and loss-of Bmp

functions in chicken embryos also yielded conflicting results

regarding the role of Bmp4 in hair cell formation [24,25]. To

overcome these problems, we have exploited the cre/lox approach

to generate mice with an inner ear specific deletion of Bmp4.

Furthermore, we address the molecular mechanisms by which

Bmp4 mediates its effects on crista formation by over-expressing

Smad6 or Noggin in the developing anterior crista to knock down

Bmp functions. The combined results from these two species

demonstrate that Bmp4 in the presumptive cristae is required for

the formation of the three cristae and their semicircular canals.

Materials and Methods

Mouse Strains
The Bmp4loxP allele was generated by first constructing a targeting

vector in which loxP sites were inserted in introns 2 and 4 of the

Bmp4 locus, so that cre recombination excises the entire Bmp4

coding sequence (Figure S1). Bmp4Tm1/+ and Bmp4loxP/loxP mice were

maintained on a Black Swiss background and Foxg1cre/+ mice were

maintained on a Swiss Webster background. Foxg1cre/+; Bmp4loxP/Tm1

embryos were generated by crossing male Foxg1cre/+; Bmp4Tm1/+

mice with female Bmp4loxP/loxP mice. For reasons that are unknown,

very few Foxg1cre/+; Bmp4loxP/Tm1 mice were recovered at birth

(Table S1). Therefore, all analyses in this study were conducted by

13.5 dpc, an age when the gross patterning of the canals and

ampullae is complete. TgPax2cre; Bmp4loxP/Tm1 embryos were

generated by breeding TgPax2cre; Bmp4Tm1/+ with Bmp4loxP/loxP

mice. The generation of TgPax2cre, a transgenic mouse strain

expressing cre under an inner ear specific enhancer of Pax2, will be

described elsewhere (Douglas Epstein, U. of Pennsylvania). All

animal procedures were approved and conducted according to the

NIH Animal Use and Care Committee guidelines.

Chicken Embryos and Procedures
Chicken embryos were staged according to Hamburger and

Hamilton [26]. Chicken Noggin cDNA [27] was subcloned into

pIRES2-EGFP expression vector, in which Noggin is driven by the

immediate early Cytomegalovirus promoter (Clontech). Chicken

Smad6 cDNA in the pCab-IRES-GFP vector [28] was subcloned

into pMES-IRES-GFP expression vector, in which Smad6 is driven

under the chicken b-actin promoter and the immediate early

enhancer of Cytomegalovirus [29]. pSmad6, pNoggin and their

respective control vectors at a concentration of 4 to 6 mg/ml were

injected into the lumen of chicken otocysts at E3.5. Plasmids were

electroporated into the anterior region of the otocyst using a

positive and negative electrode flanking the anterior and posterior

poles of the otocyst, respectively. Two 50 milli-second pulses at 10

volts were applied using a CUY21 electroporator.

In Situ Hybridization and Immunostaining
Paint-fill analyses and in situ hybridizations were performed as

described [9]. Chicken and mouse RNA probes were prepared as

previously described [9,19,30–32].

Anti-hair cell specific antigen (HCA) antibodies (gift of Guy

Richardson) were used at 1:5000 dilution, and staining was

performed as previously described [33]. Specimens for antibody

staining were fixed overnight at 4uC with 4% paraformaldehyde,

except specimens for Msx1/2 and Gata3 staining were fixed for

30 minutes at room temperature. The following antibody dilutions

were used: mouse anti-neurofilament (DSHB, 3A2) 1:2000; mouse

anti-Msx1/2 (DSHB, 4G1), 1:50; rabbit anti-Phospho-Smad1 (gift

of Peter ten Dijke), 1:2000; mouse anti-Sox2 (Chemicon, AB5603),

1:2000; mouse anti-Gata3 (Santa Cruz, HG3-31), 1:50; and Goat

anti-GFP antibody (GeneTexa, GTX26662), 1:200. For secondary

antibody labeling, species-specific antibodies conjugated with

Alexa Fluor 488, 564, or 633 were used at 1:500 dilution.

Incubations for primary and secondary antibodies were carried

out at 4uC overnight and at room temperature for 1 hr,

respectively. Total number of double-labeled cells for each

specimen was scored using a confocal microscope. Since the total

number of cells counted per specimen was different, weighted

average percentages (wap) were calculated for each treatment to

adjust for the variability of sampling size among specimens

(http://mathforum.org/library/drmath/view/57605.html). A to-

tal of 70 to 190 cells were counted per treatment.

Results

Inner Ear Phenotypes of Bmp4 Conditional Knockout
Embryos

To generate conditional Bmp4 null embryos, we used three

different mouse lines. The first, Foxg1cre/+, was made by inserting cre

into the endogenous Foxg1 gene which is expressed in tissues such as

the embryonic otocysts, eyes, and foregut [34]. The tissue specific

recombination activity of this cre allele has been demonstrated by

crossing Foxg1cre/+ mice with the Rosa26R reporter line [34].

Bmp4Tm1 is a null allele of Bmp4 [23], whereas the Bmp4loxP

conditional allele was generated as described (Figure S1). Foxg1cre/+;

Bmp4loxP/Tm1 embryos were obtained at the expected frequency

from crossing Foxg1cre/+; Bmp4Tm1/+ mice with Bmp4loxP/loxP mice.

Based on morphologies, they can be grouped into three classes: (1)

embryos that are severely delayed in development, (2) embryos with

eye malformations that are either normal or slightly smaller in their

body size, and (3) embryos that are morphologically indistinguish-

able from Bmp4loxP/+ littermates (Table S1). Only the latter two

classes were included in subsequent studies.

We evaluated the tissue specificity of Bmp4 deletion in the

Foxg1cre/+; Bmp4loxP/Tm1 embryos between 9.5 to 10.5 dpc (n = 21)

using an RNA probe (B4-del) generated against exons 3 and 4 of

Bmp4. Half of the embryos analyzed at 9.5 dpc displayed abnormal

Bmp4 expression patterns (n = 4/8). By 10.5 dpc, a higher

percentage of Foxg1cre/+; Bmp4loxP/Tm1 embryos show no or reduced

Author Summary

Disruption of the sense of balance is highly debilitating,
causing vertigo and nausea. Maintenance of proper
balance requires sensory inputs from many body parts,
including the inner ears and the eyes. Within the inner ear,
the vestibular apparatus plays a key role in the sense of
balance and is responsible for detecting head orientation
and movements. The portion of the vestibular apparatus
that detects angular head movements consists of three
fluid-filled, semicircular canals oriented at right angles to
each other. At one end of each canal is an enlargement
that houses the sensory tissue, crista ampullaris, consisting
of sensory hair cells and supporting cells. Bone morpho-
genetic protein 4 (Bmp4), a secreted signaling molecule, is
expressed in these sensory regions during development.
However, the lack of Bmp4 in mice affects the formation of
not only the sensory regions but also their associated
canals. These results demonstrate for the first time that a
single gene, Bmp4, is required for the formation of the
entire sensory apparatus for detecting angular head
movements.

The Role of Bmp4 in Vestibular Apparatus Formation
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Bmp4 expression in tissues such as the eyes and otocysts where

Foxg1 is normally transcribed (Figure 1B–1G, arrows; n = 11/13).

Significantly, expression patterns are normal in tissues where Foxg1

is not expressed such as the roof of the hindbrain, somites and limb

buds (Figure 1B,1C,1H, and 1I, arrowheads). Some of the eleven

embryos that display tissue-specific reduction in Bmp4 expression

and eye malformations were also slightly smaller in body size

(n = 3).

In a normal otocyst, Bmp4 is transcribed in an anterior streak of

tissue and a posterior focus (Figure 1D; [9]). The anterior streak

encompasses the presumptive anterior and lateral cristae

(Figure 1D, arrow) and later splits to form two separate entities

[9], whereas the posterior focus demarcates the location of the

posterior crista (Figure 1D, arrowhead). Among the 11 affected

Foxg1cre/+; Bmp4loxP/Tm1 10.5 dpc embryos, Bmp4 transcripts are

absent from the posterior region of the otocyst and are either

absent or reduced in the anterior (Figure 1E, arrow). Similar

results were obtained from affected Foxg1cre/+; Bmp4loxP/Tm1

specimens at 11.5 dpc (see below). By this age, Bmp4 is also

expressed in the non-sensory region of the growing cochlear duct

[9]. Despite the seemingly ubiquitous cre activity in the otocysts of

the cre reporter mice [34], Bmp4 expression in the cochlear duct

appears normal in all of the Foxg1cre/+; Bmp4loxP/Tm1 specimens

examined (data not shown).

Figure 1. Schematic representations of mouse inner ear development from 11.5 to 13 dpc. (A)Upper panel shows schematic cross-
sections through the prospective or definitive anterior and posterior canals at the level of the lines. Blue marks the three Bmp4-positive presumptive
cristae, while red marks the other three sensory tissues-the maculae utriculi and sacculi, and the organ of Corti. An enlargement of a mature anterior
crista at 15.5 dpc or later is shown. (B–I) Inner ear phenotypes of Bmp4 conditional null embryos. Wholemount in situ hybridization of Bmp4loxP/+

(B,D,F,H) and Foxg1cre/+; Bmp4loxP/Tm1 (B4cko, C,E,G,I) embryos at 10.5 dpc hybridized with Bmp4 RNA probe specific for exons 3 and 4 (B4-del). (B, C)
Arrows point to the down-regulation of Bmp4 expression in the eyes and otocysts of Foxg1cre/+; Bmp4loxP/Tm1 (C), compared to Bmp4loxP/+ embryos (B).
Arrowheads point to unaffected Bmp4 expression in limb buds and somites. (D) and (E) are higher magnifications of the otocysts shown in (B) and (C),
respectively. Arrow and arrowhead in (D) point to Bmp4 hybridization signals in the anterior streak (encompassing anterior and lateral cristae) and the
posterior crista of the otocyst, respectively. An arrow in (E) points to the residual Bmp4 expression in the anterior streak of Foxg1cre/+; Bmp4loxP/Tm1

embryos. (F–I) Higher magnifications of Bmp4 expression domains in the eyes (F, G) and hindbrain (H,I) in Bmp4loxP/+ (F, H) and Foxg1cre/+; Bmp4loxP/Tm1

(G, I) embryos. Arrows point to the reduction of Bmp4 expression, and the malformation of the eyes, whereas arrowheads point to the normal Bmp4
expression in the hindbrain. Scale bar in (C) applies to (B); scale bars in (D), (G) and (I) equal 100mm and apply to (E), (F), and (H), respectively.
Abbrevations: aa, anterior ampulla; ac, anterior crista; asc, anterior semicircular canal; cc, common crus; cd, cochlear duct; ed, endolymphatic duct; fp,
fusion plate; hp, horizontal canal pouch; la, lateral ampulla; lc, lateral crista; lsc, lateral semicircular canal; oc, organ of Corti; pa, posterior ampulla; pc,
posterior crista; psc, posterior semicircular canal; rd, resorption domain; s, saccule; u, utricle; vp, vertical canal pouch.
doi:10.1371/journal.pgen.1000050.g001

The Role of Bmp4 in Vestibular Apparatus Formation
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Paint-Filled Analyses of Bmp4 Conditional Knockout Inner
Ears

The gross anatomy of the Foxg1cre/+; Bmp4loxP/Tm1 inner ears at

13.5 dpc was examined by paint filling the membranous labyrinth.

Consistent with the variable Bmp4 expression patterns, the paint-

filled Foxg1cre/+; Bmp4loxP/Tm1 specimens also show a range of inner

ear phenotypes (Figure 2A–2D). In the most severe cases, there is

no discernible ampulla or semicircular canal, and the utricle and

saccule are malformed. Only an intact endolymphatic duct is

evident in the dorsal region of the inner ear (Figure 2B and 2C;

n = 8/14). The remaining specimens are either indistinguishable

from Bmp4loxP/+ (n = 3/14) embryos, or display only a lateral canal

truncation (Figure 2D; n = 3/14). A percentage of the Bmp4loxP/Tm1

also display similar defects in the lateral canal (n = 5/10).

Therefore, this milder phenotype observed in Foxg1cre/+;

Bmp4loxP/Tm1 embryos is probably due to insufficiency of Bmp4

caused by the presence of both of the Tm1 and the un-recombined

floxed Bmp4 allele rather than an incomplete penetrance of the cre

activity. Cochlear ducts of Foxg1cre/+; Bmp4loxP/Tm1 embryos show

some variability in length (Figure 2B–2D). We attributed this

variability to a slight difference in staging or global growth defects

of the ear.

We also conditionally deleted Bmp4 in the inner ear using a

transgenic mouse strain, TgPax2cre. The inner ear phenotypes

obtained using this cre strain are also variable. Ten out of 15

TgPax2cre; Bmp4loxP/Tm1 specimens have inner ear defects. Those

with a milder phenotype show defects in the three ampullae and

canals, in addition to lateral canal truncation (Figure 2E; n = 5).

The more severe phenotypes include utricle and saccule

malformations (Figure 2F; n = 5). Similar to the Foxg1cre/+;

Bmp4loxP/Tm1 inner ears, the cochlear duct is relatively normal,

consistent with the presence of Bmp4 expression in this region (data

not shown). Taken together, inner ear-specific deletion of Bmp4

using two independent cre lines indicates that Bmp4 is required for

the formation of the three cristae and semicircular canals, and

possibly the utricle and saccule.

Some of the Bmp4Tm1/loxP embryos generated by breeding

TgPax2cre; Bmp4+/Tm1 with Bmp4loxP/loxP mice also display lateral

Figure 2. Inner ear analyses of Bmp4 conditional null embryos. Paint-filled inner ears of control Bmp4loxP/+ (A,G), Foxg1cre/+; Bmp4loxP/Tm1 (B–
D,H) and TgPax2cre; Bmp4loxP/Tm1 (E,F) embryos at 11.5 (G,H) and 13.5 dpc (A–F). Inserts in (A)–(F) are ventral views of the cochlear duct. The most
malformed inner ears of Foxg1cre/+; Bmp4loxP/Tm1 embryos are shown in (B) and (C), compared to controls (A). In (D), the inner ear is normal except for
truncation of the lateral canal (arrows). A mildly (E) and more severely (F) affected inner ear of TgPax2cre; Bmp4loxP/Tm1 embryos. Inner ears of
Bmp4loxP/+ (G) and (H) Foxg1cre/+; Bmp4loxP/Tm1 embryos at 11.5 dpc. Arrow in (H) points to the smaller canal pouch in Foxg1cre/+; Bmp4loxP/Tm1 embryos.
Orientations in (G) apply to all panels. Scale bars in (F) and (H) apply to (A–E) and (G), respectively.
doi:10.1371/journal.pgen.1000050.g002

The Role of Bmp4 in Vestibular Apparatus Formation
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canal truncation as well (n = 4/7), suggesting that a combination of

Tm1 and loxP alleles can generate hypomorphs depending on the

genetic background. Notably, our Bmp4Tm1/+ mice in Black Swiss

background do not circle but a small percentage of Bmp4

heterozygous mice in C57BL/6 background do [35].

Gene Expression Analyses of Foxg1cre/+; Bmp4loxP/Tm1

Embryos
Analysis of paint-filled ears of younger embryos indicates that

the vestibular defects in Foxg1cre/+; Bmp4loxP/Tm1 are already

apparent at 11.5 dpc (Figure 2G and 2H). To better understand

the underlying molecular mechanisms of the phenotypes, we first

investigated the expression patterns of a number of genes

associated with the prospective cristae such as Fgf10, Gata3, Jag1,

Lmo4, Msx1, and Sox2, in Foxg1cre/+; Bmp4loxP/Tm1 embryos. At 11.5

dpc, the expression domains of these genes normally overlap with

that of Bmp4 in the presumptive cristae (Figure 3A; data not

shown). Conditional mutant ears that have smaller canal pouches

compared to those of Bmp4loxP/+ embryos are usually devoid of

Bmp4 expression and concomitant loss of other early crista-

associated markers as well (Figure 3B–B’’, n = 28/42 ears).

Conversely, in all conditional mutants with residual Bmp4

expression in the anterior region (n = 13/42), other crista markers

are also present.

Lack of Bmp4 expression in the inner ear also resulted in the

absence of semicircular canal formation. The overall size of the

vertical canal pouch is usually smaller than normal, particularly in

the posterior region (Figure 2G and 2H). This finding is in

agreement with the observation that Bmp4 expression is lost most

consistently in the posterior crista of Foxg1cre/+; Bmp4loxP/Tm1 ears.

Bmp2 has been implicated in canal formation in the chicken inner

ear [36], and its expression pattern in the canal pouches of mice is

similar to that of chickens (Figure 3D and 3F). At 11.5 dpc, Bmp2

expression in Foxg1cre/+; Bmp4loxP/Tm1 inner ears is often reduced

and sometimes absent in the canal pouches (Figure 3E; arrow-

heads, n = 8; Figure 3G; n = 4/6, missing posterior signal).

Other genes such as Dlx5, Hmx2, and Hmx3 have also been

implicated in canal development. Dlx5 and Hmx are expressed in

the otic placode and later in the entire canal pouch (Figure 3H–H’;

[37–40]). In Foxg1cre/+; Bmp4loxP/Tm1 embryos with affected inner

ears, Dlx5 expression is down-regulated in the canal pouch, but the

expression of Hmx3 is unaltered at least up to 11.5 dpc (Figure 3I–

I’; n = 4). In contrast, Dlx5 expression in the endolymphatic duct is

normal (Figure 3I). These results suggest that Bmp4 is required for

the maintenance of Dlx5 expression only in the canal pouch, and

that the regulation of Hmx3 in the canal pouch is independent of

Bmp4 and Dlx5.

Gene Expression Patterns in the Differentiating Chicken
Crista

Our results suggest that absence of Bmp4 affects the expression

patterns of many genes in the presumptive cristae of mice.

However, it is not clear whether these changes are direct or

indirect due to the loss of sensory tissues in the conditional

mutants. To address this question, we analyzed the short-term

effects of down-regulating Bmp signaling on seven known crista-

associated genes-Fgf10, Gata3, Lmo4, Msx1, p75Ngfr, Ser1, and Sox2-

in chicken inner ears. First, we examined in more detail the

expression profiles of these genes during normal crista develop-

ment (Figure 4). In a mature anterior or posterior crista, the

sensory patch is saddle-shaped, consisting of sensory hair cells and

supporting cells. A non-sensory region, the septum cruciatum, is

located in the middle of the saddle (Figure 4, schematic diagrams).

Initially, the expression pattern of each of the seven investigated

genes largely overlaps with the expression domain of Bmp4 in the

presumptive anterior or posterior crista (Figure 4A, A’, B; [30];

[19]; data not shown). After E3.5, the expression patterns of these

genes start to segregate (Figure 4C–C’’, D–D’). At E5.5, genes

such as Bmp4, Sox2, Ser1, and Fgf10 are expressed in two separate

domains associated with the sensory patches (Figure 4C’’, D,

double arrows; data not shown). In between the two sensory

patches is the p75Ngfr- and Gata3-positive region that eventually

develops into the septum cruciatum (Figure 4C–C’’, arrow). In

contrast, Lmo4 is expressed in both sensory (Figure 4D’, double

arrows in pc) and non-sensory regions (Figure 4D’, arrow) of the

presumptive crista, and this expression pattern is maintained at

E10 (Figure 4G’’’). By E10, Bmp4, Fgf10, Msx1, Sox2, and Ser1 are

associated with supporting cells of the sensory region (Figure 4E’’,

F, F’, G’). The expression patterns of these genes are qualitatively

different from that of Bdnf, which is associated with sensory hair

cells (Figure 4E’’, insert ii). Gata3 and p75Ngfr expression domains

remain outside of the sensory tissue proper, in the septum

cruciatum (Figure 4E–E’, G, G’’, arrows; [32]) as well as in the

transitional zone beyond the crista (Figure 4G, G’’, arrowheads).

In summary, our analyses indicated that while most of the

crista-associated genes initially overlap in their expression domains

within the presumptive anterior and posterior cristae, their

expression patterns segregate into either sensory and/or non-

sensory regions of the crista as development proceeds.

Genes Affected by Down-Regulation of Bmp Signal
Transduction in the Crista

Next, we investigated whether the expression of each of these

crista-associated genes is affected by down-regulation of Bmp

signaling. Vectors (pSmad6 and pNoggin) encoding Smad6 or Noggin

translationally coupled to GFP were electroporated into the

developing anterior crista region in ovo at E3.5, a time when these

crista-associated genes are co-expressed in the presumptive crista.

Smad6 is an intracellular inhibitor that competes with Smad4 for

binding to phosphorylated Smad1/Smad5/Smad8 proteins, thus

preventing their subsequent translocation to the nucleus and

activation of Bmp target genes [41]. Ectopic Smad6 expression has

been used successfully to address the roles of Bmps in neural

induction and placode formation [28,42]. Figure 5A and B

illustrate Gfp signals in the Bmp4-positive anterior crista region

(Figure 5C) within 14 hrs after electroporation with pSmad6 and

pGfp, respectively.

Electroporation of pSmad6 results in the down-regulation of

genes that are eventually associated with the non-sensory, septum

cruciatum, such as Gata3 (Figure 5D’; n = 10/10) and p75Ngfr

(Figure 5F’; n = 10/13), whereas expression levels of genes

associated with the sensory regions such as Sox2 (n = 0/6), Fgf10

(n = 0/6), Lmo4 (n = 0/9) and Ser1 (n = 0/5) are not affected

(Figure 5D’’,F’’, and data not shown). Electroporation of a control

vector expressing Gfp alone does not result in gene expression

changes in most cases (Figure 5E–E’’,G–G’’; n = 42/44). Down-

regulation of Msx1 in response to pSmad6 is variable (n = 7/14;

data not shown), but quite consistently seen in response to pNoggin

(Figure 6A’; n = 6/6). The expression of Lmo4, which is associated

with both sensory and non-sensory regions, is down-regulated by

pNoggin (Figure 6C’; n = 11/11), but this is not observed with

pSmad6 (n = 9; data not shown). Since Noggin is a secreted

molecule, down-regulation of Gata3 and Msx1 in the mesenchyme

near the site of electroporation is also observed (Figure 6A’,B’,E’,F’,

double arrowheads; n = 6/6). Genes that are not down-regulated

by pSmad6, such as Bmp4, Fgf10, Ser1 and Sox2, remain unaffected

by pNoggin treatments (Figure 6A’’,C’’,E’’; data not shown).
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Electroporation of a control vector, pIRES-Gfp, usually causes no

change in these gene expression patterns (Figure 6B, 6D, 6F;

n = 26/28).

Blocking Bmp Signaling Down-Regulates Msx and Gata3
Immunoreactivities in the Crista

The changes in gene expression were verified at the protein

level by double staining the electroporated cells for GFP and

translated gene products. The levels of phosphosmad1 were used

to evaluate the effects of Smad6 inhibition on Bmp signal

transduction. Cells electroporated with pSmad6 show a down-

regulation of phosphosmad1 staining (Figure 7A,A’; wap = 98%,

n = 7; see Materials and Methods), whereas cells electroporated

with pGfp do not (Figure 7B; wap = 23%, n = 7). Moreover,

pSmad6-electroporated cells also show a down-regulation of Msx

(Figure 7C,C’; wap = 94%, n = 4) and Gata3 immunoreactivities

(Figure 7E, E’; wap = 87%, n = 8), whereas Sox2 levels are barely

Figure 3. Gene expression analyses of Foxg1cre/+; Bmp4loxP/Tm inner ears at 11.5 dpc. (A–A’) Adjacent sections of a Bmp4loxP/+ control
showing the Bmp4-positive lateral crista region (A, lc), which is also positive for Gata3 (A’) and Msx1 (A’’). (B,B’,B’’) Adjacent sections of a Foxg1cre/+;
Bmp4loxP/Tm1 (B4cko) embryo showing the lack of crista-associated expression of Bmp4 (B), Gata3 (B’) and Msx1 (B’’). (C) A schematic diagram showing
the expression domains of Bmp2 and Bmp4 in the canal pouch at 11.5 dpc, and the approximate level of section for each panel. (D–G) Wholemount
(D,E) and section (F,G) in situ hybridization showing the reduction of Bmp2 expression in the canal pouch (outlined in D, E) of Foxg1cre/+; Bmp4loxP/Tm1

(E,G), compared to Bmp4loxP/+ (D,F) inner ears. (F) Bmp2 expression is associated with the prospective posterior and lateral canals (vp and hp) in
Bmp4loxP/+ embryos but only in the anterior region of the canal pouch in Foxg1cre/+; Bmp4loxP/Tm1 embryos (G, arrow) where residual Bmp4 expression
is sometimes present. (H–I’) Dlx5 (H, I) and Hmx3 (H’,I’) expression domains in the canal pouch of Bmp4loxP/+ (H,H’) and Foxg1cre/+; Bmp4loxP/Tm1 (I,I’)
embryos. The endolymphatic duct (ed) is Dlx5-positive (H,I) and Hmx3-negative (H’,I’). Canal pouches of Foxg1cre/+; Bmp4loxP/Tm1 inner ears are Dlx5
negative (I) and Hmx3 positive (I’). Orientations: A, anterior; L, lateral. Orientations in (I’) apply to all panels except (D) and (E). Scale bars = 100 mm.
Scale bar in (F) applies to (A–B) and (G); scale bars in (E) and (I) apply to (D) and (H–I’), respectively.
doi:10.1371/journal.pgen.1000050.g003
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affected (Figure 7G; wap = 2.2%, n = 8). Down-regulation of Msx

(Figure 7D,D’; wap = 8.6%, n = 5), Gata3 (Figure 7F,F’;

wap = 0%, n = 5) and Sox2 (data not shown, wap = 11%, n = 4)

immunoreactivities are minimal in cells electroporated with pGfp.

Similar results are observed with pNoggin, except down-regulation

of Gata3 staining is also observed in the mesenchyme (Figure 7H;

Figure 4. Expression patterns of crista-associated genes during differentiation. Sections of developing chicken cristae at E3.5 (A,B), E5.5
(C,D) and E10 (E–G). (A, A’) Adjacent sections showing the co-expression of Bmp4 (A) with Gata3 (A’) and p75Ngfr (B) in the anterior crista region at
E3.5. (C–C’’) Adjacent sections showing expression patterns of p75Ngfr (C) and Gata3 (C’) largely non-overlapping with the two Bmp4-positive regions
(C’’). Gata3 is also expressed in the mesenchymal region surrounding the crista. (D) Ser1 expression pattern in the developing crista is similar to that of
Bmp4 (C’’), in two separate domains (double arrows), whereas (D’) Lmo4 is expressed in the Ser1-positive regions (pc, double arrows) as well as in the
area between the two Ser1-positive regions (arrow). (E–F) Cross- and (G) sagittal-sections of the developing crista at E10. (E’’) Bmp4, (F) Sox2, (F’) Fgf10,
and (G’) Msx1 are expressed in the sensory region of the developing crista, whereas (E) p75Ngfr and (E’) Gata3 are expressed in the non-sensory,
cruciatum region in the center of the crista. Inserts (i) and (ii) in (E’’) are higher magnifications of a sensory region in (E’’) showing the Bmp4 expression
domain spanning the entire epithelium and the Bdnf domain only located apically in the sensory hair cells, respectively. The dotted line in insert (ii)
marks the base of the sensory epithelium. The expression domain of p75Ngfr appears to surround the Gata3-positive region in the cruciatum (E, E’; G,
G’’). Moreover, both Gata3 and p75Ngfr are expressed in the transitional zone of the developing crista (G, G’’; arrowheads). The p75Ngfr expression in
the transitional zone is already apparent at E5.5 (Figure 4C, arrowheads). (G’’’) Lmo4 is expressed in both the sensory (small arrows) and cruciatum
(arrow) region of the developing crista. Orientations in (C) apply to (A–D’). (E–F’) and (G’–G’’’) are cross- and sagittal-sections of the anterior crista at
E10, respectively. Scale bars = 100 mm. Scale bars in (D’), (F’) and (G’’’) apply to (A–D), (E–F) and (G–G’’), respectively.
doi:10.1371/journal.pgen.1000050.g004
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n = 6), whereas Gata3 expression is normal in specimens

electroporated with the control plasmid, pIRES-Gfp (Figure 7I;

n = 6). Taken together, our results suggest that the down-

regulation of Bmp signal transduction appears to preferentially

affect genes associated with non-sensory rather than sensory region

of the crista.

Inner Ear Phenotypes after Down-Regulation of Bmp
Signal Transduction

To investigate whether the knock down of Bmp signal

transduction has a long-term effect on crista or canal formation,

we harvested some electroporated embryos at E7 and processed

them for paint-fill analyses or at E8.5 for sensory hair cell staining

using anti-HCA antibody. More than half of the inner ears

electroporated with pGfp have normal canals (Figure 8A; n = 12/

21), and the rest show non-resorption of the anterior canal

(Figure 8B,F, arrow; n = 9/21). However, specimens in which the

canal pouch fails to resorb, the anterior crista is usually normal

showing a saddle-shaped pattern with anti-HCA staining

(Figure 8F, I; n = 4/5), similar to controls (Figure 8E, H). Most

of the pSmad6 electroporated specimens either lack the anterior

canal or show a canal pouch that is not resorbed (Figure 8C;

n = 15/19), and the anterior ampulla is malformed (Figure 8C,G,

small arrows; n = 15/19). Within the ampulla, the crista is usually

much smaller in size, lacks the cruciatum, and thus lacks the

saddle- or W-shaped staining pattern (Figure 8G; n = 10/12).

However, some sensory hair cells remain within the malformed

cristae based on the punctate staining pattern with anti-HCA

antibodies (Figure 8J). These results indicate that down-regulating

Bmp signal transduction in the presumptive anterior crista cell-

autonomously causes patterning defects in the crista. Inner ears

electroporated with pNoggin instead of pSmad6 show a much more

severe phenotype involving all three canals and ampullae

(Figure 8D; n = 7/8).

The high percentages of specimens with canal defects in the

pGfp specimens suggest that canal formation is particularly

sensitive to electroporation. Furthermore, since the electroporated

region often includes some of the canal pouch epithelium, the

canal phenotypes observed in pSmad6 and pNoggin specimens could

be due to a direct down-regulation of Bmp2 signaling, originating

within the canal epithelium [36], rather than down-regulation of

Bmp4 signaling generated from the crista.

Figure 5. Ectopic expession of Smad6 down-regulates crista-associated genes in chicken inner ears. (A–C) Whole mount embryos at E4
showing GFP expression in the targeted anterior crista region 14 hrs after electroporation with pSmad6 (A) or pGfp (B) plasmids. (C) Bmp4 expression
in the cristae. (D–G’’) Sections of inner ears electroporated with pSmad6 (D,F) or pGfp (E,G) plasmids at E3.5 and harvested 14 hrs after
electroporation. (D–D’’) Adjacent sections probed for Gfp (D), Gata3 (D’) and Sox2 (D’’) transcripts. Within the electroporated anterior crista region (D),
Gata3 expression is down-regulated (D’, arrows), whereas Sox2 expression is unaffected (D’’). (F–F’’) Down-regulation of p75Ngfr (F’) in the
electroporated region (F), but expression of Fgf10 is not affected (F’’, arrows). None of these gene expression patterns are affected in controls
electroporated with pGfp (E, G). Inserts in (F’) and (G’) are higher magnifications of the anterior crista. Scale bars in (B) and (C) equal 1 mm and scale
bar in (B) applies to (A). Scale bar in (G’’) equals 100 mm and applies to (D–G’).
doi:10.1371/journal.pgen.1000050.g005
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Discussion

Cell Fate Specification in the Crista
The developmental program for the generation of sensory

patches within the vertebrate inner ear is thought to be similar to

that required for sensory bristle formation in Drosophila, in which

Notch signaling generates cell type diversity [43–45]. The

prevailing concept is that neural fate is specified within the

prosensory epithelia of the developing inner ear via Delta-Notch

signaling, whereas sensory fate is maintained within the prosensory

domain by positive feedback of Ser1-Notch signaling [46,47].

Eventually, lateral inhibition mediated by Notch signaling dictates

that cells within the sensory patches differentiate into either hair

cells or supporting cells. There is no direct evidence for neural fate

specification in the crista-prosensory regions (Figure 9). However,

based on our gene expression data, we propose that at least within

the prosensory domain of anterior and posterior cristae, there is an

additional step of commitment into a non-sensory fate. This occurs

before or at approximately the same time that hair cell and

supporting cell fates are being specified. More importantly, we

propose that Bmp4 is required for both specification steps by

regulating Msx1 and Lmo4 activities for the sensory fate, and

Gata3, p75Ngfr, and Lmo4 for the non-sensory fate (Figure 9).

Similar to the cristae but in contrast to the sensory maculae, it is

not clear whether there is a specification of neural fate in the

prosensory region of the organ of Corti [48]. Notably, in the organ

of Corti, there are two rows of p75Ngfr-positive pillar cells that are

specialized non-sensory cells located between the one row of inner

and the first row of outer hair cells [49]. Interestingly, p75Ngfr is

also broadly expressed in the prospective organ of Corti initially,

and its expression becomes restricted to the pillar cells at later

stages [50]. Thus, it is likely that similar cell fate decisions

proposed here for the cristae also apply to the organ of Corti.

Bmp4 in Crista Formation
The requirement of Bmp4 for crista formation is clearly

indicated by results obtained from Bmp4 conditional null mutants.

Our down-regulation of Bmp signaling in presumptive cristae of

chicken embryos reveals several interesting insights concerning the

possible roles of Bmp4 in crista formation. First, genes that are

known to be required for prosensory formation in the inner ear

such as Sox2, Jag1, and Fgf10 are not affected by either pSmad6

(cell-autonomous) or pNoggin (non-cell autonomous) treatments

[51–55]. Determining whether these prosensory genes function in

parallel or directly upstream of Bmp4 will require further

investigation (Figure 9C). Second, genes in both sensory and

Figure 6. Ectopic expression of Noggin down-regulates crista-associated genes in chicken inner ears. Inner ears were electroporated
with pNoggin (A,C,E) and pIRES-Gfp (B,D,F) at E3.5 and harvested 14 hrs later. (A–A’’) Adjacent sections probed for Gfp (A), Msx1 (A’), and Bmp4 (A’’)
transcripts. Msx1 (A’) expression is abolished in the electoporated (A), Bmp4-positive anterior crista region (A’’, ac), whereas Bmp4 expression is not
affected (A’’). Msx1 expression is reduced in the mesenchymal region (A’, arrowheads). (C–C’’) Adjacent sections showing the absence of Lmo4 (C’) in
the electroporated (C), Sox2-positive anterior crista region (C’’, arrows). (E–E’’) Adjacent sections probed for Gfp (E), Gata3 (E’), and Ser1 (E’’) transcripts.
(E’) Gata3 expression is down-regulated in the anterior crista (arrows) as well as the surrounding mesenchyme (arrowheads), but Ser1 expression is
not changed (E’’). (B,D,F) None of these gene expression patterns are affected in specimens electroporated with the pIRES-Gfp. Abbreviations: cvg,
cochleovestibular ganglion. Scale bar in (F’’) equals 100 mm and applies to all panels.
doi:10.1371/journal.pgen.1000050.g006
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non-sensory pathways are affected by down-regulating Bmp4

signaling. Consistent with the gene expression changes, the long-

term effects are disruption of the crista structure in addition to the

loss of sensory hair cells. Taken together, our results suggest that

Bmp4 has a global role in organizing the structure of the crista into

sensory and non-sensory domains rather than just promoting or

inhibiting hair cell fate [24,25]. This organizing role could involve

interacting with the Notch signaling pathway in cell type

specification.

Within the sensory pathway, both Msx1 and Lmo4 are affected

by the reduction of Bmp signaling. Msx1 has been shown to be

downstream of Bmp4 in several other tissues [56,57]. A similar

relationship has also been suggested in the inner ear [21,25]. No

crista phenotype in Msx1 null mutants has been reported so far,

but there could be functional redundancy between Msx1 and Msx2

[58]. Lmo4 is one of the Lim domain-only containing genes

expressed in the inner ear [59] and is thought to be required for

crista and canal formation in mice as well (Lin Gan, unpublished

results). Therefore, both Msx1 and Lmo4 could be important

mediators of Bmp4 signaling. Notably, pNoggin treatments appear

to down-regulate these genes more effectively than pSmad6,

presumably due to the more extensive and/or non-cell autono-

mous effects of Noggin.

In addition to regulating Msx1 and Lmo4 in the sensory region,

Bmp4 could also mediate the formation of the non-sensory

cruciatum by regulating p75Ngfr, Gata3, and Lmo4 activities. The

expression of p75Ngfr in the developing cristae has been known for

a while [19], yet it is not clear if there is a crista phenotype in

p75Ngfr null mutants [60].

Gata3 is an important gene in inner ear development as evident

by the rudimentary inner ear structure of Gata3-/- mouse embryos

[31,61]. In humans, mutations in GATA3 are associated with HDR

(hypoparathyroidism, sensorineural deafness, and renal anomaly)

syndrome [62]. Given the importance of a GATA factor (pannier)

in activating the achaete-scute proneural complex in Drosophila

[63,64], Gata3 may have a more global effect on cell fate

specification in vertebrate crista beyond formation of the

cruciatum (see below). Furthermore, the conserved Gata3 expres-

sion in the mesenchyme surrounding the presumptive cristae

between chicken and mouse [65], may also contribute to the

proper formation of the crista. We speculate that the observed

down-regulation of Gata3 expression in the mesenchyme by

pNoggin, but not by pSmad6, may contribute to the more severe

phenotype caused by pNoggin.

In other systems, Bmp and Gata pathways are thought to

interact. For example, during Drosophila embryogenesis, pannier

(homolog of Gata1) is induced by dpp (decapentaplegic, homolog of

Bmp4) in the dorsal embryo [63]. Later in development, regulation

of dpp becomes dependent on pannier [66]. Within the inner ear,

Gata3 expression appears to begin before that of Bmp4. However,

the relatively normal Bmp4 expression in Gata3 null inner ears does

not support Gata3 functioning upstream of Bmp4 [31]. Neverthe-

less, our results here show that the maintenance of Gata3 in the

cristae is dependent on Bmp4.

Furthermore, while we have classified genes as sensory and non-

sensory in the above discussion according to their expression

domains in a mature crista, their earlier developmental functions

may not be limited to the cell types that they are expressed in at

maturity. This notion is based on the ubiquitous expression of

these genes in the presumptive anterior and posterior cristae. The

lateral crista does not contain a cruciatum in either chicken or

mouse [4]. Yet, Gata3, considered to be a non-sensory gene, is

Figure 7. Down-regulation of phosphosmad1, Msx1 and Gata3 immunoreactivities following pSmad6 and pNoggin electroporations.
Sections of inner ears electroporated with pSmad6 (A,C,E,G), pGfp (B, D, F), pNoggin (H), and pIRES-Gfp (I) at E3.5 and harvested 14 hrs later. (A, A’) A
section stained with anti-phosphosmad1 (PS1, red), anti-GFP (green), and anti-neurofilament (blue) antibodies. Cells electroporated with pSmad6
(outlined) are GFP-positive (A) and PS1-negative (A’). The neurofilament staining identifies the presumptive crista region. (B, B’) A section from an
inner ear electroporated with pGfp showing the GFP-positive cells (B) are also positive for PS1 staining (B’). (C-D) pSmad6-positive cells (C,
arrowheads) are negative for anti-Msx staining, whereas GFP-control cells (D, arrowheads) are positive for Msx immunoreactivity (D’). (E–F’) pSmad6-
positive cells in (E) are negative for Gata3 (E’), but GFP-control cells (F) are Gata3 positive (F’). Arrows in (F) point to GFP-positive cells outside of the
crista region. (G) pSmad6-positive cells are positive for Sox2 staining (arrowheads). (H, I) A pNoggin-treated section (H) showing the absence of Gata3
staining in both the epithelium (e) and mesenchyme (m), whereas Gata3 staining is normal in pIRES-Gfp treated specimen (I). Blue arrowheads point
to cells that are GFP positive (data not shown).
doi:10.1371/journal.pgen.1000050.g007
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expressed in the prospective lateral crista of the mouse (Figure 3A).

It is not known if Gata3 is also expressed in the prospective lateral

crista of the chicken. Nevertheless, based on the limited number of

crista-associated genes analyzed here, the classic non-sensory

genes appear to be more readily affected than the so-called sensory

genes when Bmp signal transduction is down-regulated. There-

fore, an attractive hypothesis that remains to be tested is that the

non-sensory genes such as Gata3 and p75Ngfr are key players in

mediating the early organizing roles of Bmp4.

In addition, based on the inner ear phenotypes in Bmp4

conditional knockout embryos, Bmp4 is also required for the

formation of the utricle and saccule. Since little expression of Bmp4

is detected in their presumptive tissues using in situ hybridization

[9], further study is needed to determine whether cristae are the

source of Bmp4 that is required for their development.

Bmp4 in Canal Formation
We have proposed that the sensory cristae may induce the

formation of their associated semicircular canals [1]. Bmp4 is

strongly expressed in the presumptive cristae but not the canal

pouch [9]. Therefore, the canal phenotypes of Bmp4 conditional

null mutants also lend support to the hypothesis that crista

regulates canal formation. Recent fate mapping data in chicken

indicate that there is a canal genesis zone located adjacent to each

crista that gives rise to majority of the cells in the canal [36]. The

expression domain of Bmp2 in the canal pouch corresponds to this

canal genesis zone, and experimental evidence suggests that Fgfs

secreted from the presumptive cristae induce the formation of the

canals by regulating the expression of Bmp2 [36]. The absence of

all three canals in Fgf10 null mice is consistent with this hypothesis

[54]. It is not clear, though, whether the effect of Bmp4 on canal

formation is direct, or is indirectly mediated through Fgfs in the

crista. The use of SU5402 (inhibitor of Fgf receptors) to block

canal formation in chicken embryos also affects Bmp4 expression in

the crista (Chang and Wu, unpublished results). Therefore, both

Fgfs and Bmp4 could be involved in mediating canal formation.

In addition to the postulated role of Bmp2 in canal formation,

Dlx5 is also a key player in canal formation, and its activity is

directly or indirectly regulated by Bmp4 as well. Even though the

canal phenotypes in Dlx5-/- mutants are milder than those in

Bmp4 conditional mutants, the phenotypes in Dlx5-/-; Dlx6-/-

double mutants appear to be more severe [16]. It is possible that

there is a positive feedback loop between Dlx and Bmp4 in canal

formation, such that Dlx proteins induce Bmp4, and in turn, their

activities are maintained by Bmp4. It is also interesting that the

expression of Dlx5 in the canal pouch is more susceptible than

Figure 8. pSmad6 and pNoggin-induced inner ear phenotypes. Paint-filled inner ears at E7 after electroporation with pGfp (A, B), pSmad6 (C), or
pNoggin (D) at E3.5. Inner ears electroporated with pGfp are either normal (A), or show non-resorption of the anterior canal (B, arrow) and absence of
a distinct anterior ampulla (B, small arrow). (C) A pSmad6-treated inner ear showing a malformed anterior ampulla (small arrow) and absence of the
anterior canal. The common crus is wider than normal (arrow). (D) A pNoggin-treated inner ear showing the absence of the three ampullae, anterior
and lateral canals. The posterior fusion plate is not resorbed (arrow). (E–G) Anti-HCA staining of partially dissected inner ear of controls (E) or inner
ears electroporated with pGfp (F) or pSmad6 (G) at E3.5 and harvested at E8.5. (E) Anterior crista shows a typical saddle or W-shaped pattern with anti-
HCA staining. (F) pGfp-treated inner ear with a canal pouch that is not resorbed (arrow), but the anterior crista appears normal. (G) pSmad6-treated
inner ear showing a malformed and reduced anterior crista and no anterior canal. Arrows point to the outline of the ampulla. (H, I, J) Flattened
anterior cristae from (E, F, G), respectively. Arrows in (H) and (I) point to the location of the septum cruciatum, and punctate staining represents
stereocilia bundles on top of the sensory hair cells. Orientations: M, medial. Scale bars in (C), (E), and (H) apply to (A–D), (F–G), and (I–J), respectively.
doi:10.1371/journal.pgen.1000050.g008
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Hmx3 to the lack of Bmp4. Even though both Dlx and Hmx

pathways are required for canal formation, regulation of these two

pathways appears distinct. This notion is also supported by studies

of Gbx2-/- and Wnt1-/-; Wnt3a-/- mutant embryos, in which Dlx5

expression is down-regulated but Hmx3 expression is relatively

normal [12,67].

Regulators of Bmp4 Expression
Given the importance of Bmp4 in forming the vestibular

apparatus, it is not surprising that many genes such as Dlx, Hmx,

Tbx1, Eya1 and Six1 regulate its activity, directly or indirectly

(Figure 9C). Within the presumptive crista, Bmp4 expression does

not seem to be dependent on Bmp signaling (Figures 5 and 6). In

contrast, Bmp4 expression is thought to be maintained by Notch

signaling [68]. When Notch signaling is blocked by DAPT, a

gamma-secretase inhibitor, Bmp4 expression in the crista is

drastically reduced [68], whereas ectopic expression of activated

Notch causes ectopic sensory patches, some of which are Bmp4

positive [46]. This Notch signaling is thought to be mediated by

Ser1. Consistently, mice with conditional knockout of Jag1 fail to

form cristae [51,52].

Taken together, our results unequivocally demonstrate the

importance of Bmp4 in patterning and cell fate specification of

cristae and canals. Depending on the genetic background, some

Bmp4 +/2 mice also display mild vestibular and auditory defects

[35]. Given the multiple effects of Bmp4 in the inner ear, it is not

surprising that paradoxical results were obtained from various in

vitro experimental conditions [24,25]. Blocking Bmp signal

transduction in the presumptive crista of chicken reveals several

potential pathways by which Bmp4 could mediate its functions.

The relationships among the proteins regulated by Bmps including

Gata3, Lmo4, Msx1, and p75Ngfr, will require further investiga-

tions. In erythroid cells, Gata1 and Lmo2 are known to directly

interact and form a complex with other transcription factors [69].

Therefore, it is conceivable that activation of Bmp downstream

genes in the crista also require Gata3 and Lmo4 to form a

transcriptional complex. Future studies will focus on deciphering

the relationships among these proteins in the formation of an

important sensory organ, the crista.

Supporting Information

Figure S1 Generation of a floxed Bmp4 allele in which loxP sites

are inserted in introns 2 and 4. A FRT flanked Pgk-neo cassette

was placed downstream of the 39 loxP site and removed in vivo by

crossing mice carrying the floxed Bmp4lox-Neo allele with ACTB-

FLPe transgenic mice [70]. The targeting vector was electropo-

rated into TL1 ES cells, and clones carrying the correctly targeted

Bmp4loxP allele were identified by Southern blot analysis of

genomic DNA digested with the XbaI restriction enzyme and

injected into blastocysts. Homozygous Bmp4loxP mice on a 129/

Black Swiss background are fully viable and show no obvious

abnormalities. Compound mutant mice with Bmp4loxP and

Bmp4Tm1 alleles show reduced viability with only 72% of the

expected number of animals reaching weaning age. The surviving

Figure 9. Summary of crista formation and the potential roles of Bmp4. (A) Schematic summary of crista formation from the prosensory to
mature stage with sensory hair cells and supporting cells. The blue and yellow colors outside the crista represent mesenchymal Msx1- and Gata3-
positive cells, respectively. Initially, a number of genes are co-expressed in the prosensory region (B), but these genes segregate into separate
domains as sensory (blue) and non-sensory (yellow) fates are specified. Thus far, there is no experimental evidence that the crista prosensory region
gives rise to neurons as in the prosensory regions for the maculae [48]. (C) Within the crista epithelium (box), Bmp4 expression is regulated by Notch
signaling, possibly mediated by Ser1. Whether Sox2 and Fgf10 regulate Bmp4 expression is not clear. Nevertheless, Bmp4 mediates crista formation
by regulating Msx1 and Lmo4 in the sensory and Gata3, Lmo4 and p75Ngfr in the non-sensory (cruciatum) regions. Furthermore, deletion of genes
such as Dlx (Dlx5 and Dlx6), Eya1, Hmx (Hmx2 and Hmx3), Tbx, and Six1 affects Bmp4 expression and crista formation. Among these genes, Tbx1 and
possibly Dlx are co-expressed with Bmp4 in the crista.
doi:10.1371/journal.pgen.1000050.g009
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Bmp4loxP/Tm1 animals appear normal. The cause of the

reduced viability is unknown.

Found at: doi:10.1371/journal.pgen.1000050.s001 (7.65 MB TIF)

Table S1 Summary of phenotypes.

Found at: doi:10.1371/journal.pgen.1000050.s002 (0.04 MB

DOC)
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