
Submitted 12 February 2024
Accepted 10 July 2024
Published 30 August 2024

Corresponding author
Sahar Alturki,
sahar.alturki1@gmail.com

Academic editor
Antonio Jesus Diaz-Honrubia

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.2228

Copyright
2024 Alturki and Almoaiqel

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

Towards an automated classification
phase in the software maintenance
process using decision tree
Sahar Alturki and Sarah Almoaiqel
Department of Software Engineering, King Saud University, Riyadh, Saudi Arabia

ABSTRACT
The software maintenance process is costly, accounting for up to 70% of the total cost
in the software development life cycle (SDLC). The difficulty of maintaining software
increases with its size and complexity, requiring significant time and effort. One way to
alleviate these costs is to automate parts of the maintenance process. This research
focuses on the automation of the classification phase using decision trees (DT) to
sort, rank, and accept/reject maintenance requests (MRs) for mobile applications.
Our dataset consisted of 1,656 MRs. We found that DTs could automate sorting and
accepting/rejecting MRs with accuracies of 71.08% and 64.15%, respectively, though
ranking accuracywas lower at 50%.WhileDTs can reduce costs, effort, and time, human
verification is still necessary.

Subjects Artificial Intelligence, Software Engineering
Keywords Decision tree, Machine learning, Maintenance request, Software engineering,
Software maintenance

INTRODUCTION
Software engineering aims to produce reliable, maintainable, and high-quality software
within a specified timeframe. One phase in the SDLC is the maintenance phase, which is
both costly and time-consuming. Software maintenance involves correcting and improving
software after its release (Baqais, Alshayeb & Baig, 2013; Sharawat, 2012). It is essential for
the continued use of software, as neglected software becomes obsolete (Stojanov & Stojanov,
2016). Maintenance can account for up to 70% of project costs (Ikram et al., 2020). As
software increases in size and complexity, maintenance becomes more challenging.

Automating parts of the maintenance phase can reduce associated costs, time, and
effort. The IEEE model outlines seven phases in the software maintenance life cycle
(SMLC), beginning with classification. This phase involves receiving requests, assigning
maintenance types, priorities, and unique numbers. Subsequent phases include analysis,
design, implementation, testing, acceptance testing, and delivery, as shown in Fig. 1 (Ren
et al., 2011). Our study focuses on the classification phase, which involves collecting MRs,
sorting them by type, ranking them by priority and severity, and deciding on acceptance
or rejection. We evaluate the applicability and accuracy of DTs for this purpose (Jo, 2021).

Most research has focused on sorting, severity, priority, or acceptance/rejection of
MRs using various machine learning techniques such as support vector machines (SVM),
random forest (RF), linear SVC, KNN, naive Bayes (NB), and logistic regression. However,

How to cite this article Alturki S, Almoaiqel S. 2024. Towards an automated classification phase in the software maintenance process us-
ing decision tree. PeerJ Comput. Sci. 10:e2228 http://doi.org/10.7717/peerj-cs.2228

https://peerj.com/computer-science
mailto:sahar.alturki1@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2228
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
http://doi.org/10.7717/peerj-cs.2228


Figure 1 IEEE software maintenance life cycle model.
Full-size DOI: 10.7717/peerjcs.2228/fig-1

no research has comprehensively automated all activities in the classification phase. Our
research aims to fill this gap by using DTs for sorting MRs based on maintenance types
(corrective, adaptive, and perfective), ranking themby severity and priority, and deciding on
acceptance or rejection. We focus on mobile applications, given their current prominence
and need for rapid maintenance (Phetrungnapha & Senivongse, 2019).

This research addresses the following question: Is the DT learning technique suitable
for sorting, ranking, and accepting/rejecting MRs with acceptable accuracy? Our study
contributes to solving significant problems in the software maintenance process, such as
reducing time, effort, and cost, and speeding up the maintenance process. Automating the
classification process allows maintenance teams to focus on other phases, reduces human
intervention, and directs future research toward further automation in the SMLC.

This article is divided into literature review, methodology, data collection, data
processing, feature extraction, decision tree, experimental results, discussion, and
conclusion.

LITERATURE REVIEW
Sorting maintenance requests
Machine learning techniques have been used to sort and categorize MRs. Phetrungnapha &
Senivongse (2019) developed an approach to categorize user reviews into feature requests
or bug reports using several machine learning techniques, including DT, linear SVC,
KNN, NB, logistic regression, and ensemble methods. Ciurumelea, Panichella & Gall
(2018) introduced the AUREA tool to help developers analyze user feedback and plan
maintenance activities. Ekanata & Budi (2018) used machine learning to categorize user

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 2/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-1
http://dx.doi.org/10.7717/peerj-cs.2228


reviews automatically, finding logistic regression to be the most effective. Levin & Yehudai
(2017) classified commitments inmaintenance activities using J48, GBM, and RF, achieving
an accuracy of 76%.

Otoom, Al-jdaeh Hammad & Hammad (2019) built a classifier to distinguish software
bug reports into corrective or perfective reports using keyword frequency and classification
algorithms, achieving an average accuracy of 93.1%with SVM. Pandey et al. (2017) analyzed
bug reports using various algorithms, including RF and SVM, finding high performance
with RFs and SVMs. Ahmed, Bawany & Shamsi (2021) introduced the CaPBug framework,
using NLP and machine learning to classify and prioritize error reports, achieving class
prediction accuracy of 88.78% with RF.

Ranking maintenance requests
Researchers have also addressed ranking MRs using machine learning techniques.
Srewuttanapitikul & Muengchaisri (2016) proposed prioritizing software flaws based on
severity, priority, and user reports. Guzman, Ibrahim & Glinz (2017) surveyed researchers
and practitioners to rank and prioritize tweets for software development. Ekanayake (2021)
proposed using the RAKE algorithm for keyword extraction and NB, DT, and logistic
regression for prioritizing error reports. Alenezi & Banitaan (2013) predicted bug priority
using DTs, NB, and RF, concluding that DTs and RFs outperformed NB.

Researchers have explored variousmachine learning techniques for rankingmaintenance
requests based on severity and priority. Srewuttanapitikul & Muengchaisri (2016) suggested
using a natural language processing approach combined with an analytic hierarchy process
to prioritize MRs by severity, priority, and the number of users reporting the same
defect. Guzman, Ibrahim & Glinz (2017) conducted a survey of 84 software engineering
practitioners to rank tweets for software development, emphasizing the importance of
audience-based requirements engineering. Ahmed, Bawany & Shamsi (2021) introduced
the CaPBug framework, which uses natural language processing and machine learning to
classify and prioritize error reports into six categories and five priority levels. The CaPBug
framework achieved class prediction accuracy of 88.78% with the RF classifier and priority
prediction accuracy of 90.43%.

Ekanayake (2021) proposed a model using the RAKE algorithm to extract keywords
from error reports, converting them into attributes for prioritizing MRs with NB, DT,
and logistic regression. The model achieved logistic regression accuracy of 0.86, with DT
and NB accuracies of 0.81 and 0.79, respectively. Alenezi & Banitaan (2013) suggested
using machine learning algorithms to predict bug priority, concluding that DTs and
RFs outperformed NB. Tian et al. (2015) proposed a multi-factor analysis approach
for predicting bug report priority, achieving a relative improvement of 209% in the
average F-measure. Umer, Liu & Sultan (2018) introduced an emotion-based approach
for predicting bug report priority using natural language processing to identify emotional
words and a supervised machine learning classifier. Their approach outperformed the
latest technologies, improving the F-measure by more than 6%. Ramay et al. (2019)
proposed a deep neural network-based approach for predicting bug report severity, which
outperformed existing methods and improved the F-measure by 7.90%.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2228


Accepting/rejecting maintenance requests
Various machine learning techniques have been used to predict the acceptance or rejection
of MRs.Nizamani et al. (2018) proposed a NB polynomial approach for this task, achieving
an accuracy of 89.25%. Umer, Liu & Sultan (2019) used sentiment analysis to predict
approval, achieving 77.90% accuracy. Cheng et al. (2021) used deep learning for approval
prediction, achieving 90.56% accuracy. Nyamawe et al. (2020) recommended refactorings
based on feature requests, achieving 83.19% accuracy. Nizamani et al. (2018) proposed
a NB polynomial approach for predicting the acceptance or rejection of improvement
requests, using data from Bugzilla. Their method achieved an accuracy of 89.25%. Umer,
Liu & Sultan (2019) developed a sentiment-based approach to predict the approval of
enhancement reports, achieving 77.90% accuracy and a significant improvement in the
F-measure to 74.53%.

Cheng et al. (2021) proposed a deep learning approach to predict the approval of
enhancement reports, achieving 90.56% accuracy, 80.10% recall, and 85.01% F-measure.
Nafees & Rehman (2021) used SVM for predicting the acceptance or rejection of
improvement reports, comparing it with logistic regression and multinomial NB. Their
study found that SVM outperformed other algorithms with high accuracy. Nyamawe et
al. (2020) suggested a machine learning approach for predicting software refactorings
based on feature requests, achieving 83.19% accuracy. Arshad et al. (2021) proposed a deep
learning technique for predicting the resolution of enhancement reports, using Word2Vec
and a deep learning classifier to learn semantic and grammatical relations between words.
Their approach enhanced performance and demonstrated effective prediction accuracy.

METHODOLOGY
We used an experimental methodology, collecting data from records, documents, and help
desk services of mobile applications. Statistical analysis was used to evaluate the efficiency
of DTs for sorting, ranking, and deciding onMRs. The stages included data collection, data
processing, feature extraction, model building, testing, and analysis, as shown in Fig. 2.

Collecting data
To collect data, we contacted several researchers and developers, seeking a dataset consisting
of MR texts and their sorting, ranking, and acceptance/rejection classes. Unfortunately, we
did not find a suitable dataset. Therefore, we turned to online data collection sites, such as
Mendeley Data, which provide datasets used in scientific research. We used two datasets:
the Commit dataset from Levin & Yehudai (2017) and the Pan dataset from Al-Hawari,
Najadat & Shatnawi (2021). The Commit dataset classifies MRs as perfective, adaptive, and
corrective, while the Pan dataset categorizes user reviews into problem discovery, feature
request, information seeking, and information giving. We reclassified the Pan dataset to
match the Commit dataset’s categories. The final dataset consisted of 1,656 MRs, as shown
in Fig. 3. The demography of MRs is shown in Table 1. We split the dataset into 80% for
training and 20% for testing, following common recommendations (Joseph, 2022; Rácz,
Bajusz & Héberger, 2021).

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 4/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 2 Stages of methodology.
Full-size DOI: 10.7717/peerjcs.2228/fig-2

Figure 3 Dataset Excel file.
Full-size DOI: 10.7717/peerjcs.2228/fig-3

Processing data
Before applying DTs, we processed the natural language to convert unstructured data into
structured data. We removed links, user/application information, numbers, stop words,
and punctuation. We then applied lemmatization to retrieve words in their normalized
form, as shown in Fig. 4 (Razno, 2019; Korenius et al., 2004). The Natural Language Tool
Kit (NLTK) library was used for lemmatization (Bird, 2006).

Extracting features
We used the term frequency-inverse document frequency (TF-IDF) technique for text
feature extraction, which measures document relationships (Zhang, Zhou & Yao, 2020;

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 5/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-2
https://doi.org/10.7717/peerjcs.2228/fig-3
http://dx.doi.org/10.7717/peerj-cs.2228


Table 1 Demography of sort, rank, accept/reject MRs.

MRs Classes Number of
commits

Percentage

Corrective 818 50%
Perfective 486 29%Sorting

Adaptive 352 21%
Class 1 very important (Critical Severity and High Priority) 346 21%
Class 2 (Critical Severity and Medium Priority) or (Normal
Severity and High Priority)

230 14%

Class 3 (Critical Severity and Low Priority) or (Normal
Severity and Medium Priority)

421 25%Ranking

Class 4 Not important (Normal Severity and Low Priority) 659 40%
Accept 1,060 64%

Accepting or Rejecting
Reject 596 36%

Figure 4 The dataset after process natural language.
Full-size DOI: 10.7717/peerjcs.2228/fig-4

Qaiser & Ali, 2018). The TF-IDF vectorizer library was used to extract features from the
processed dataset.

Decision tree
We developed the DT using Python, which is suitable for machine learning and AI. We
used the Scikit-learn library for supervised learning algorithms and statistical analysis
(Pedregosa et al., 2011). The dataset was divided into 80% for training and 20% for testing.
The DT was trained to sort, rank, and accept/reject MRs. We used the fit() method to
train the model, taking the result of feature extraction (TF-IDF) and the desired column
in the trained dataset. The workflow of the implemented DT is shown in the Fig. 5. The
DT classified MRs into three classes: perfective, corrective, and adaptive. The model was
trained for ranking MRs based on severity and priority and for accepting/rejecting MRs.

RESULTS
In this section, we present the results of applying DT to classification, divided into three
subsections: sorting, ranking, and accepting/rejecting MRs.

Result of sorting MRs
Whenwe applied theDT to sortMRs, as shown in Fig. 6, the accuracy was 71.08%, precision
was 71.1%, and recall was 71.1%. The confusion matrix of sorting MRs is represented in
Fig. 7. By using actual and predicted values, we found that 42 MRs were correctly classified

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 6/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-4
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 5 Workflow of decision tree.
Full-size DOI: 10.7717/peerjcs.2228/fig-5

as adaptive, 136 as corrective, and 58 as perfective. The adaptive class represented 20.5%
of the actual and 19.9% of the predicted classes, the perfective class represented 28.6% of
the actual and 30.1% of the predicted classes, and the corrective class represented 50.9% of
the actual and 50% of the predicted classes, as shown in Fig. 8.

Result of ranking MRs
When we applied the DT to rank MRs, as shown in Fig. 9, the accuracy was 50%, precision
was 50%, and recall was 50%. The confusion matrix of ranking MRs is shown in Fig. 10.
Using actual and predicted values, we obtained 35 MRs correctly classified as class 1, 11 as
class 2, 29 as class 3, and 91 as class 4. Class 1 represented 22.6% of actual and 20.5% of
predicted classes, class 2 represented 13.9% of actual and 10.8% of predicted classes, class 3
represented 23.8% of actual and 19.9% of predicted classes, and class 4 represented 39.8%
of actual and 48.8% of predicted classes, as shown in Fig. 11.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 7/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-5
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 6 Decision tree of sort MR.
Full-size DOI: 10.7717/peerjcs.2228/fig-6

Figure 7 Confusionmatrix of sortingMR.
Full-size DOI: 10.7717/peerjcs.2228/fig-7

Result of accepting/rejecting MRs
When we applied the DT to accept or reject MRs, as shown in Fig. 12, the accuracy was
64.15%, precision was 64.2%, and recall was 64.2%. The confusion matrix of accepting or
rejecting MRs is shown in Fig. 13. By using actual and predicted values, we obtained 149
accepted MRs and 64 rejected MRs. The accepted MRs represented 66.6% of the actual and
59% of the predicted classes, while the rejected MRs represented 33.4% of the actual and
41% of the predicted classes, as shown in Fig. 14.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 8/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-6
https://doi.org/10.7717/peerjcs.2228/fig-7
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 8 (A) The actual classes of sort MR. (B) The prediction classes of sort MR.
Full-size DOI: 10.7717/peerjcs.2228/fig-8

Figure 9 Decision tree of rankMR.
Full-size DOI: 10.7717/peerjcs.2228/fig-9

DISCUSSION
The purpose of this researchwas to evaluate the suitability and accuracy of theDT technique
for automating the sorting, ranking, and acceptance/rejection of MRs. The experimental
results indicate that DTs can be applied to sort and accept/reject MRs with acceptable
accuracy, but their ranking accuracy is lower. The sorting accuracy was 71.08%, while the
ranking accuracy was 50%, and the acceptance/rejection accuracy was 64.15%. In sorting

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 9/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-8
https://doi.org/10.7717/peerjcs.2228/fig-9
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 10 Confusionmatrix of rankingMR.
Full-size DOI: 10.7717/peerjcs.2228/fig-10

Figure 11 (A) The actual classes of rankMR. (B) The predicted classes of rankMR.
Full-size DOI: 10.7717/peerjcs.2228/fig-11

MRs using DT, 236 out of 332 MRs were correctly classified, while the rest were incorrectly
classified. In ranking MRs using DT, 166 out of 332 MRs were correctly classified, while

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 10/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-10
https://doi.org/10.7717/peerjcs.2228/fig-11
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 12 Decision tree of accept or reject MR.
Full-size DOI: 10.7717/peerjcs.2228/fig-12

Figure 13 Confusionmatrix of accepting or rejectingMR.
Full-size DOI: 10.7717/peerjcs.2228/fig-13

the rest were incorrectly classified. In accepting/rejecting MRs using DT, 213 out of 332
MRs were correctly classified, while the rest were incorrectly classified.

Our research aligns with other studies, such as Srewuttanapitikul & Muengchaisri (2016),
who found that DT accuracy is acceptable for sorting MRs in the classification phase.
Previous studies have reported sorting accuracy ranging from 63% to 88.78% (Ahmed,
Bawany & Shamsi, 2021). Comparing our sorting accuracy of 71.08%with Levin & Yehudai

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 11/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-12
https://doi.org/10.7717/peerjcs.2228/fig-13
http://dx.doi.org/10.7717/peerj-cs.2228


Figure 14 (A) The actual classes of accept reject MR. (B) The predicted classes of accept or reject MR.
Full-size DOI: 10.7717/peerjcs.2228/fig-14

(2017), who reported 76% accuracy and 63% kappa accuracy, shows that our results are
within an acceptable range. However, the ranking accuracy in our study is lower than
previous studies, which reported accuracy between 70% and 90.43% (Ahmed, Bawany &
Shamsi, 2021; Srewuttanapitikul & Muengchaisri, 2016). The acceptance/rejection accuracy
in our study is 64.15%, lower than the reported accuracy of 77.90% to 90.56% in previous
studies (Nizamani et al., 2018; Umer, Liu & Sultan, 2019; Cheng et al., 2021).

The lower ranking accuracy might be due to the characteristics of the training dataset,
which significantly influence the classification results. The performance of DTs decreases
with an increase in the number of features and categories (Pal & Mather, 2003). Our study’s
weaknesses include the broad scope of the dataset, which spans different applications.
Applying the model to a specific application might yield more accurate results. Future
studies should consider additional factors influencing the acceptance/rejection of MRs,
such as resources, costs, and time.

CONCLUSIONS
This study aimed to evaluate the suitability and accuracy of DTs for automating the
classification phases of software maintenance. Our results indicate that DTs can effectively
automate sorting and acceptance/rejection of MRs, though the ranking accuracy is lower.
In our research, we processed and classified 1,656 MRs using the TF-IDF feature extraction
technique and applied DTs for sorting, ranking, and acceptance/rejection. The sorting and
acceptance/rejection accuracies were acceptable, but the ranking accuracy was inadequate.
Future research should extend the study to include preventive maintenance, explore
different techniques for classification, and consider additional factors such as budget,

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 12/16

https://peerj.com
https://doi.org/10.7717/peerjcs.2228/fig-14
http://dx.doi.org/10.7717/peerj-cs.2228


resources, and time for acceptance/rejection. Moreover, applying the research to other
languages, such as Arabic, could be beneficial.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sahar Alturki conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

• Sarah Almoaiqel analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and raw data is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2228#supplemental-information.

REFERENCES
Ahmed HA, Bawany NZ, Shamsi JA. 2021. Capbug-a framework for automatic bug

categorization and prioritization using NLP and machine learning algorithms. IEEE
Access 9:50496–50512 DOI 10.1109/ACCESS.2021.3069248.

Al-Hawari A, Najadat H, Shatnawi R. 2021. Classification of application reviews into
software maintenance tasks using data mining techniques. Software Quality Journal
29(3):667–703 DOI 10.1007/s11219-020-09529-8.

Alenezi M, Banitaan S. 2013. Bug reports prioritization: which features and classifier to
use? In: Proceedings of the 12th International Conference on Machine Learning and
Applications, vol. 2. DOI 10.1109/ICMLA.2013.114.

ArshadMA, Huang Z, Riaz A, Hussain Y. 2021. Deep learning-based resolution
prediction of software enhancement reports. In: 2021 IEEE 11th Annual Computing
and Communication Workshop and Conference (CCWC). Piscataway: IEEE, 492–499
DOI 10.1109/CCWC51732.2021.9375841.

Baqais AAB, AlshayebM, Baig ZA. 2013.Hybrid intelligent model for software mainte-
nance prediction. In: Proceedings of the World Congress on Engineering, London, U.K.
358–362.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2228#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2228#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2228#supplemental-information
http://dx.doi.org/10.1109/ACCESS.2021.3069248
http://dx.doi.org/10.1007/s11219-020-09529-8
http://dx.doi.org/10.1109/ICMLA.2013.114
http://dx.doi.org/10.1109/CCWC51732.2021.9375841
http://dx.doi.org/10.7717/peerj-cs.2228


Bird S. 2006. NLTK: the natural language toolkit. In: Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics.

Cheng J, SadiqM, Kalugina OA, Nafees SA, Umer Q. 2021. Convolutional neu-
ral network based approval prediction of enhancement reports. IEEE Access
9:122412–122424 DOI 10.1109/ACCESS.2021.3108624.

Ciurumelea A, Panichella S, Gall HC. 2018. Automated user reviews analyser. In:
Proceedings of the 40th International Conference on Software Engineering: Companion
Proce, Gothenburg, Sweden. DOI 10.1145/3183440.3194988.

Ekanata Y, Budi I. 2018.Mobile application review classification for the Indonesian
language using machine learning approach. In: Proceedings of the 4th Interna-
tional Conference on Computer and Technology Applications, Istanbul, Turkey.
DOI 10.1109/CATA.2018.8398667.

Ekanayake JB. 2021. Predicting bug priority using topic modelling in imbalanced learn-
ing environments. International Journal of System and Service-Oriented Engineering
11(1):31–42 DOI 10.4018/ijssoe.2021010103.

Guzman E, IbrahimM, Glinz M. 2017. Prioritizing user feedback from twitter: a survey
report. In: Proceedings of the 4th International Workshop on CrowdSourcing in
Software Engineering. DOI 10.1145/3127005.3127016.

Ikram A, Jalil MA, Ngah AB, Khan AS. 2020. Towards offshore software maintenance
outsourcing process model. International Journal of Computer Science and Network
Security 20(4):6–14.

Jo T. 2021. Decision tree. In:Machine learning foundations: supervised, unsupervised,
and advanced learning. Cham: Springer International Publishing, 141–165
DOI 10.1007/978-3-030-65900-4_7.

Joseph VR. 2022. Optimal ratio for data splitting. Statistical Analysis and Data Mining:
The ASA Data Science Journal 15(4):531–538 DOI 10.1002/sam.11583.

Korenius T, Laurikkala J, Järvelin K, Juhola M. 2004. Stemming and lemmatization in
the clustering of finnish text documents. In: Proceedings of the 13th ACM Interna-
tional Conference on Information and Knowledge Management, New York, NY, USA.
DOI 10.1145/1031171.1031285.

Levin S, Yehudai A. 2017. Boosting automatic commit classification into maintenance
activities by utilizing source code changes. In: Proceedings of the 13th International
Conference on Predictive Models and Data Analytics in Software Engineering, New
York, NY, USA. DOI 10.1145/3127005.3127016.

Nafees SA, Rehman FA. 2021.Machine learning based approval prediction for enhance-
ment reports. In: 2021 International Bhurban Conference on Applied Sciences and
Technologies (IBCAST). 377–382 DOI 10.1109/IBCAST51254.2021.9393180.

Nizamani ZA, Liu H, Chen DM, Niu Z. 2018. Automatic approval prediction for
software enhancement requests. Automated Software Engineering 25:347–381
DOI 10.1007/s10515-017-0229-y.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 14/16

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2021.3108624
http://dx.doi.org/10.1145/3183440.3194988
http://dx.doi.org/10.1109/CATA.2018.8398667
http://dx.doi.org/10.4018/ijssoe.2021010103
http://dx.doi.org/10.1145/3127005.3127016
http://dx.doi.org/10.1007/978-3-030-65900-4_7
http://dx.doi.org/10.1002/sam.11583
http://dx.doi.org/10.1145/1031171.1031285
http://dx.doi.org/10.1145/3127005.3127016
http://dx.doi.org/10.1109/IBCAST51254.2021.9393180
http://dx.doi.org/10.1007/s10515-017-0229-y
http://dx.doi.org/10.7717/peerj-cs.2228


Nyamawe AS, Liu H, Niu N, Umer Q, Niu Z. 2020. Feature requests-based recom-
mendation of software refactorings. Empirical Software Engineering 25:4315–4347
DOI 10.1007/s10664-020-09871-2.

OtoomAF, Al-jdaeh S, HammadM. 2019. Automated classification of software bug
reports. In: Proceedings of the 9th international conference on information communi-
cation and management. 17–21 DOI 10.1145/3357419.3357424.

Pal M, Mather PM. 2003. An assessment of the effectiveness of decision tree methods
for land cover classification. Remote Sensing of Environment 86(4):554–565
DOI 10.1016/S0034-4257(03)00132-9.

Pandey N, Sanyal DK, Hudait A, Sen A. 2017. Automated classification of software
issue reports using machine learning techniques: an empirical study. Innovations in
Systems and Software Engineering 13:279–297 DOI 10.1007/s11334-017-0294-1.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12:2825–2830.

Phetrungnapha K, Senivongse T. 2019. Classification of mobile application user
reviews for generating tickets on issue tracking system. In: Proceedings of the 12th
International Conference on Information & Communication Technology and System,
Surabaya, Indonesia. DOI 10.1109/ICTS.2019.8850962.

Qaiser S, Ali R. 2018. Text mining: use of TF-IDF to examine the relevance of words
to documents. International Journal of Computer Applications 181(1):25–29
DOI 10.5120/ijca2018917395.

RamayWY, Umer Q, Yin XC, Zhu C, Illahi I. 2019. Deep neural network-based severity
prediction of bug reports. IEEE Access 7:46846–46857
DOI 10.1109/ACCESS.2019.2909746.

RaznoM. 2019.Machine learning text classification model with NLP approach. Com-
puter Linguistics and Intelligent Systems 2:71–73.

Rácz A, Bajusz D, Héberger K. 2021. Effect of dataset size and train/test split ratios in
QSAR/QSPR multiclass classification.Molecules 26(4):1111
DOI 10.3390/molecules26041111.

Ren Y, Liu Z, Xing T, Chen X. 2011. Software maintenance process model and con-
trastive analysis. In: Proceedings of the 2011 International Conference on Information
Management, Innovation Management and Industrial Engineering, Shenzhen, China.
DOI 10.1109/ICIII.2011.324.

Sharawat S. 2012. Software maintainability prediction using neural networks. Interna-
tional Journal of Engineering Research and Applications 2(5):750–755.

Stojanov Z, Stojanov J. 2016. Exploring software maintenance process characteristics by
using inductive thematic analysis. In: International conference on Applied Internet and
Information Technologies. 9–17.

Srewuttanapitikul K, Muengchaisri P. 2016. Prioritizing software maintenance plan by
analyzing user feedback. In: 2016 International Conference on Information Science and
Security (ICISS). 1–5 DOI 10.1109/ICISSEC.2016.7885865.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 15/16

https://peerj.com
http://dx.doi.org/10.1007/s10664-020-09871-2
http://dx.doi.org/10.1145/3357419.3357424
http://dx.doi.org/10.1016/S0034-4257(03)00132-9
http://dx.doi.org/10.1007/s11334-017-0294-1
http://dx.doi.org/10.1109/ICTS.2019.8850962
http://dx.doi.org/10.5120/ijca2018917395
http://dx.doi.org/10.1109/ACCESS.2019.2909746
http://dx.doi.org/10.3390/molecules26041111
http://dx.doi.org/10.1109/ICIII.2011.324
http://dx.doi.org/10.1109/ICISSEC.2016.7885865
http://dx.doi.org/10.7717/peerj-cs.2228


Tian Y, Lo D, Xia X, Sun C. 2015. Automated prediction of bug report priority
using multifactor analysis. Empirical Software Engineering 20:1354–1383
DOI 10.1007/s10664-014-9331-y.

Umer Q, Liu H, Sultan Y. 2018. Emotion based automated priority prediction for bug
reports. IEEE Access 6:35743–35752 DOI 10.1109/ACCESS.2018.2850910.

Umer Q, Liu H, Sultan Y. 2019. Sentiment based approval prediction for enhancement
reports. Journal of Systems and Software 155:57–69 DOI 10.1016/j.jss.2019.05.026.

Zhang Y, Zhou Y, Yao J. 2020. Feature extraction with TF-IDF and game-theoretic shad-
owed sets. In: Information processing and management of uncertainty in knowledge-
based systems. DOI 10.1007/978-3-030-50146-4_53.

Alturki and Almoaiqel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2228 16/16

https://peerj.com
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1109/ACCESS.2018.2850910
http://dx.doi.org/10.1016/j.jss.2019.05.026
http://dx.doi.org/10.1007/978-3-030-50146-4_53
http://dx.doi.org/10.7717/peerj-cs.2228

