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Abstract: The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of
channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal,
vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses.
TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect
modulation of a large series of intracellular pathways, orchestrates a range of cellular processes,
such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway
has been proposed as a protective mechanism to detect and respond to harmful agents in various
pathological conditions, including several inflammatory diseases. Specific attention has been paid to
TRPA1 contribution to the transition of inflammation and immune responses from an early defensive
response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as
beneficial tools for the treatment of inflammatory conditions.
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1. Introduction

The transient receptor potential (TRP) family of channels includes non-selective cation
channels that are represented by 28 different members grouped in 6 subfamilies, namely:
canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), mucolipin (TRPML), polycystin
(TRPP), and ankyrin (TRPA). TRP channels are activated by highly heterogenous, exoge-
nous, and endogenous stimuli, such as changes in temperature and pH, reactive oxygen
species (ROS), osmotic stress, and bacterial toxins or chemical compounds [1]. Their activa-
tion is essential in several sensory transduction pathways [2], homeostatic functions [3],
and physiological and pathophysiological processes [1,3]. Given their expression in sensory
neurons, some TRP channels have been associated with the detection and signaling of
painful stimuli. However, recent findings have shown TRP channel expression in a variety
of immune and inflammatory cells, such as dendritic cells, macrophages, and T lympho-
cytes [4], and remarkable crosstalk between nerve fibers and immune/inflammatory cells
in the regulation of inflammatory processes [5–8].

Among the different TRPs, TRPM2 is widely expressed in immune cells, such as neu-
trophils, where it modulates chemotaxis in different inflammatory conditions [9,10]. TRPM7
also contributes to neutrophil recruitment, as the receptor’s kinase domain is important
for neutrophil chemotaxis [11]. TRPV4 is expressed in monocytes, neutrophils, and T lym-
phocytes [12], and it has recently been detected in bone marrow-derived macrophages [13].
TRPV4 has been proposed to mediate neutrophil adhesion and chemotaxis and increase
ROS production under inflammatory conditions [14]. Furthermore, in macrophages, TRPV4
activation releases ROS and reactive nitrogen species (RNS), which are among the essential
mediators of immune responses [15–17]. In a mouse model of sepsis, TRPV1 deletion
resulted in impaired phagocytes defense mechanisms, thus implying that TRPV1 acts
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to protect against the inflammatory condition [18]. An increased expression of TRPV1
has been observed in bone marrow-derived macrophages after stimulation by oxidized
low-density lipoprotein, followed by intracellular calcium (Ca2+) increase [19].

2. Transient Receptor Potential Ankyrin 1 (TRPA1)

The ankyrin-like protein with transmembrane domains (ANKTD), initially identified
in lung fibroblasts [20], has been successively included in the TRP superfamily (renamed
TRPA1, A standing for ankyrin) for its strong homology with several components of the
superfamily. In humans, the trpa1 gene consists of 27 exons and spans 55,701 base pairs of
the human chromosome 8q13 [21,22]. Like all TRP channels, TRPA1 has six transmembrane
domains (S1–S6) with a pore region between S5 and S6 and cytoplasmic N- and C-terminals
associated with homo-tetramers. The peculiarity of TRPA1 is an unusually elongated
(14–18) ankyrin repeat domain within the N-terminal, which connects with transmembrane
proteins to the cytoskeleton and is involved in protein–protein interactions, as well as in
channel trafficking to the plasma membrane (Figure 1).
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Figure 1. Structure of the TRPA1 channel. The TRPA1 architecture containing six transmembrane
domains and intracellular N- and C-terminals. The transmembrane S5–S6 forming the central pore
and selectivity filter. The reactive cysteine residues are within the N-terminal domain, along with the
N-terminal ankyrin repeats, and the calcium-binding region is within the C-terminal.

N-terminal cysteine residues represent important functional sites of the channel. The
cysteine residues allow channel activation by endogenous mediators, such as oxidative
stress byproducts and exogenous electrophiles, through their oxidative modification [22–28].
However, TRPA1 possesses additional domains that appear to be crucial for its function.
A putative EF-hand motif has been identified in the N-terminal region and represents the
most common mechanism for many Ca2+-interacting proteins. Intracellular Ca2+ ions po-
tentiate agonist-induced responses and directly activate the channel, probably through this
mechanism [29,30], although its functional relevance is still being debated. TRPA1 channel
activity undergoes modulation by negatively charged ligands, including phosphoinositides
or inorganic polyphosphates [31], interacting with a yet-unidentified positively charged
domain in the C-terminal region. Basic residues in the C-terminal, strongly involved in
TRPA1 voltage and chemical sensitivity, may represent the possible interaction sites for neg-
atively charged molecules generally considered to modulate TRPA1 [31]. TRPA1 subunits
can assemble into hetero-tetrameric complexes with TRPV1 to adapt to the single-channel
biophysical properties in native sensory neurons [1,32].
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TRPA1 is widely distributed in neural (primary sensory neurons) [33] and non-neural
tissues, including mouse inner ear and the organ of Corti [34], rat vascular endothelial
cells [35], enterochromaffin cells [36], cells of the respiratory tract [37–39], human ker-
atinocytes, melanocytes, synoviocytes, and gingival fibroblasts [40]. The TRPA1 receptor
can also be found in epithelial cells, mast cells, and pancreatic β cells [41–47]. More recent
studies have reported the presence of TRPA1 in glial cells, such as astrocytes [48], oligoden-
drocytes [49,50], and Schwann cells [51,52], where it contributes to different regulatory and
proinflammatory pathways [53–55] (Figure 2).
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Worthy of note, TRPA1 is activated by a wide variety of exogenous irritants that cause
pain and inflammation [33]. The channel is also targeted by endogenous inflammatory
agents, such as ROS, 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) [27], and
reactive nitrogen species (RNS) that can produce nitrated fatty acids, such as nitrooleic
acid [56]. Prostaglandins are important fatty acid derivatives that are produced locally at
sites of inflammation and tissue injury [57]. Some arachidonic acid derivatives, such as
cyclopentenone prostaglandins, have been proposed to directly activate TRPA1 [58,59]. The
prominent role of TRPA1 in inflammation is also underlined by its presence in a subset of
peptidergic primary afferents. TRPA1 activation on these neurons promotes the release
of the vasoactive and proinflammatory neuropeptides, substance P (SP), and calcitonin
gene-related peptide (CGRP) [26] from central and peripheral terminals, thus promoting
neurogenic inflammation [27,60]. CGRP release is considered a critical factor in the genesis
of migraine pain [61,62]. TRPA1 ability to stimulate CGRP release from trigeminal terminals
and the ensuing neurogenic inflammation in migraine has been proposed and discussed in
previous papers [63,64] and will not be the object of the present review.

Given its expression and function in many different types of tissues and cells, TRPA1
operates as a sensor of cell stress, tissue injury, and exogenous noxious stimuli, and its acti-
vation leads to defensive responses. However, under circumstances of aberrant regulation,
TRPA1 may exacerbate tissue inflammation and its consequences. Here, we summarize the
recently discovered functional properties of TRPA1 in its beneficial/detrimental roles in
several inflammatory disorders.
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3. TRPA1 and Asthma and Chronic Obstructive Pulmonary Disease (COPD)

Asthma and chronic obstructive pulmonary disease (COPD) are common airway
diseases characterized by airway obstruction hyperresponsiveness (AHR), persistent res-
piratory symptoms, and airflow limitation in association with airway inflammation [65].
Asthma is also one of the most common causes of chronic cough [66,67]. A hallmark of
asthma and COPD is a generation/imbalance between oxidants and antioxidants (oxidative
stress) [68–71], which may be generated from endogenous mechanisms (oxidative bursts
from activated neutrophils and macrophages) or may derive from exogenous sources of
oxidant species, including cigarette smoke, occupational and environmental pollutants,
and other chemicals.

The pathophysiological role of TRPA1 in the respiratory tract seems primarily depen-
dent on neurogenic inflammation [72,73]. Lungs are predominantly innervated by vagal
sensory neurons activated by mechanical and chemical stimuli [74]. Noxious stimuli are
detected by receptors expressed by nociceptors that sense environmental and internal sig-
nals to regulate bronchoconstriction, breathing patterns, vasodilatation, mucus production,
and inflammation [75].

Various noxious chemicals and environmental/industrial irritants that activate TRPA1
function as triggers for airway inflammatory diseases and are known to worsen asthma
attacks [76]. These chemicals include industrial pollutants (e.g., isocyanates, heavy metals,
and oxidizing agents) and general anesthetics, which can cause neurogenic inflammation
in local airways through a TRPA1-dependent mechanism [33,38,77]. Cigarette smoke
contains many reactive molecules, such as crotonaldehyde, acrolein, acetaldehyde, and
nicotine [78–80], expressed by airway sensory nerve terminals to release proinflammatory
neuropeptides, cytokines, and chemokines. In rodents, these reactive molecules in cigarette
smoke activate an early neurogenic inflammatory response, which is entirely mediated by
TRPA1 [78].

Gram-negative bacterial infections are often accompanied by inflammation and so-
matic or visceral pain. These symptoms have been attributed to the sensitization of no-
ciceptors by inflammatory mediators released by immune cells through activation of
TRPA1-dependent mechanism by bacterial (lipopolysaccharides) LPS [81]. In addition, LPS
can release neuropeptides by a TRPA1-dependent mechanism from nociceptive sensory
neurons, thus inducing airway neurogenic inflammation [82].

TRPA1 has been critically proposed to contribute to airway inflammation in asthma. In
an ovalbumin (OVA) mouse model of asthma, genetic ablation or pharmacologic inhibition
of the TRPA1 channel attenuates the increase in several biochemical and functional markers
in sensitized mice. Inflammatory cells were markedly reduced in TRPA1-deficient mice or
after HC-030031 pretreatment [83]. A contribution of TRPA1 to airway inflammation has
also been reported in a rat model of asthma. The immune cell infiltration observed in the
rat lung after the OVA challenge was reduced in TRPA1 knockout rats in a manner similar
to that observed in TRPA1 knockout mice [84], thus supporting the role of TRPA1 in in-
flammatory airway disease. There is also evidence that, in humans, TRPA1 polymorphisms
correlate with reduced asthma control [85].

The TRPA1 role in airway inflammatory disease may be dependent on its expression
in non-neuronal cells in human and murine airways (fibroblasts and epithelial cells), where
its activation promotes non-neurogenic inflammatory responses [38]. Thus, the TRPA1
channel, with its wide range of expression in neuronal and non-neuronal cells and its
activation by several exogenous and endogenous proinflammatory stimuli relevant to
airway sensory responses, may be a major regulator in driving several respiratory diseases,
including asthma and COPD. Finally, it should be remembered that activation of human
TRPA1 in vagal sensory afferents leads to changes in breathing patterns, dyspnea, and
cough [86].
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4. TRPA1 and Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation,
joint pain, and damage throughout the body, often markedly decreasing the quality of life
of patients [87]. Chronic inflammation is a feature of RA [88], a condition characterized by
overgrowth of synovial fibroblasts, producing matrix-degrading enzymes and proinflam-
matory cytokines [89]. N-acylethanolamines reduce the inflammatory mediators originated
by synovial cells from RA patients by COX-2 inhibition and concomitant TRPA1 desensiti-
zation [90]. The synthetic cannabinoid agonist, WIN55,212-2 mesylate, reduces the release
of inflammatory mediators, such as interleukin (IL)-6, IL-8, and matrix metalloproteinase
(MMP)-3, in RA synovial fibroblasts via a TRPA1-dependent mechanism [91].

The expression of TRPA1 in peripheral blood leukocytes from patients with RA has
been positively correlated with joint pain and disability [92]. Modulation of TRPA1 in
RA patients was associated with CD14+ cell activation and higher numbers of circulating
neutrophils, effects that might contribute to pain and disability in RA patients as the
leukocytes populating the joints would amplify the proalgesic process [92]. Stimulation of
synovial fibroblasts with tumor necrosis factor alpha (TNF-α) leads to an upregulation of
TRPA1 and its sensitization [93], and TRPA1 activation increases Ca2+ influx, thus affecting
cell viability [93].

In a rodent model of RA of serum transfer, amelioration of inflammation by a sulfide
donor (GYY4137) by interaction with TRPA1 has been observed, indicating a therapeutic
value of sulfides for RA [94]. Auranofin, which improves arthritis symptoms, including
painful joints, and is widely used for the treatment of RA, has been shown to activate the
human isoform of TRPA1 [95]. TRPA1 activation mediated by auranofin may be responsible
for the adverse effects caused by this drug treatment [95].

Inhibition of TRPA1 in RA synovial fibroblasts by cannabidiol reduces cell viability,
proliferation, and cytokine production [96], showing that TRPA1 possesses anti-arthritic
activity and may ameliorate arthritis via targeting synovial fibroblasts under inflammatory
conditions. There is also evidence that TRPA1 is expressed in human chondrocytes of os-
teoarthritic patients, and the TRPA1 antagonist significantly downregulated the expression
of IL-6 in chondrocytes from wild-type mice and osteoarthritic patients [97]. Together,
these findings highlight the role of TRPA1 as a potential mediator and novel drug target in
various types of arthritis.

5. TRPA1 and Endometriosis

Endometriosis is characterized by the presence of endometrial tissue outside the
uterus, which causes chronic inflammatory reactions resulting in scar tissue formation [98].
Endometriosis, associated with debilitating chronic pelvic pain (CPP), is an estrogen-
dependent inflammatory disease that affects 5% to 10% of reproductive-age women [99].
Histologically, the endometriotic lesion consists of endometrial-like glands, stroma, and
hemosiderin, with blood vessels, nerve fibers, muscle, and immune cells [100]. Women
with endometriosis often suffer from cyclic pain, which may be associated with other condi-
tions, such as irritable bowel syndrome and migraine [101,102]. Visceral, mechanical, and
generalized hypersensitivity is widespread in women with endometriosis [103]. However,
there is no correlation between the extent of disease and reported pain scores. Symptoms
associated with the disease can include various pain symptoms, such as chronic pelvic
pain and pain during urination and sexual intercourse [104]. The origins of endometriosis
are thought to be multifactorial, and various hypotheses have been proposed, including
retrograde menstruation and cellular metaplasia. However, other factors can contribute
to the growth or persistence of ectopic endometrial tissue. For instance, endometriosis is
known to be dependent on estrogen, which facilitates the inflammation, growth, and pain
associated with the disease [98,105].

A significant increase in the TRPA1 mRNA content was observed in nociceptive neu-
rons in the peritoneum of women with chronic pelvic pain caused by endometriosis [106].
Increased immunoreactivity of TRPA1, associated with increased mRNA expression in
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ectopic endometrium of deep infiltrating endometriosis patients, has been detected [107]. In
a non-surgical model of endometriosis, the presence of TRPA1 was found in endometriotic
lesions infiltrated with macrophages, neutrophils, and mast cells [108]. An increase in
TRPA1 mRNA and exaggerated Ca2+ responses in dorsal root ganglion (DRG) neurons
from mice with endometriosis has been reported [108], suggesting that endometriosis
affects protein expression and TRPA1 responsiveness in DRG neurons. The role of TRPA1
as a major sensor [23,24,27] and amplifier of the oxidative burst underlying a variety of
inflammatory responses [51,52,54,55,62] supports its implication in endometriosis pain
symptoms.

6. TRPA1 and Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) encompasses two principal types of inflammatory
disorders of the gastrointestinal tract: ulcerative colitis (UC) and Crohn’s disease (CD) [109],
which share several common pathophysiologic features (disturbances of the immune
system, mucosal barrier function, and gut microbiota) [110] and symptoms (abdominal
pain, presence of blood in stool, diarrhea, and weight loss) [111,112]. Although usually
not life-threatening, IBD severely affects a patient’s quality of life, especially because
of the presence of chronic pain [113,114], which is poorly amenable to pharmacologic
treatment [115,116]. The exact pathogenesis of this inflammatory disorder is still unknown.

The contribution of TRPA1 to the pathogenesis of IBD, however, remains unclear,
with literature data indicating pro- and anti-inflammatory effects or no influence. It has
been shown that TRPA1 contributes to colorectal contraction and visceromotor response
after administration of allyl isothiocyanate (AITC) in a colitis model induced by 2,4,6-
trinitrobenzenesulfonic acid (TNBS) [117]. The induction of colitis with TNBS leads to
oxidative stress generation, which, by TRPA1 activation, results in hypersensitivity to
visceromotor response [118]. TRPA1 has also been reported to contribute to visceral pain-
like behaviors in dextran sulfate sodium (DSS)-evoked colitis, an effect associated with
upregulation of channel expression and responsiveness in DRG nociceptors [119].

In tissue biopsies from patients with active and inactive CD and UC, a significant
TRPA1 mRNA upregulation has been found [120,121]. Specifically, TRPA1 has been de-
tected in CD4+ T cells infiltrating the colonic tissue samples of both UC and CD patients,
where its stimulation controls CD4+ T-cell activation and proinflammatory responses, thus
suggesting an important contribution of the channel in the pathogenesis of IBD [121]. In an
experimental model of TNBS-evoked colitis, the inhibition, or genetic deletion, of TRPA1
reduced the inflammatory process by reducing colonic neuropeptide release (substance P
and CGRP) from gut extrinsic sensory neurons [122]. Activation, and the ensuing desensiti-
zation of TRPA1 by cannabidivarin (CBDV, a cannabis derivative), seem to have potential
intestinal anti-inflammatory effects in mice [123]. CBDV treatment decreased neutrophil
infiltration and cytokine production in mice with colonic inflammation induced by dini-
trobenzenesulfonic acid (DNBS) [123]. Moreover, CBDV exerts intestinal anti-inflammatory
effects in children with active UC [123]. Another study reported opposing results, showing
that the absence of TRPA1 worsened the inflammatory process induced by DSS, as its
activation exerts protective roles by decreasing the expressions of several proinflammatory
neuropeptides, cytokines, and chemokines [120].

Localization of the TRPA1 channel in different cell types of the gastrointestinal tract
(extrinsic and enteric neurons, neuroendocrine, and immune cells) and its similar regulation
in human and mouse inflammation suggest important channel functions in IBD that,
however, need further investigation before the proposal of its potential therapeutic value
in these disorders of the gastrointestinal tract.

7. TRPA1 and Atherosclerosis

Atherosclerosis (AS) is currently recognized and described as an inflammatory dis-
ease [124,125]. AS is characterized by the accumulation of lipids and the formation of
atherosclerotic plaques that cause the hardening of the arterial vessel wall and the arterial



Int. J. Mol. Sci. 2022, 23, 4529 7 of 19

lumen [126]. The fatty streak of the arterial wall is initially composed almost entirely of
monocyte-derived macrophages. The subsequent recruitment of T cells, mast cells, and
other inflammatory cells to the intima promote the development of an atheroma [127]. AS
plaques can remain stable for years but rapidly become unstable to induce rupture and
trigger thrombus formation. Accordingly, in addition to the restriction of the lumen vessel,
the presence of atherosclerotic plaques is linked to an increased risk of acute cardiovascular
events, such as myocardial infarction and stroke [126].

There is evidence that TRPA1 and cardiovascular diseases have a close relationship,
especially in the inflammation underlying these conditions [128]. Adenosine triphos-
phate (ATP) is a major trigger of AS [129,130] by acting on the P2X7 receptor (P2X7R)
to mediate macrophage-dependent inflammation [131]. TRPA1 co-localizes with P2X7R
in macrophages, where it contributes to ATP-induced oxidative stress and inflammation.
During atherosclerosis, ATP is released in the extracellular matrix, stimulating inflam-
mation and monocyte migration [132]. In particular, ATP and the potent P2X7R agonist
3’-O-(4-Benzoylbenzoyl)-ATP (BzATP) induces macrophage activation, calcium overload,
mitochondria injury, IL-1β secretion, and cytotoxicity, all effects that, inhibited by TRPA1
antagonism [133–135], indicate a channel role in ATP-induced inflammation in AS [133].

Macrophages orchestrate AS, as their polarization from anti-inflammatory to proin-
flammatory (M2 and M1, respectively) phenotypes play a key role in AS progression.
TRPA1 inhibition would promote macrophage polarization toward an inflammatory phe-
notype by stimulating M1 and repressing M2 gene expression to modulate the AS plaque
progression [136,137]. The relationship that exists between the TRPA1 channel and AS
makes the channel activation a potential target to develop new clinical treatments for AS.

8. TRPA1 and Inflammatory Skin Diseases

Psoriasis and atopic dermatitis are two of the most common chronic inflammatory skin
diseases. Both diseases are caused by a complex interplay between skin-barrier disruption,
immune dysregulation, host genetics, and environmental triggers [138,139]. They result
in chronic, systemic inflammation with increased circulating lymphocytes, leukocytes,
proinflammatory cytokines, and chemokines [140,141]. Atopic dermatitis affects up to
15–20% of children and 1–10% of adults worldwide [142]. Psoriasis affects 2–3% of the
global population, corresponding to >125 million individuals [143]. Although they show
some differences in their etiology and clinical manifestations, patients with either disease
suffer from health-related low quality of life, mainly due to pruritus [144].

TRPA1 can contribute to the pathogenesis of chronic [46] and acute histamine-independent
pruritus, such as those evoked in mice by injection of chloroquine [145]. A TRPA1-
dependent pathway of itch in atopic dermatitis has been shown in an IL-3-induced mouse
model, where a correlation between increased scratching behavior and TRPA1 expres-
sion in mast cells, dermal sensory nerve fibers, and cell bodies of DRG neurons has been
observed [46]. The pharmacological blockade of the TRPA1 channel has been found to
attenuate the scratching [46].

Another mouse model of atopic dermatitis, such as that induced by 2,4-dinitrochlorobenzene
(DNCB), implicates TRPA1 activation [146]. DNCB can provoke pathological symptoms,
including ear thickness, epidermal hyperplasia, and pruritus, which were attenuated in
mice with TRPA1 genetic deletion [147]. Similarly, the induction of atopic dermatitis
by topical application of oxazolone in mice induces milder atopic dermatitis symptoms,
including pruritus, and lower levels of inflammatory cytokines and T-cell activation via
TRPA1 [148]. In fact, oxazolone has been shown to activate TRPA1 directly, inducing the
release of mediators of neurogenic inflammation and pruritus, such as 5-hydroxytryptamine
(5-HT), SP, and neurokinin A (NKA) [148]. The role of TRPA1 has been highlighted in
several pathways involved in chronic allergic itch, including the release of atopic dermatitis-
associated cytokines from keratinocytes via a Th2-cell-neuronal mechanism, such as the
pruritogenic cytokine IL-31 [149]. A keratinocyte-neuronal axis based on the release of
thymic stromal lymphopoietin [150] and periostin [151] has also been proposed.
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Recent evidence supports the role of TRPA1 in psoriasis since the application of
imiquimod (IMQ) is associated with the expression of TRPA1 in psoriatic lesions observed
after drug application [152]. Increased expression of TRPA1 was also observed in psoriatic
skin from human subjects where TRPA1 and TRPV1 genes were over-expressed [153].
Paradoxically, pharmacological blockade or genetic deletion of TRPA1 worsen psoriatic
dermatitis and nocifensive and itch behavior in mice by increasing inflammatory cytokines,
including IL-1β, TNF-α, and IL-22 [154]. In agreement with this data, the activation of
TRPA1 by the selective agonist, AITC, reduced the IMQ-induced psoriasiform inflammation,
thus suggesting that the presence of TRPA1 mitigates the psoriasis effects [155]. Overall data
show that, in psoriasis, TRPA1 exerts an anti-inflammatory role, and its activation, rather
than inhibition, could lead to local control of skin inflammation and pruritus observed in
both diseases.

9. TRPA1 and Neurodegenerative Inflammatory Diseases

Expression of TRPA1 has been reported in various brain areas where it seems to play a
modulatory role in neurodegenerative disorders and neuroinflammation, such as multiple
sclerosis, Alzheimer’s (AD), and Parkinson’s (PD) diseases [156–160]. The TRPA1 channel
has been localized to astrocytes of the corpus callosum [156], in oligodendrocytes of the
cerebellum [49], and in cerebral artery endothelium [161,162]. Hippocampal astrocytes
also express TRPA1, and TRPA1 immunoreactivity has been found in the cortical neurons
of amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice [157]. In humans,
TRPA1 has been detected in the cortex, caudate nucleus, putamen, globus pallidus, substan-
tia nigra, cerebellum, amygdala, and hypothalamus [163]. However, few in vivo data are
available to corroborate the function of TRPA1 in neurodegenerative inflammatory diseases.

9.1. TRPA1 and Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. Patho-
logically, AD is characterized by protein deposition, extracellularly as amyloid plaques and
intracellularly as neurofibrillary tangles [164]. While neurofibrillary tangles are commonly
found in several neurodegenerative diseases, amyloid plaques are a specific hallmark of
AD. For this reason, the deposition of amyloid has generally been more closely associated
with the primary pathogenic mechanism of AD [165]. Amyloid plaques are principally
composed of the amyloid beta peptide (Aβ peptide), a 4 kDa polypeptide derived by
proteolytic cleavage of the β-amyloid precursor protein [166].

Aggregation of the Aβ peptide induces the release of Ca2+ stored in the endoplasmic
reticulum (ER), resulting in an overload of cytosolic Ca2+. In response to the rise in
endogenous Ca2+, levels of reduced glutathione (GSH) decrease, leading to intracellular
ROS accumulation [167]. In addition, the deposition of Aβ peptide induces microglial
activation [168] and the release of a series of cytokines that amplify inflammatory signaling
pathways for neuronal damage and death [169]. In the brains of AD transgenic mice,
increased levels of TRPA1 have been associated with increased levels of Aβ protein and
neuroinflammation [170].

Aβ protein triggers a TRPA1-dependent Ca2+ influx, associated with astrocytic ac-
tivation, with subsequent increase in protein phosphatase 2B activity, nuclear factors of
activated T cells (NFAT), and nuclear factor-κB (NFκB). These changes amplify proinflam-
matory cytokine release [157]. TRPA1 inhibition is sufficient to prevent the insurgence of
neuronal hyperactivity. Neuronal hyperactivity seems to be the driving force for initial
progressive failures, which leads to the loss of functional dendritic spines and subsequent
neuronal dysfunction. The chronic inhibition of the TRPA1 channel has been shown to
normalize astrocytic activity, avoid perisynaptic astrocytic process withdrawal, and prevent
neuronal dysfunction, thus preserving structural synaptic integrity [171]. These findings
support the hypothesis that astrocyte TRPA1 is critical for Alzheimer’s disease progression
and suggest TRPA1 antagonists as a potential therapeutic for neuroprotection.
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9.2. TRPA1 and Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder glob-
ally and affects approximately 10 million (0.3%) people (>60 years) worldwide [172]. PD is
characterized by a marked loss of dopaminergic neurons in substantia nigra [173]. Although
the mechanisms responsible for neuronal degeneration are still unknown, mitochondrial
dysfunction, oxidative stress, and glutathione depletion, as well as inflammation, altered
calcium homeostasis, aggregation, excitotoxicity [174], and activation of microglia mediated
by glucocorticoid receptors [175,176], seem to have a role. Considering that oxidative stress
and changes in Ca2+ homeostasis are involved in PD, TRPA1 has been reported to mediate
some of the mechanisms that lead to disease progression [177]. Acrolein, a well-known
TRPA1 agonist [33], seems to have a role in PD. Acrolein content was elevated in a rat
model of PD evoked by 6-hydroxydopamine (6-OHDA) [178], and the acrolein scavenger,
dimercaprol, produced a neuroprotective effect [179]. Dimercaprol-mediated suppression
of acrolein was associated with a significant reduction in neuronal loss in both the striatum
and substantia nigra in 6-OHDA rats [180]. Additional studies corroborate this finding
by showing that injecting acrolein into a rat brain reproduced PD-like symptoms and
pathological signs mirroring those seen in 6-OHDA-injected rats. Lowering acrolein levels
via another scavenger (hydralazine) mitigates PD pathologies and motor deficits [181].
There is evidence that other TRP channels, such as TRPM2 and TRPM7 [182,183], are
activated during PD progression [184]. Their activation triggers multiple events, such as
increased intracellular Ca2+ ions, neuronal inflammation, mitochondrial dysfunction, and
DNA damage, leading to the activation of the apoptotic pathway and neuronal cell death.

9.3. TRPA1 and Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease affecting pa-
tients’ physical/cognitive status through neurodegeneration and demyelination in the
central nervous system (CNS). With a prevalence of 1 in 3000 people, 2.8 million indi-
viduals were estimated to live with multiple sclerosis worldwide in 2020 [185]. MS is
characterized by several debilitating symptoms, including muscle weakness, blurred vi-
sion, vertigo, fatigue, balance problems, and various types of pain [186,187]. Several studies
have reported that primary headaches, such as migraine and tension-type headaches, are
more frequent in MS patients than in the general population [188–190].

Genetic and pathological studies indicate that T and B cells are implicated in the
pathogenesis of MS [191]. Alterations in cytokine production, T and B cell co-stimulation
likely contribute to the disruption of the blood–brain barrier, thus allowing lymphocyte
infiltration into the CNS and causing multifocal inflammation and demyelination, oligo-
dendrocyte loss, reactive gliosis, and the production of the cytotoxic agents, ROS and RNS,
to sustain neuroaxonal degeneration [192]. Astrocyte activation, macrophage infiltration,
and mitochondrial dysfunction at sites of MS lesions generate oxidative stress, which
has been considered to play a major role in the mechanism of demyelination. Notably,
in homogenates of MS white and gray matter, demyelination has been associated with
increased myeloperoxidase activity [193]. Widespread oxidative damage in demyelinating
MS plaques is documented by the expression of markers of oxidative damage, such as
4-HNE [194]. 4-HNE accumulates in both phagocytic macrophages and large hypertrophic
astrocytes of active demyelinating MS lesions [195].

In the CNS, TRPA1 expression has been shown in astrocytes [156] as well as oligo-
dendrocytes [49]. In a model of MS induced by cuprizone, TRPA1 deficiency significantly
attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligo-
dendrocytes [156]. Specifically, the activation of TRPA1 in astrocytes by enhancing the
intracellular Ca2+ concentration seems to influence the pro-apoptotic pathways in oligo-
dendrocytes. Thus, a modulatory effect on apoptosis by an interaction between oligo-
dendrocytes and astrocytes can occur. It has also been reported that TRPA1 activation
can profoundly modulate physiological astrocyte functions [196] and that astrocytes (by
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releasing biologically active molecules) have a direct effect on oligodendrocyte death or
survival [197–199].

The beneficial effect of TRPA1 inhibition on neuroglial cell activation and demyelina-
tion has also been shown by a recent computational study, which, by molecular docking
techniques, potential TRPA1 selective inhibitors, including desvenlafaxine, paliperidone,
and febuxostat (which possess a suitable blood–brain barrier (BBB) permeability) have been
reported as the most promising repurposable agents for treating MS [200]. On the other
hand, additional in vitro and in vivo tests are necessary to confirm the biological action of
these novel molecules on demyelination. In a model of relapsing-remitting experimental au-
toimmune encephalomyelitis, TRPA1, presumably activated by endogenous agonists, was
shown to be involved in the development of periorbital mechanical allodynia, a hallmark
of MS headache [201]. In addition, a selective TRPA1 antagonist diminished the depression-
and anxiety-like behaviors in a mouse model of progressive MS [202]. Thus, inhibition of
TRPA1 receptors might attenuate neuronal degeneration by limiting demyelination and
could be a promising therapeutic target to limit the development of the physical/cognitive
impairment and painful conditions associated with MS.

10. Conclusions

TRPA1, expressed by primary sensory neurons and inflammatory, and immune cells,
detects and is activated by a series of endogenous proinflammatory molecules. These
molecules are implicated in modulating intracellular processes in inflammatory diseases.
A number of these molecules are byproducts of oxidative, nitrative, and carbonylic stress,
which non-specifically affect and damage nucleic acids, lipids, and proteins. However,
these same compounds have recently been identified as signaling molecules, which, via
TRPA1 targeting, affect inflammatory and immune responses (Table 1). Thus, given its
expression in various types of tissues and cells, and its ability to activate a variety of
biological responses, TRPA1 is considered a novel and attractive therapeutic target for the
treatment of human inflammatory diseases (Table 1).

Table 1. TRPA1 in inflammatory diseases.

Inflammatory Diseases TRPA1 Distribution TRPA1
Activation-Dependent Effect References

Asthma and COPD Vagal sensory neurons, lung
fibroblasts, and epithelial cells

Vagal nerve activation, cough,
bronchoconstriction, airway
neurogenic inflammation

[40,74–80,84]

Rheumatoid arthritis Peripheral blood leukocytes,
synovial fibroblasts

Increase in cell viability and
proliferation, release of
inflammatory mediators

[94,95,98]

Endometriosis

Peritoneum nociceptive
neurons, stromal and
epithelial cells of
ectopic endometrium

Increase in Ca2+ responses
and oxidative stress, increase
in pain hypersensitivity

[108–110]

Inflammatory bowel
disease

Extrinsic and enteric neurons,
neuroendocrine cells, colonic
tissue CD4+ T cells

Increase in pain
hypersensitivity, release of
proinflammatory
neuropeptides, cytokines,
and chemokines

[120–124]

Atherosclerosis Macrophages in
atherosclerosis plaque

M1 macrophages polarization,
calcium overload,
mitochondria injury, increase
in IL-1β secretion, and
oxidative stress

[135–139]
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Table 1. Cont.

Inflammatory Diseases TRPA1 Distribution TRPA1
Activation-Dependent Effect References

Psoriasis and
atopic dermatitis

Mast cells, dermal sensory
nerve fibers,
keratinocytes, melanocytes

Release of inflammatory
cytokines, pruritus [48,149–151,156,157]

Alzheimer’s and
Parkinson’s diseases

Astrocytes, oligodendrcocytes,
cerebral artery endothelium,
dopaminergic neurons

Increase in Ca2+ response,
astrocyte activation, increased
levels of Aβ peptide and
neuroinflammation, increase
in oxidative stress

[51,158,159,163–165,173,179–183]

Multiple Sclerosis Astrocytes, oligodendrocytes

Modulation of pro-apoptotic
pathways, increased Ca2+

influx, neuroglial activation,
periorbital allodynia

[51,158,198–202]
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