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A population-based temporal logic gate for timing
and recording chemical events
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Abstract

Engineered bacterial sensors have potential applications in human
health monitoring, environmental chemical detection, and materi-
als biosynthesis. While such bacterial devices have long been engi-
neered to differentiate between combinations of inputs, their
potential to process signal timing and duration has been over-
looked. In this work, we present a two-input temporal logic gate
that can sense and record the order of the inputs, the timing
between inputs, and the duration of input pulses. Our temporal
logic gate design relies on unidirectional DNA recombination
mediated by bacteriophage integrases to detect and encode
sequences of input events. For an E. coli strain engineered to
contain our temporal logic gate, we compare predictions of
Markov model simulations with laboratory measurements of final
population distributions for both step and pulse inputs. Although
single cells were engineered to have digital outputs, stochastic
noise created heterogeneous single-cell responses that translated
into analog population responses. Furthermore, when single-cell
genetic states were aggregated into population-level distributions,
these distributions contained unique information not encoded in
individual cells. Thus, final differentiated sub-populations could be
used to deduce order, timing, and duration of transient chemical
events.
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Introduction

Engineered bacteria could one day be powerful self-replicating

biosensors with environmental, health, and industrial applications.

Synthetic biology has made important strides in identifying and opti-

mizing genetic components for building such devices. In particular,

much work has focused on Boolean logic gates that detect the

presence or absence of static chemical signals (Gardner et al, 2000;

Anderson et al, 2007; Wang et al, 2011; Moon et al, 2013; Shis

et al, 2014) and compute a digital response.

Temporal logic gates, which process time-varying chemical

signals, have been much less explored. Pioneering work by

Friedland et al (2009) used serine integrase-based recombination for

the counting and detection of sequential pulses of inducers. But thus

far, no work has studied the potential for temporal logic gates to

provide information about the duration of a signal, or the time

between two chemical events. Here, we present a temporal logic

gate that allows us to infer analog signal timing and duration infor-

mation about the sequential application of two inducer molecules to

a population of bacterial cells.

Similar to previous temporal logic gates, our design takes advan-

tage of the irreversibility of serine integrase recombination. While

bistable switches have been successfully deployed as memory

modules in genetic circuits (Kotula et al, 2014), such switches

require constant protein production to maintain state and are sensi-

tive to cell division rates and growth phase. The large serine inte-

grases, on the other hand, reliably and irreversibly flip or excise

unique fragments of DNA (Yuan et al, 2008). Thus, logic circuits

built from integrases intrinsically include DNA-level memory that

requires virtually no cellular resources to maintain state, thus

enabling permanent and low-cost genetic differentiation of individ-

ual bacterial cells based on transient integrase induction. Further

advantages of the serine integrases include the short length (40–

50 bp) and directionality of their attachment sites. Serine integrases

recognize flanking DNA binding domains (attB, attP) and subse-

quently digest, flip or excise, and re-ligate the DNA between the

attachment sites. Flipping or excision activity is determined by the

relative orientation of the sites, which allows complex orientation-

dependent behavior to be programmed into integrase circuits. Well-

known serine integrases include Bxb1, TP901-1, and ΦC31, all of
which have been used to demonstrate static-input logic gates

(Bonnet et al, 2013; Siuti et al, 2013), and some have cofactors that

can reverse directionality (Khaleel et al, 2011; Bonnet et al, 2012).

Recently, an entirely new set of 11 orthogonal integrases was char-

acterized, greatly expanding the set of circuits that can be built

(Yang et al, 2014).

In contrast to previous studies of temporal logic gates, our work

leverages the stochastic nature of single-cell switching to create a

1 Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
2 Applied Physics and Physico-Informatics, Keio University, Yokohama, Kanagawa, Japan
3 Computation & Neural Systems, California Institute of Technology, Pasadena, CA, USA

*Corresponding author. Tel: +1 626 395 4140; E-mail: vhsiao@caltech.edu

ª 2016 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 12: 869 | 2016 1



robust population-level response to a time-varying chemical signal.

The fundamental nature of living cells that makes them so attractive

for engineering—their extremely low energy operation in the

limit of using small numbers of molecules to represent informa-

tion—is also inextricably linked to stochasticity and noise. By

traditional engineering standards, synthetic circuits would ideally

perform identically within every cell of a population. When this

ideal is applied to biology, the stochastic nature of molecular

processes, particularly at low-copy numbers, presents a signifi-

cant barrier to reliable outputs from engineered cells. Thus,

while natural cellular dynamics and differentiation take advan-

tage of noisy gene expression (Elowitz et al, 2002; Süel et al,

2007), synthetic circuits often require noise reduction for proper

function (Dunlop et al, 2008). Recent work has taken a different

direction, toward understanding of population-level dynamics.

This includes analysis of both stochastic cellular responses to

inputs (Uhlendorf et al, 2012; Ruess et al, 2015) and changes in

collective population-level memory in response to stress (Mathis

& Ackermann, 2016). Such efforts suggest that a deeper under-

standing of the inherent heterogeneity in biological systems

might eventually lead to circuit designs that operate on distribu-

tions of cellular responses, rather than depending on homoge-

neous responses from all cells.

It is with this vision in mind that we designed a two-input tempo-

ral logic gate using strategically interleaved and oriented integrase

(Bxb1, TP901-1) DNA recombination sites and used this gate to

engineer an E. coli strain with four possible genetically differenti-

ated end states. This strain contains single genomic copies of the

temporal logic gate, ensuring digital-yet-stochastic responses from

individual cells. We then utilized the heterogeneity of individual

cellular responses to encode sequences of chemical inputs into the

overall population response and used a stochastic model of single-

cell trajectories to predict the population response. By analyzing the

distributions of final cell states, we can deduce the timing and pulse

duration of transient chemical pulses and show that cumulative

population-level distributions contain additional event information

not encoded in any single cell. Furthermore, because the states are

genetically encoded, we can recover details of a chemical event long

after its occurrence.

Results

Design of a two-integrase temporal logic gate

We have designed a two-input temporal logic gate that differentiates

between the start times of two chemical inputs and produces unique

outputs accordingly (Fig 1A). The design relies on a system of two

integrases with nested DNA attachment sites (Fig 1B). The use of

integrases irreversibly inverts segments of DNA, resulting in a

memory feature that can be maintained for multiple generations

(Bonnet et al, 2012).

The design of the integrase temporal logic gate hinges on inter-

leaving the attB attachment site of integrase B (intB) with the attP

site of integrase A (intA), thus ensuring that the possible DNA

flipping outcomes are mutually exclusive (Fig 1B). The serine

integrases used in this design are TP901-1 (intA) and Bxb1 (intB).

The fluorescent proteins mKate2-RFP (RFP) and superfolder-GFP

(GFP) are used both as placeholders for future downstream gene

activation and as real-time readouts of the logic gate. The design

also features a terminator (Bba-B0015) and a strong constitutive

promoter (P7). In the case where there are no inputs, the

terminator prevents expression of RFP from the constitutive

promoter.

There are five possible basic events that could occur in a two-

input system (Fig 1C): no input, inducer a only (Ea), inducer b only

(Eb), inducer a followed by b at a later time (Eab), and inducer b

followed by a at a later time (Eba). Consequently, in a perfectly

resolved temporal logic gate, there should be five unique DNA states

corresponding to the five types of events: So (the initial state), Sa,

Sb, Sab, and Sba. This design is limited to only four DNA states due

to excision when Eb occurs (Sb = Sba). The two fluorescent outputs

correspond to the two states that occur when inducer a is detected

first—RFP is produced when the cell is in state Sa, and GFP is

produced when the cell is in state Sab.

Fig 1D illustrates the sequence of recombination that occurs

during an event Eab that results in DNA state Sab and the produc-

tion of GFP. Upon addition of inducer a at time t1, TP901-1 flips

the DNA between its attachment sites, reversing the directionality

of the terminator and the Bxb1 attB recognition site (state Sa).

Then, when inducer b is added at some time t2 that is greater than

t1, the directionality of the Bxb1 sites is such that the DNA is

flipped to reverse the directionality of the P7 constitutive promoter

(state Sab). If inducer b is added first (Fig 1E), the Bxb1 attach-

ment sites are unidirectional—a configuration that results not

in recombination, but in excision of the DNA between the sites

(state Sb).

Once DNA recombination has occurred, it is irreversible. The

unique attB and attP attachment sites are recombined into attL and

attR sites, respectively, with which the integrases cannot bind to

without additional cofactors (Ghosh et al, 2005). The nesting of the

integrase attachment sites is the key design feature that produces

the temporal a then b logic, and the irreversibility of the recombina-

tion records the event in DNA memory. The result is a genetic

record that can both be sequenced later and immediately read via

constitutive production of fluorescent outputs.

A Markov model for integrase recombination

The most compelling advantage of engineered biological systems

over man-made sensors lies in their inherent capabilities for replica-

tion and parallel sensing with minimal energy and resource require-

ments. Thus, deployment of synthetic bacterial devices would

almost certainly involve populations of cells, never just a single cell.

It is therefore important to understand how stochastic single-cell

responses affect overall population-level distributions and

outcomes. We created a Markov model of integrase-mediated DNA

flipping and then used a stochastic simulation algorithm (Gillespie,

1977) to simulate individual cell trajectories (Fig 2A). All of the four

possible DNA states are represented in the model: the original state

(So), the intB excision state (Sb), the intA single flip state (Sa), and

the a then b double flip state (Sab). We have implemented the

system experimentally by chromosomally integrating the target

DNA into the genome of the E. coli cell. This allows us to assume

that each cell only has one copy of the temporal logic gate

(Haldimann & Wanner, 2001) and that each cell can be characterized
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by the tuple (DNA; IntA; IntB) (Fig 2B). The DNA terms are So, Sa,

Sb, or Sab, and IntA and IntB are non-negative integers representing

the molecular copy number of each integrase. Once a DNA cassette

has flipped into any of the states other than the original state So,

there is no reverse process. The logic gate is designed such that if

integrase B is expressed prior to integrase A, the DNA cassette is

excised and the chain reaches the dead-end Sb state. In order for a

cell to successfully detect Eab, it first needs to switch into state Sa
then transition into state Sab upon addition of inducer b.

Since each cell contains only a single copy of the temporal

logic gate DNA, we can expect each cell to behave differently and

to be highly susceptible to internal and external noise. This

stochastic behavior will create a heterogeneous population

response that can be analyzed for a more complex profile of event

than if all the cells behaved uniformly. In order to capture the

heterogeneity of cell population, we model the temporal logic gate

using a stochastic model. Specifically, the stochastic transitions

between the DNA states and the production/degradation of

integrases are mathematically modeled by a continuous-time

Markov chain over the state space (DNA; IntA; IntB) as illustrated

in Fig 2B. Definitions of transition rates can be found in

Appendix Table S1.

In silico, the dynamics of a single cell translates to each stochas-

tic simulation of the Markov model starting with (DNA = So;

IntA = 0; IntB = 0) state. We define PtðSoÞ;PtðSaÞ;PtðSbÞ; and

PtðSabÞas the probability that the DNA state of a single cell is So; Sa;

Sb; and Sab at time t, respectively.

The temporal dynamics of the probability can be modeled by

the following ordinary differential equation (ODE) (see equation 1).

Where the notation Et½�j�� stands for the conditional expected value

at time t (Full derivation, Appendix Section 12.1).

Serine integrases are produced as monomers that form dimers,

search for specific attB and attP sequences, and, once both attB and

attP sites are occupied, form a tetramer (dimer of dimers) that

digests, flips, and re-ligates the DNA (Yuan et al, 2008; Rutherford

et al, 2013). Though some cooperativity in ΦC31 binding to attB has
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Figure 1. Design overview of a temporal logic gate.

A A temporal logic gate distinguishes between two chemical inputs (a, b) with different start times.
B Implementation of the temporal logic gate using a set of two integrases with overlapping attachment sites. Chemical inputs a and b activate production of

integrases intA and intB, which act upon a chromosomal DNA cassette.
C Table with all possible inputs and outcomes to the event detector.
D Sequence of DNA flipping following inputs with inducer a before inducer b (event Eab).
E Sequence of DNA flipping following inducer inputs with b first (event Eba). In any events in which b precedes a, the unidirectionality of the intB attachment sites

results in excision.
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been found (McEwan et al, 2009), cooperativity in Bxb1 or TP901-1

integrase binding to attB and attP not been observed (Ghosh et al,

2005; Singh et al, 2014).

Rather than account for all individual DNA-integrase interac-

tions, we have created a minimal model of stochastic transitions

where only the final DNA states (So, Sa, Sb, Sab) and the number

of integrase monomer molecules (intA, intB) are tracked and all

integrase activity is encompassed in the kflip� term. Since no coop-

erativity has been observed in Bxb1 or TP901-1 DNA binding (i.e.,

occupation of attB does not increase the probability of attP bind-

ing), we represent the required tetramerization as a fraction where

flipping efficiency is zero unless at least four molecules are

present. Thus, the propensity functions for state transitions as a

function of integrase concentration, aiðInt�Þ, are defined in

equation (2) where Int� is integrase concentration; Kd� is the disso-

ciation constant; kflip� is the rate of flipping if the tetramer

is formed; i = 1; 2; 3; and * = A;B (See Appendix Fig S1 for

visualization of aiðInt�Þ and Appendix Section 12.2 for full

derivation).

We also define the time between the introduction of the first

inducer (t1) and the arrival of the second inducer (t2) as the inducer

separation time (Dt), such that

Dt ¼ t2 � t1; (3)

as shown in Fig 2C.

In the following set of simulations and experiments, we will

consider cases with step inputs (Fig 2C), where the inducers are either

present or not present. Concentrations of the inducers when they are

“on” will be held constant. Also, it is important to note that inducer a

is still present during and after time Dt when inducer b is introduced.

Simulations of the Markov model were done with biologically

plausible parameters in order to predict qualitative circuit behavior

(Appendix Table S1). We limited the parameters to only the basic

processes (integrase production, degradation, and DNA flipping),

and parameter values were chosen to be within biological orders of

magnitude. The single production rate constants, kprodA and kprodB,

combine the transcription and translation rates of each integrase.
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Figure 2. A Markov model of integrase-mediated DNA flipping.

A The four possible DNA states, illustrated with DNA state diagrams. All DNA begins in the initial state So, and there are no reverse processes. The propensity
functions a1, a2, and a3 are dependent on the concentration of the two integrases and correspond to the events b first (Eb), a only (Ea), and a then b (Eab),
respectively.

B Representation of the same model as a Markov chain. Integrases are represented simply as protein states with production (cA; cB) and degradation (dA; dB) rates.
C Graphical representation of inducer step functions. Δt is defined as difference between the start time of the first inducer and start time of the second.
D Simulation results for inducer separation times of 0 and 5 h. There are four possible DNA states, but all cells end up in either the Sb or Sab final states. Individual

trajectories are simulated for 5,000 cells and the number of cells in each DNA state is summed for each time point (Appendix Fig S2).
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When an integrase in the model is induced, its production rate, c�,
is the sum of kprod� and any leaky transcriptional expression, kleak�
(*= intA or intB). The integrase monomer disassociation constant,

Kd�, was estimated from measured Bxb1 binding constants

(Singh et al, 2013). Parameter values for preliminary simulations

were kprodA ¼ kprodB ¼ 50ðlm3 � hÞ�1, kdeg ¼ 0:3 h�1 (2.3 h half-life),

kflipA¼kflipB¼0:4 h�1, kleakA¼kleakB¼0ðlm3 �hÞ�1, and KdA¼KdB¼10

molecules.

Our analysis of initial numerical simulation results highlights the

significant role that the inducer separation time, Δt, plays in setting

the final population distributions (Fig 2D). For each Δt, individual

cell trajectories were generated with the assumption that each cell

only has one copy of the target DNA (N = 5,000 trajectories). Then,

at every time point, the total number of cells in each DNA state is

counted (Appendix Fig S2). Fig 2D shows the contrast between

adding both inducers simultaneously (Δt = 0 h) and adding inducer

b after a 5-h delay (Δt = 5 h). Since both inducers are present by

the end of simulation, all of the cells must have a final state that is

either the Sab state or the Sb state. No cells remain in the original So
configuration. Sa is a transient state that builds up prior to the addi-

tion of inducer b and begins to convert to Sab immediately after the

introduction of b. These initial simulation results suggest that Δt

may be a way to reliably tune the final population fractions of Sab
versus Sb state cells.

Population distributions reflect inducer order and
separation time

We used the model to further investigate the effects of varying both

inducer order and separation time on population distributions in

our experimental system and to understand the possible outcomes.

In Fig 3, we simulate in silico cell populations that have been

exposed to a sequence of overlapping step functions (N = 5,000

trajectories).

In the case of an Eab event, the proportion of cells that success-

fully detect a then b and switch to state Sab is a function of the

inducer separation time, Δt (Fig 3A). High Δt means increasing

the time that cells spend in only inducer a, allowing for most of the

population to transition from So ? Sa before the addition of any

inducer b. Exposing cells to the inverse sequence of events, Eba,

results in a decrease of Sab cells proportional to increasing Δt

(Fig 3B). High Δt in an Eba event means that So ? Sb is the domi-

nant reaction and cells that are partitioned into Sb will not respond

to inducer a. If we plot the final number of Sab cells from both Eab
and Eba as a function of Δt (Fig 3C), we see that the two curves do

not overlap. Sab fractions exposed to Eab increase monotonically

with Δt, while those exposed to Eba decrease monotonically with Δt.

Thus, measuring the fraction of Sab cells by itself is sufficient to

determine both the order of events and the timing, Δt, between

them.

Additionally, we can define a detection limit, Δt90, for which

the inducer separation time results in ≥ 90% of the population

switching into the Sab state (Fig 3C). This Δt90 limit provides a

way to capture the two response regimes of the population. If the

inducer separation time is less than the detection limit (Δt < Δt90),

then the rate of population switching is fast enough such that the

number of Sab cells will correspond uniquely to some Δt value. If

Δt > Δt90, then most cells have already switched to a final state,

and the differences in Sab cell count are too small to uniquely

determine Δt.

The single-cell limitations of the temporal logic gate circuit can

be overcome by measuring the number of Sab cells as a fraction of

total cells. Though the logic gate itself does not have a unique

genetic Sba state and cannot distinguish between a b only event

versus a b then a event, these simulation results suggest that popu-

lation-level fractional phenotypes can provide this additional infor-

mation (Fig 3D). In the case of Eab, fractions of Sab will always be

above 50%, while Sab fractions less than 50% indicate Eba. Addi-

tional figures showing how populations of Sa, Sb, and So cells

change with Δt can be found in Appendix Figure S3.

In vivo step induction data supported model predictions and

showed that population fractions of Sab cells could be tuned using

Δt (Fig 4). DH5a-Z1 cells were chromosomally integrated with one

copy of the integrase target DNA and then transformed with a high-

copy plasmid containing Ptet-Bxb1 and PBAD-TP901-1. When Δt

was varied from 0 to 8 h, we observed results qualitatively similar

to model predictions. In Fig 4A, the cells have been exposed to an

Eab event, where inducer a is present from time t = 0 h to tend, and

b is present from t = Δt h to tend. GFP expression during time course

measurements is used as a proxy for Sab state cells, and flow cyto-

metry was used to measure final populations. Comparisons of bulk

fluorescence versus cytometry cell counts suggest that in single-copy

integrants, overall GFP fluorescence is a good approximation of

population Sab levels (Appendix Fig S12).

In Fig 4A, the number of cells in the GFP-expressing Sab state

increases proportionally with increasing Δt and continues to be

responsive even when the two inducers are separated by 8 h. There

is some expression of GFP in the presence of only inducer a (Ea),

indicating some basal levels of intB. RFP expression, a proxy for the

number of cells in state Sa, begins to increase at t = 0 h and drops

at time t = Δt when inducer b is added (Appendix Fig S4A). Align-

ing all of the GFP expression curves by Δt (Appendix Fig S5) shows

that lower values of Δt not only have lower final GFP expression

values, but also have slower rates of GFP production. This is

consistent with modeling results because if we assume inducer b

has an equal probability of entering any one cell, then in case of

small Δt (Δt90 ≤ 4 h), there are a much larger number of So cells

and so the rate of Sa ? Sab state conversion will be lower. In

the case of Δt > 4 h, the majority of cells in the population are

already in the Sa state configuration, and so the rate of cell state

conversion to Sab will be much higher. When cells are exposed to

Eba, the number of Sab cells decreases monotonically with

increasing Δt (Fig 4B), and there is no RFP expression above back-

ground (Appendix Fig S4B). In both types of events, the cells main-

tained their state for up to 30 h in liquid culture and when

re-streaked as single colonies. (Additional data with a more distinct

color scheme and OD curves for this set of experiments can be

found in Appendix Figs S6 and S7. Single-colony analysis in

Appendix Fig S11.)

Final Sab (GFP) population fractions are sufficient to differentiate

between populations that have been exposed to Eab versus Eba
within 1 h of separation time between inducers (Fig 4C). Final

populations after 30 h of growth were measured via flow cytometry

and plotted against Δt. As Δt increases, so does the Sab sub-

population. The cells that encountered Eba have lower Sab fractions

with high Δt, and at Δt = 6 h, the final Sab sub-population is equal
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to the baseline expression of the b only population, indicating that

the addition of inducer a after a 6-h exposure to only inducer b has

no effect at all. Based on where the GFP fraction exceeds 90% of the

maximum Sab population fraction, the Δt90 detection limit for the

experimental system is ~4 h. These experimental results show that

the Sab population fraction clearly diverges for Eab and Eba when

Δt 6¼ 0 h, indicating that Sab fractions alone can be used to deter-

mine both event order and separation time.

Further analysis of population-level data for all of the measurable

fluorescent cell states can provide additional insights into dif-

ferences in sub-population growth rates and leaky integrase expres-

sion (Fig EV1, Appendix Figs S8–S10). In Fig EV1, experimental

populations from the step input experiments have been gated into

quadrants such that Sab, Sa, and So + Sb populations can be counted.

Even with maximum induction at highest Δt, the maximum popula-

tion fraction that can be switched appears to be approximately 60%

of the total population. We believe this is due to the non-fluorescent

cells (So, Sb) having a slight growth advantage over differentiated

cells. Studies have shown that unnecessary protein production has

inverse effects on cell growth (Tan et al, 2009; Scott et al, 2010),

and even with single-copy integrants, this would result in some

overrepresentation of non-fluorescent sub-populations within the

population. Single-colony analysis of the final populations shows

that So cells persist in the population even with 30–40 h of inducer

exposure (Appendix Fig S11E).

Leaky expression of intA and intB can also be inferred from the

no inducer, a only, and b only populations (Fig EV1A and B), and

we can conclude that leaky expression is quite low, not exceeding

~0.5–3%. Even accounting for the overrepresentation of non-

fluorescent cells, the baseline population split when both a and b

are added simultaneously (Δt = 0 h) is just under 50% of the total

GFP population fraction. This suggests that the integrase flipping
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Figure 3. Simulation results for inducer separation time for Δt = 0–10 h.

A The population fraction (N/5,000 cells) that switches into state Sab following an Eab event is dependent on the inducer separation time, Δt. The gray to dark green
color gradient represents increasing Δt values. Square markers indicate final population fractions for specific values of Δt.

B In the case of the inverse Eba event, the fraction of cells in state Sab decreases monotonically with increasing Δt. Circular markers indicate final population fractions
for specific values of Δt.

C Final Sab cell fractions from (A, B) are plotted as a function of Δt. Blue line with square markers shows end point population fractions from an Eab event. Yellow line
with circular markers shows final end point population fractions from an Eba event. The gradient inside the markers corresponds to increasing Δt value. The dotted
gray line corresponds to the Δt90, the value of Δt at which ≥ 90% of the cells are in state Sab. All simulations were done with a population of N = 5,000 cells.

D Chart showing differences in information that can be recorded at the single-cell versus the population level. In particular, Eba does not have a unique single-cell
genetic state, but has a clear distinct population-level phenotype.
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rates, kflipA and kflipB, may not be equal and that the basal expres-

sion rates, kleakA;B should be nonzero.

Varying model parameters for integrase activity and
basal expression

Prior to proceeding with additional model-driven experimental

designs, model parameters were modified to better represent asym-

metrical integrase activity. The parameters for integrase flipping and

leaky basal expression were tuned to account for the asymmetrical

population responses to Eab versus Eba events (Fig 4C). We hypothe-

sized that this asymmetry arises from a combination of unequal

integrase activity when searching for and flipping the DNA, as well

as leaky background expression of the integrases (Fig 5).

To understand overall trends in model behavior, we varied kflipA
and kleakB while holding the other parameters constant. When the

relative flipping efficiency of intA (kflipA) was varied from 0.2 to

0.5 h�1 (kflipB = 0.3 h�1), we observed a bias in the baseline popu-

lation split when both inducers are introduced simultaneously,

Δt = 0 h (Fig 5A, N = 3,000). Previously in the preliminary model

(Fig 3C), the two integrases were assigned equal flipping rates, and

the population split was expected to be 50/50 for Sab/Sb. As the flip-

ping rate of intA decreases relative to that of intB, that baseline

shifts downwards to favor the more active integrase, intB. Varying

the basal expression of intB (kleakB) from 1% to 20% of the intB

production rate (kprodB) monotonically decreases the maximum Sab
population fraction that can be reached in an Eab event (Fig 5B,

N = 3,000). If there is a constant level of un-induced intB, then there

will always be a minimum population of Sb cells inhibiting the maxi-

mum fraction of Sab cells.

These simulation results showed that by varying kflipA and kleakB,

we could tune the baseline shift at Δt = 0 and the maximum Sab ceil-

ing at high Δt to better approximate our experimental system.

However, experimental measurements of leaky integrase expression

showed that background expression was actually quite low (1% for

intA, 1–3% for intB) (Figs 4C and EV1, b only, a only). Given actual

measurements for kleakA;B, we constrained those parameters and fit

the model by varying kflipA;B.

In order to find the best pair of values for kflipA and kflipB, the flip-

ping efficiency parameters for both integrases were varied from 0.1

to 0.6 h�1 in silico (N = 500 cell trajectories), creating a matrix of

simulated Sab population fractions for each combination

(Appendix Fig S13). Leaky basal expression of the integrases was

held constant based on experimentally measured values

(kleakA = 1% of kprodA, kleakB = 2% of kprodB), and experimental data

were normalized to a 70% population maximum for fitting

purposes. Mean squared error was found by comparing model fits

with experimental data (Appendix Fig S13A), and the combination

with the minimum MSE was chosen (Appendix Fig S13B).

Fig 5C shows Δt versus Sab population simulation results for final

revised parameters. The final parameters were set to be

kflipA ¼ 0:2 h�1, kflipB ¼ 0:3 h�1, kleakA ¼ 0:01 � kprodAðlm3 � hÞ�1, and

kleakA ¼ 0:02 � kprodBðlm3 � hÞ�1 (Appendix Table S2). The introduc-

tion of leaky integrase expression into the model suggests that due

to leaky expression of intB, around 2% of the population will

“detect” Eab and be in state Sab even when no inducer a has been

introduced. Additionally, preliminary simulation results suggest that

the Δt90 detection limit can be tuned by increasing or decreasing the

overall production rate kprod� (*= A or B) (Appendix Fig S14),

though this remains to be experimentally verified in future work.
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Figure 4. In vivo results for varying inducer separation time from Δt = 0–8 h.

A Populations of cells exposed to an Eab event sequence. Cell switching to state Sab (indicated by GFP fluorescence) begins when inducer b (aTc) is added. Maximum
normalized GFP fluorescence increases as a function of the inducer separation time Δt. Gray to dark green gradient represents increasing Δt values. Square markers
are final end point measurements. Error bars represent standard error of the mean.

B Cells exposed to the inverse Eba sequence of events. GFP fluorescence decreases monotonically with increasing inducer separation time between b and a. Circular
markers are final end point measurements.

C Final population distributions from (A, B) at 30 h are plotted as a function of Δt. Cells were gated by GFP fluorescence to identify percentage of Sab cells. Dotted line
marks Δt90 detection limit.

Source data are available online for this figure.

ª 2016 The Authors Molecular Systems Biology 12: 869 | 2016

Victoria Hsiao et al Population-based integrase event detector Molecular Systems Biology

7



In silico parameter space exploration shows that varying kflip�
and kleak� parameters enables tuning of baseline Δt = 0 h split for

Eab/Eba and the maximum ceiling for Sab population fraction. Fold-

change variations in relative rates allowed us to understand overall

trends in the final populations, and we adjusted the model to

account for inequalities in integrase flipping and leaky basal expres-

sion. Since leaky expression was measured to be small, we primarily

tuned flipping rates. This process led us to more relevant model-

informed predictions of experimental outcomes. With the refined

model, we were interested to see whether distributions of the RFP-

expressing Sa state could provide information that measuring Sab
fractions alone could not.

Deducing pulse width from Sa population fractions

Using the fraction of Sab (GFP) cells alone, we can determine Δt

values up to a Δt90 limit for any given sequence of two step inputs.

Now consider a pulse type of event, in which inducer a begins at

time t = 0 h, remains constant throughout, and inducer b is intro-

duced as a finite pulse at time t = Δt h (Fig 6A). The start time of

inducer a then becomes a reference for when the entire system is

activated and ready to detect inducer b. Cell states are measured via

flow cytometry at time tend, where tend > 24 h. Modeling results

presented in this section are using the refined set of parameters

defined in Fig 5C and Appendix Table S2.

If either of the two inducers is present in the media to some limit

tend, we would expect all of the So cells to end up in one of two

populations (Fig 6B). Cells that encounter inducer b first will be in

the Sb state, while cells that encounter a first will either be in the Sa
or Sab states. In the previous sections, once an inducer was added to

the population, it was not removed, and the assumption was made

that at times > 24 h, only a negligible number of So cells remained.

This type of step function induction also meant that only the final

number of Sab cells (GFP) was needed to uniquely determine the

separation time Δt because any and all cells that had switched to Sa
would eventually become Sab.

However, in the case of a transient pulse, some cells that are in

the Sa state (RFP) will not ever encounter inducer b. Assuming that

kleakB is small, these cells will remain in the Sa state. Therefore, the

population of a first cells equals Sa + Sab. We simulated a matrix of

populations exposed to varying inducer separation times (Δt) and

inducer b pulse widths (PWb) to measure the resolution of detect-

able events (Fig 6C). In simulation (Fig 6D), we can see that the two

populations mirror each other to add up to 100% of the total cells

(N = 3,000 cells, additional simulations in Appendix Fig S16).

Given that the step induction of b is equivalent to a pulse of infi-

nite length (PWb = ∞) and our prior experimental evidence showed

that virtually no cells remain in state Sa when PWb = ∞, we

reasoned that the final number of Sa cells could be used to deduce

information about the pulse width of b. This hypothesis was tested

in silico by running a matrix of simulations with varying Δt and

PWb. In Fig 6E, we see that the fraction of Sa cells over the total

number of cells decreases monotonically with increasing PWb, and

the curves overlap regardless of Δt. The overlap occurs despite

nonzero leaky expression of intA and intB. The maximum number

of Sa cells does not go to 1 at PWb = 0 h because of leaky intB

expression (kleakB = 0.02 kprodB).

Analytically, we solved equation (1) for PtðSaÞ to ensure that the

Sa population fraction is only dependent on PWb. If inducer a is used

as a constant reference signal, all cells transition into one of Sa; Sb; or

Sab states, thus P1ðSaÞ ¼ 1� ðP1ðSbÞ þ P1ðSabÞÞ. If we assume that

the basal leaky expression of intB is zero (kleakB = 0),

PtðSbÞ þ PtðSabÞ ¼ 0 holds for t�Dt, since there is no intB to switch

the DNA state into Sb or Sab. Thus, we can show that

PtðSbÞ þ PtðSabÞ is dependent only on PWb, the duration of the pulse

width of inducer B, for t > Δt. This conclusion holds as long as kleakB
is negligibly small compared to other kinetic constants (kflipA, kflipB,

kdeg, cA, and kprodB) (See Appendix Section 12.3 for full derivation).
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Figure 5. Varying model parameters for integrase flipping and leaky expression.

A As DNA flipping rates of intA (kflipA) are decreased relative to kflipB , the population of Sab cells at Δt = 0 h has a downward shift. Simulations are done with N = 3,000
trajectories/marker.

B Increasing the leaky expression of intB (kleakB) changes the maximum threshold of cells that correctly identify Sab even at high Δt. Leakiness is defined as a percentage
of the induced integrase production rate (kprod�).

C The model was revised to more closely match the experimental data by constraining parameters for leaky expression and varying integrase flipping (N = 5,000). Mean
squared error was calculated between the experimental data and the initial and revised models to find an optimized pair of kflipA;B values (Appendix Fig S13). The
revised parameters are kflipA = 0.2 h�1, kflipB = 0.3 h�1, kleakA = 1% of kprodA(lm

3 � h)�1, and kleakB = 2% of kprodB(lm
3 � h)�1.
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If Sa population fractions can be modulated by changing PWb,

then conversely, we should be able to use measured experimental

RFP population fractions as a way to determine PWb. Once PWb is

known, then the Sab fraction can be used to uniquely determine the

time between inducers, Δt (Fig 6F). Furthermore, the genetically

encoded state means that these population fractions should be

maintained and measurable at a time, tend, that is much later than

the time of the events.

These conclusions can be extended in simulation to create a scat-

terplot of Sa cells versus Sab cells in a population (Fig 7A) over an

11 × 11 parameter matrix varying Δt and PWb from 0 to 6 h in

increments of 0.5 h (Additional plots in Appendix Fig S17). Each

point on the chart in Fig 7A represents a simulated population

(N = 3,000) exposed to a unique combination of Δt and PWb values.

Vertical lines represent the same PWb value, and points with the

same shape and color have the same Δt value. The simulation

results suggest sufficient resolution of events as long as PWb and Δt

values are between 0 and 4 h. For any single value of PWb, we can

follow the increasing Δt values vertically and see that the population

response saturates after 4.5 h resulting in overlapping between

populations with 4.5 < Δt < 6 h. We can trace any individual Δt

value horizontally from right to left and observe that the points

begin to cluster and overlap when 4.5 < PWb < 6 h. These

simulation data suggest that there should be some defined detection

range of Δt and PWb where every possible combination of the two is

uniquely identifiable.

Experimentally, we tested a 7 × 7 matrix of varying Δt and PWb

(0–6 h, 1 h increments) on independent populations of the temporal

logic gate E. coli strain (Fig 7B). All populations, except for the

control, were exposed to inducer a (L-ara 0.01%/vol) at time t0 to

tend. Pulses of inducer b (aTc, 200 ng/ml) were achieved by

sampling 5 ll of the population and diluting 1:100 into fresh media

with only inducer a (M9CA + 0.01%/vol L-ara). Populations were

collected and measured via flow cytometry after 24 additional hours

of growth in inducer a (~36 h after start of experiment) (Fig EV2).

For all values of Δt, the number of Sa cells (RFP) is highest when

there is no exposure to inducer b (PWb = 0 h) and decreases mono-

tonically as a function of PWb (Fig 7B, top). We see a more

pronounced separation of the Δt curves when we look at Sab (GFP)

cell fractions (Fig 7B, bottom). The number of Sab cells is dependent

on both Δt and PWb and increases proportionally with both increas-

ing b pulse duration and inducer separation time.

By counting population fractions of RFP versus GFP-expressing

cells, we can resolve the different populations that result from vary-

ing Δt and PWb values (Fig 7C). As with Fig 7A, each point on the

graph represents an independent population of cells (OD~0.7, ~106
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Figure 6. Simulation results for pulse width modulation.
Simulations were done with revised parameters found in Fig 5C.

A Inducer a can be used as a reference signal against which to measure the time and duration of the inducer b pulse.
B The population eventually divides into one of two sub-populations: those that see inducer a first and those that see inducer b first. Only if a cell has entered the a

first pathway does it have the possibility to express RFP or GFP. Furthermore, Sa can be thought of as a necessary precursor to Sab.
C A matrix illustrating a subset of the Δt and PWb values to be tested.
D Simulation results show that for any given Δt, the number of cells in Sb = (total number of cells � (Sa + Sab))
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cells counted per population). All of the populations exposed to

either or both of the inducers occupy fractional coordinates that

are unique from that of the no inducer controls (indicated by dotted

circle). We see that if Δt is constant and PWb increases (Fig 7C,

right to left), then the Sa fraction decreases as Sab fractions increase.

For constant PWb with increasing Δt (Fig 7C, bottom to top), the

Sa cell fraction remains mostly constant relative to increasing Sab.

In the case where there is no b pulse (PWb = 0 h), we see maxi-

mum Sa (RFP) cell fractions of about 60% with minimal Sab popula-

tions that are about the same as no inducer Sab levels. Overall,

populations with different PWb exposures are well separated by Sa
(RFP) fraction up to 4 h. Even for PWb at 5 and 6 h, the popula-

tions have unique Sa/Sab coordinates, just not unique Sa fractional

values.

This method of profiling is only valid if the fraction of Sa state

cells can be used as a measure of PWb that is independent of Δt. In

previous experiments with step inputs (Fig EV1), there would be a

significant population of cells with both GFP and RFP fluorescence,

since they had transitioned to Sab but had not yet fully diluted out

built up RFP protein levels from being in Sa for extended periods. If

a significant percentage of the population remained in this transi-

tion state (Q2), that would make RFP an unreliable measure of Sa
state cells. However, flow cytometry analysis of the pulse-

modulated populations (Fig EV2) showed that although there were

some cells expressing both RFP and GFP (Q2), these cells were

always < 3% of the total population. (Additional flow cytometry

analysis can be found in Appendix Figs S18–S23.) Thus, RFP was

measured to be a reliable determinant of Sa state cells, and

subsequently, of PWb.

For any given PWb, we observed higher experimental Sa (RFP)

population fractions with lower Δt (Fig 7A top), resulting in a diago-

nal slant for each value of PWb (Fig 7C). Upon further investigation,

we believe this is due to a slower So !a1 Sb transition than we antici-

pated. In our model, we assume So !a1 Sb is equal to Sa !a3 Sab, since
both transitions are mediated by intB. However, the gradual

decrease in Sa fractions with increasing Δt for each value of PWb

suggests that the a1 transition rate may be actually be slower than

a2 or a3. Simulation results with adjusted transition rates

(a1 < a2 = a3) recapitulated the slanting Sa population fractions

(Appendix Fig S25). This inequality in transition rates could have

arisen from differences in DNA sequence length or from differences

in the DNA excision required for So transition to Sa instead of the

recombination that occurs in the other transitions. Differences in

DNA excision or recombination for a single integrase are important

experimental parameters, but do not ultimately affect our conclu-

sions about the overall system. Despite unequal intB transition

rates, experimental implementation of the temporal logic gate still

produces unique (Sa, Sab) fractional coordinates for each combina-

tion of Δt, PWb, even though Sa values are not unique for higher

PWb.

Model-informed predictions on population fractions in response

to pulses of inducer b led to experiments that could produce unique

Sa and Sab coordinates for different combinations of Δt and PWb.

However, experimental data also revealed areas in which the model

had been oversimplified. While it is important to have a model to

understand overall properties and limitations of the experimental

system, it is also impractical to design simulations that can account

for all possible variations that might occur in the implementation of
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Figure 7. Determining arrival time and pulse duration of inducer b with population fractions.

A Simulation results from testing an 11 × 11 matrix of parameters with Δt and PWb varying from 0 to 6 h in increments of 0.5 h. Each point represents a population of
3,000 cells. Increasing PWb goes from right to left, and increasing Δt goes from bottom to top.

B Experimental results showing RFP and GFP population fractions as a function of increasing Δt and PWb. Experimental results were obtained by exposing temporal
logic gate E. coli populations to varying PWb and Δt values (0–6 h, 0.01%/vol L-ara, 200 ng/ml aTc, measurements taken at 48 h).

C A scatterplot of each population using their RFP and GFP fractions as coordinates (~106 cells per population). The non-induced control samples are indicated
with a dotted circle on the bottom left, and the samples with PWb = 0 h are on the bottom right. Samples with the same PWb are connected with a solid
line, and line darkness represents increasing PWb duration. Samples with the same Δt are shown with the same colored shape marker and increasing Δt goes
from bottom to top.

Source data are available online for this figure.
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biological devices. Therefore, we believe that future workflows

should also involve calibration protocols for specific applications of

engineered biological populations.

Practical use and calibration of populations for event detection

Curve-fitting methods were used to automatically convert experi-

mentally measured RFP and GFP population fractions into PWb and

Δt values and to evaluate the resolution with which population

ratios can be used to determine inducer separation time and pulse

duration. Using the experimental data from Fig 7B and C, we gener-

ated fitting curves for PWb as a function of RFP population percent-

age (R) and for Δt as a function of both GFP population percentage

(G) and PWb (Appendix Figs S26 and S27, Appendix Table S3). We

will denote these functions with PWb(R) and Δt(G, PWb), respec-

tively. The functions PWb(R) and Δt(G, PWb) can then be used to

generate a mesh of estimated PWb and Δt values for any given

normalized fluorescence values (Fig 8A, Appendix equations 8–11).

The estimated values were compared against the actual values to

determine the approximate time window with which a specific PWb

or Δt value can be resolved. For each actual value of PWb and Δt,

we calculated the average and standard deviation for the set of esti-

mated values. The standard deviation allows us to visualize the

range for which the majority of predictions will fall for any given

actual value. For instance, a PWb of 1 h can be detected � 0.25 h,

but as PWb increases, this prediction window widens and for PWb ≥
3 h, the resolution of detection is closer to � 1 h (Fig 8B). Similarly,

predicted values of Δt fall within � 0.5 h for 0 < Δt < 3 h and

increase to � 1 h when Δt ≥ 3 h (Fig 8C). Using these fitting func-

tions, we can also pre-generate a reference table that converts RFP

and GFP population fractions into predicted PWb and Δt values

(Appendix Table S4).

Discussion

Engineered biological systems have inherent capabilities for replica-

tion, parallel processing, and energy efficiency. These advantages

rely on the existence of bacteria not as single cells, but as popula-

tions. As the field moves forward with synthetic gene circuits, it is

important to understand outcomes not just as single-cell outputs but

as overall population-level distributions.

We have designed and implemented a temporal logic gate that

takes advantage of the population dynamics to collectively sense and

record sequences of transient chemical inputs. We show both that

single cells independently sense and record events and that aggre-

gate population fractions create unique outcomes that provide infor-

mation not encoded in single cells. As with all engineered systems,

proper calibration of these temporal logic gate populations will be

required prior to deployment in the “field”. We envision a process

similar to the one described in this report. First, experimental popu-

lations are exposed to a matrix of PWb and Δt values. This will set

the maximum and minimum RFP and GFP population fractions and

provide necessary data for determining the Δt90 limit and producing

the fitting functions PWb(R) and Δt(G, PWb). Once the fitting func-

tions have been determined, values for PWb and Δt for experimental

samples can be estimated within � 0.25 to 1 h of the actual values.

A calibrated table could also be generated and used for as a reference

for samples that have been exposed to unknown conditions.

The stochastic nature of molecular processes often presents a

significant barrier to homogenous outputs from an engineered popu-

lation of cells. This implementation of event detection via popula-

tion fractions takes advantage of stochastic and heterogeneous

individual responses to environmental conditions in order to map

final population fractions back to unique sequences and durations

of chemical events. The sensitivity of the system and the Δt90
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Figure 8. Determining prediction resolution for PWb and Δt from population data.

A A mesh generated from fitted curves for PWb as a function of RFP population percentage(R) and Δt as a function of pulse width and GFP population percentage(G).
Experimental data are overlaid.

B Comparison of actual versus estimated PWb values generated by fitted function PWb(R). For each actual PWb value, the average of the estimated PWb values with � 1
standard deviation (slightly offset on the x-axis for better comparison).

C Comparison of actual versus estimated Δt generated by the fitted function Δt(G; PWb). For each actual Δt value, the average of the estimated Δt with � 1 standard
deviation (slightly offset on the x-axis for better comparison).

Source data are available online for this figure.
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detection limit could potentially be modulated by increasing or

decreasing protein production rates via tuning of plasmid copy

numbers, signal concentration, or transcription/translation

sequences. The use of digital cellular outputs combined with the

analog population response creates event detection systems that are

more robust to stochasticity and can be tuned more easily. We plan

to explore these possibilities in future work.

As a proof-of-concept, we have used the common laboratory

inducers L-arabinose and aTc as inputs, but we anticipate that our

temporal logic gate system could be modularly adapted to any pair

of biosensors. In particular, we believe there are possibilities for

detection of miRNAs and biofilm formation. Stable populations of

microRNAs (miRNAs) circulating in the blood have generated a lot

of interest as biomarkers for human health (Cortez et al, 2011).

These short (~20–30nt) regulatory RNAs have been shown to have

sequential tissue-specific expression signatures that correlate with

pregnancy, tumor formation, and other diseases (Gilad et al, 2008;

Mitchell et al, 2008), and synthetic biology has developed many

customizable RNA sensors (Friedland et al, 2009; Green et al,

2014). Detection of miRNAs would require implementation of the

temporal logic gate in mammalian cells. Though recombinase-based

synthetic circuits have not been shown in mammalian cells, serine

integrases have been used quite effectively in a wide variety of

mammalian cell types, primarily for genome editing and integration

(Keravala et al, 2006; Xu et al, 2013).

Another possible application would involve the detection of

harmful biofilms. Biofilms are self-assembling, highly structured,

multi-species consortia that develop in stages and have sophisti-

cated networks of interaction and function (Stoodley et al, 2002;

Flemming & Wingender, 2010; Elias & Banin, 2012). Unnatural biofilm

development in environments such as industrial water sources or

waste streams can be both harmful for both the natural environment

and the industrial mechanisms. Detection of biomarkers for known

strains of biofilm colonizers would provide early warning of chang-

ing ecosystems, and although we do not yet fully understand these

networks, it is known that quorum sensing plays a critical role in

the process. Quorum-sensing molecules and receptors are available

in the synthetic biology toolbox and so may provide an accessible

way of detecting the sequential colonization of different microbes.

Field deployment of engineered bacteria will likely involve transient

signals, low-nutrient environments, and possibly even other micro-

bial competitors (i.e., soil, flowing rivers, the digestive tract). We

used minimal media in this study to better approximate low-nutrient

environments, and anticipate further characterization in more custo-

mized “local” environments (i.e., gut model or air model or soil

model) and with hardier microbial chassis.

Finally, this study focused on the population outputs as indica-

tors of past events, but we believe that this temporal logic gate

could be used to reliably differentiate a single strain into controlled

sub-populations via input pulse order, duration, and frequency. In

recent years, it has been recognized that many natural systems

modulate cellular behavior not only by changing the concentration

of signaling molecules but also by regulating signal pulse frequency

(Cai et al, 2008; Lin et al, 2015). If we consider the fluorescent

proteins GFP and RFP in this circuit as simply placeholders for

downstream genes, then this system could easily be applied as a

top-down population differentiator. By modulating the sequence of

inputs, one could systematically predict and create mixed

populations of genetically differentiated cells. This greatly expands

our capability to design synthetic systems that have controllable

distributions as outcomes, not just digital on/off phenotypes.

Furthermore, we can then begin to develop frameworks for under-

standing the role of feedback and control theory in modulating these

sub-populations given different starting distributions or uneven

growth rates due to resource limitations. As the scientific commu-

nity turns toward further understanding of microbiomes and multi-

cellular consortia, engineered bacteria populations could be used

not only as a tool for investigating the activities of natural communi-

ties but also as a way to build synthetic communities from the

ground up.

Materials and Methods

Cell strains and plasmids

All plasmids used in this study were designed in Geneious 7.1

(Biomatters, Ltd.) and made using standard Gibson isothermal

cloning techniques. Integrases Bxb1 and TP901-1 are on a high-copy

plasmid (pVHed05, plasmid map in Appendix Fig S9) with a ColE1

origin of replication (original template from the dual recombinase

controller (Bonnet et al, 2013), Addgene Plasmid 44456). Integrase

A (Bxb1) is behind a Ptet promoter and integrase B (TP901-1) is

behind a PBAD promoter. The plasmid has been modified with an

additional TetR gene. The temporal logic gate was integrated into

the Phi80 site on the E. coli chromosome using CRIM integration

(Haldimann & Wanner, 2001) and screened for single integrant colo-

nies. The integration plasmid template and DH5a-Z1 strain were

generously provided by J. Bonnet and D. Endy and modified to

contain the temporal logic gate (pVHed07, plasmid map in

Appendix Fig S9). Additional DNA and oligonucleotides primers

were ordered from Integrated DNA Technologies (IDT, Coralville,

Iowa). A custom formulation of M9CA media was used for all exper-

iments. The media contained 1× M9 salts (Teknova, M1906)

augmented with 100 mM NH4CL, 2 mM MGSO4, 0.01% casamino

acids, 0.15 lg/ml biotin, 1.5 lM thiamine, and 0.2% glycerol and

then sterile-filtered (0.2 lm).

Model simulations

The stochastic simulation algorithm by Gillespie (Gillespie, 1977)

was implemented to generate the sample paths of individual cells

using the Markov model (see Appendix Table S6 for the definitions

of Markov transitions and transition rates). All simulation runs and

their analyses were done with MATLAB (R2014b, The MathWorks,

Inc.). Simulated populations were done with 3,000–5,000 individual

cell trajectories. Source code for MATLAB simulations is available

as Code EV1.

Experimental methods

Prior to all experiments, cells were grown overnight from plate

cultures in M9CA for 2 days, then diluted to OD 0.1 and recovered

for 4–6 h at 37°C. L-arabinose and anhydrous tetracycline (aTc)

were used as inducers a and b, respectively. L-ara was used a

concentration of 0.01% by volume, and aTc was used a
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concentration of 200 ng/ml (450 nM). All media contained the

antibiotics chloramphenicol (Sigma-Aldrich, Inc (C0378); 50 lg/ml)

and kanamycin (Sigma-Aldrich, Inc (K1876); 30 lg/ml). All experi-

ments were performed with the aid of timed liquid handling by a

Hamilton STARlet Liquid Handling Robot (Hamilton Company).

For step function experiments, the cells were diluted to OD 0.06–

0.1 into a 96-well matriplate (Brooks Automation, Inc., MGB096-1-

2-LG-L) with 500 ll total volume in M9CA. Cultures were incubated

at 37°C in a BioTek Synergy H1F plate reader with linear shaking

(1096 cycles per minute) (BioTek Instruments, Inc.), and inducers

were added at appropriate time by the Hamilton robot. OD and fluo-

rescence measurements (superfolder-GFP ex488/em520, mKate2-

RFP ex580/em610) were taken by the BioTek every 10 min. Each

experimental condition was done on the plate in triplicate.

For the pulse experiments, single 500-ll cultures were grown at

37°C in the BioTek plate reader (linear shaking, 1096 cycles per

minute) and inducers added at time Δt by the Hamilton liquid

handler. Pulses were achieved through dilution of the culture into

fresh M9CA media containing 0.01% L-arabinose. The Hamilton

was programmed to sample 5 ll of the culture and dilute it into

500 ll of fresh M9CA + 0.01% L-ara to achieve pulsatile exposure

to aTc. This was done in three independent triplicates for each

experimental condition. About 96-well deep-well plates containing

the diluted cultures were then incubated at 37°C incubated for an

additional 24 h (~36–40 h from start of experiment). Final end point

populations were measured using the plate reader and also stored

and further analyzed using flow cytometry.

Analysis of experimental data was done using custom MATLAB

scripts. All depicted error bars are standard error of the mean.

Fitting of curves was done in MATLAB.

Flow cytometry

Experimental cultures were spun down, washed, resuspended in

sterile PBS with 15% glycerol, and stored at �80°C (Jahn et al,

2013). Cultures were then thawed on ice and diluted to 106 cells/ml

in sterile PBS prior to running on the flow cytometer. Flow cytome-

try was done using a MACSQuant VYB (Miltenyi Biotec, Germany)

at the Caltech flow cytometry core facility. Flow data analysis and

gating was done with FlowJo version 10.0.8r1 (Flowjo, LLC,

Ashland, OR). For inducer separation time experiments shown in

Figs 4 and EV1, ~105 cells were measured per population. For pulse

induction experiments shown in Figs 7 and EV2, ~106 cells were

measured per population.

Expanded View for this article is available online.
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