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Abstract

Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic 

inflammation associated with aging and arthritis promotes bone resorption and impairs bone 

formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by 

inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice 

expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic 

inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to 

promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. 

Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-

κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, 

recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by 
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inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a 

therapeutic agent for treating osteoporosis by attenuating NF-κB.

Normal bone remodeling maintains constant bone mass by an orchestrated balance between 

the destruction of pre-existing bone by osteoclasts and rebuilding by osteoblasts1,2. Aging 

brings significant changes to the skeletal system, characterized by structural alterations 

including reduction in trabecular bone volume, density and strength3,4, as well as a shift in 

tissue microenvironment with increasing pro-inflammatory cytokine levels in bone marrow 

and the serum5–8. Advancing age is also a critical risk factor for osteoporosis which is the 

most common metabolic bone disease and a leading cause of morbidity and mortality in our 

aging population9–11. In osteoporosis, bone homeostasis is dysregulated by hormonal 

deficiency and aging, leading to increased bone turnover with enhanced bone formation and 

even greater rates of bone resorption, resulting in a net bone loss. Skeletal aging also 

manifests through other scenarios of abnormal bone remodeling, such as reduced formation 

and accelerated resorption in inflammatory bone diseases, and low bone turnover in 

physiological aging. Both arms of bone remodeling are regulated on the local level by 

factors secreted by bone cells, as well as on the systemic level by hormones4,11–14.

Chronic inflammation has been found to be associated with osteoporosis and aging-related 

bone loss1,6,7. In general, the transcription factor NF-κB is activated during inflammatory 

processes15. Growing evidence suggests that NF-κB plays an important role in age-related 

disorders, including age-related bone loss and osteoporosis16–19. Inhibition of NF-κB has 

been shown to attenuate osteoporosis or arthritis20,21. We previously reported that NF-κB 

activation inhibits bone formation in estrogen deficiency-induced osteoporosis22. Thus, 

targeting NF-κB may allow both inhibition of bone resorption as well as promotion of bone 

formation. The Wnt family proteins are key regulators in growth and development, stem cell 

self-renewal, and cancer development23,24. Wnt signaling has also emerged as a critical 

player in bone homeostasis25,26. The 19 Wnt family proteins are divided into canonical and 

non-canonical ligands based on their dependence on transduction through β-catenin27–29. 

While there have been a few studies elucidating the role of non-canonical Wnt in osteoblast 

differentiation30–33, little is known regarding how non-canonical Wnt affects osteoclast 

formation. Wnt5a-Ror2 signaling is found to promote osteoclastogenesis by activating the 

Wnt-c-Jun terminal kinase (JNK) pathway32. Previously, we found that Wnt4, a prototypical 

non-canonical Wnt ligand, is able to promote osteoblast differentiation of mesenchymal 

stem cells (MSCs)33. To further explore the therapeutic potential of Wnt4, we generated 

transgenic mice (Wnt4 mice) that express Wnt4 in osteoblasts. While we confirmed that 

Wnt4 could enhance bone formation in vivo, we found that Wnt4 could inhibit osteoclast 

formation and inflammation in vivo, thus attenuating bone loss and osteoporosis.

RESULTS

Wnt4 promotes bone formation in vivo

To explore whether Wnt4 promoted bone formation in vivo, we generated transgenic mice in 

which Wnt4 was driven by the mouse 2.3 kb type 1 collagen (Col2.3) promoter. The Col2.3 

promoter contains a 2.3 kb DNA fragment upstream of the transcription start site of the 
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Col1a1 gene34, and has been shown to drive gene expression specifically in differentiated 

osteoblasts35. After zygote injection, seven of the ten potential founders screened displayed 

strong expression of the transgene (Supplementary Fig. 1a), thus allowing establishment of 

two separate transgenic mouse lines (TG1 and TG7). While transgenic Wnt4 proteins were 

undetectable in primary calvarial cells from WT mice, Wnt4 proteins in calvarial cells from 

TG1 and TG7 mouse lines were induced as the cells differentiated into osteoblasts in 

osteogenic media (Fig. 1a). Reverse transcriptase-polymerase chain reaction (RT-PCR) 

confirmed that Wnt4 transgene mRNA was expressed in bone tissue, but not in brain, heart, 

kidney, liver, spleen, or muscle using the TG7 line (Fig. 1b). Next we investigated if Wnt4 

would enhance bone formation in vivo using the TG7 line. Of note, Wnt4 mice had a 

phenotypically normal skeleton at birth (data not shown). µCT analysis of the secondary 

spongiosa of distal femur metaphysis revealed that the bone mineral density (BMD) of Wnt4 

mice was significantly higher compared to wild-type littermates (WT) at 1, 2 and 3 months 

(Fig. 1c,d). Similarly, bone volume/tissue volume (BV/TV) was significantly higher in Wnt4 

mice compared to WT mice (Fig. 1e), in consistence with the greater amount of trabecular 

bones shown in HE staining (Fig. 1f). Histomorphometric analysis revealed mildly higher 

osteoblast counts in 3-month-old Wnt4 mice compared to WT mice (Fig. 1g). To further 

confirm the increased BMD was due to enhanced osteoblast function, we performed 

dynamic histomorphometric analysis over a 7-day period using calcein labeling22, and found 

that bone formation rate (BFR) in 3-month-old Wnt4 mice was significantly higher 

compared to WT mice (Fig. 1h). Similarly, characterization of the TG1 mouse line also 

confirmed that Wnt4 enhanced bone formation in vivo, ruling out variations due to mouse 

strains (Supplementary Fig. 1b,c).

To examine if Wnt4 enhanced osteoblastic activity in a cell-autonomous manner, we 

isolated bone marrow MSCs from femurs of Wnt4 mice and WT mice. Primary MSCs from 

Wnt4 mice demonstrated enhanced osteogenic potential, as evidenced by alkaline 

phosphatase (ALP) staining and Alizarin Red staining (ARS), when cells were induced by 

osteogenic medium (Fig. 1i,j). Furthermore, Real-time RT-PCR showed greater mRNA 

expression of the master osteogenic transcription factors Runx2 and Sp7 (Supplementary 

Fig. 1d,e), as well as mineralization markers Ibsp and Biglap (Supplementary Fig. 1f,g) in 

differentiated osteoblasts from Wnt4 mice compared with WT mice.

Wnt4 prevents estrogen deficiency-induced osteoporosis

To mimic the molecular pathogenesis of osteoporotic bone loss, mouse ovariectomy (OVX) 

has been widely used as a model to induce estrogen deficiency-mediated osteoporosis6,22,36. 

We performed OVX or sham operation on 3-month-old WT and Wnt4 mice. µCT analysis of 

femurs revealed significant trabecular bone loss in WT mice compared to sham control 2 

months post OVX. In contrast, bone loss was markedly lower in Wnt4 mice after OVX (Fig. 

2a). Quantitative measurements showed that, whereas 47% of BMD and 48% of BV/TV 

were lost in WT mice after OVX, only 27% of BMD and 24% of BV/TV were lost in Wnt4 

mice (Fig. 2b). Following OVX, BFR increased in WT mice to compensate for the 

accelerated bone resorption, while in Wnt4 mice, osteoblastic activity was further enhanced 

(Fig. 2c). Similarly, osteoblast number and surface were significantly higher in Wnt4 versus 

WT mice in both OVX and sham groups (Fig. 2d). In contrast, we observed lower osteoclast 
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number and surface in Wnt4 mice compared to WT mice in both OVX and sham groups 

(Fig. 2e,f). We also performed ELISA to assess the serum markers of bone turnover. The 

serum concentrations of osteocalcin (Ocn), a marker for bone formation, were significantly 

higher in Wnt4 mice compared to WT mice after OVX (Fig. 2g). In contrast, OVX induced 

higher serum concentrations of Trap5b, a marker for bone resorption37, in WT but not in 

Wnt4 mice (Fig. 2h).

Studies have implicated pro-inflammatory cytokines, including tumor necrosis factor (Tnf) 

and interleukin-6 (Il-6), as important mediators of accelerated bone loss in osteoporosis38,39. 

Consistently, OVX induced an elevation in serum concentrations of Tnf and Il-6 in WT 

mice, but such induction was suppressed in Wnt4 mice (Fig. 2i). Immunostaining of 

activated p65 in femur sections revealed enhanced NF-κB activity in osteoclasts and bone 

marrow cells surrounding trabecular bones following OVX. In contrast, the NF-κB 

activation by OVX was significantly less pronounced in Wnt4 mice (Fig. 2j). To further 

confirm the inhibition of NF-κB by Wnt4 in vivo, we immunostained NF-κB-dependent 

targets, including Tnf, Cycloxygenase-2 (Cox-2) and Matrix metallopeptidase 9 (Mmp9). 

Consistently, we found that Wnt4 also potently reduced the expression of Tnf, Cox-2 and 

Mmp9 induced by OVX in vivo (Supplementary Fig. 2a–c).

Wnt4 inhibits inflammatory bone loss induced by TNF

TNF is a potent inducer of inflammation by activating NF-κB. TNF-transgenic (TNFtg) 

mice develop systemic bone loss and osteoporosis in addition to erosive arthritis by 

promoting osteoclastogenesis and inhibiting bone formation40–42. To further determine 

whether Wnt4 could directly inhibit inflammation-associated bone loss, we bred TNFtg 

mice with Wnt4 mice. There was severe paw and joint swelling, often associated with joint 

deviation in 1-year-old TNFtg mice. µCT and histological analysis revealed that there were 

extensive joint cartilage destruction and bone erosions due to invasion of inflammatory cells 

(Supplementary Fig. 3a-e). In contrast, there was significantly less joint swelling, bone 

erosion and inflammation in TNFtg/Wnt4 mice than in TNFtg mice of comparable age 

(Supplementary Fig. 3a-e).

Consistent with previous studies, µCT analysis revealed systemic bone loss suffered by 1-

year-old TNFtg mice compared with WT mice. However, bone loss in TNFtg/Wnt4 femurs 

was markedly mitigated (Fig. 3a). Quantitative measurements revealed that, whereas 31% of 

BMD and 68% of BV/TV were lost in TNFtg mice compared to WT mice, only 18% of 

BMD and 28% of BV/TV were lost in TNFtg/Wnt4 mice (Fig. 3b). As the reduced bone loss 

could be due to either increased bone formation or slowed bone resorption or both, we 

examined the effect of Wnt4 on both components of bone homeostasis. The reduction in the 

BFR and mineral apposition rate (MAR) in TNFtg mice were alleviated in TNFtg/Wnt4 

mice (Fig. 3c). Consistently, histomorphometric analysis also showed 24% greater 

osteoblast counts in TNFtg/Wnt4 than TNFtg mice (Fig. 3d). Since it has been shown that 

osteoclastogenesis and bone resorption were enhanced in TNFtg mice, we then examined the 

effect of Wnt4 on accelerated bone resorption in TNFtg mice. Both histomorphometric 

analysis and TRAP staining revealed that, while osteoclast activity was higher in TNFtg 

mice compared to WT controls, it was significantly lower in TNFtg/Wnt4 mice (Fig. 3e,f). 
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Consistently, the serum concentrations of Ocn were significantly lower in TNFtg mice than 

that in TNFtg/Wnt4 mice (Fig. 3g). On the other hand, the serum concentrations of Trap5b 

were significantly higher in TNFtg mice than in TNFtg/Wnt4 mice (Fig. 3h).

We observed that the serum Il-6 concentration in TNFtg/Wnt4 mice was only 55% of that in 

TNFtg mice (Fig. 3i). Since TNF is a potent activator of NF-κB which is associated with 

osteoporosis and skeletal aging16,22,43, Wnt4 might inhibit TNF-induced NF-κB activation 

in the TNFtg/Wnt4 mice. Immunostaining of active p65 revealed markedly enhanced NF-κB 

activity in the proximity of trabecular bones in TNFtg mice, while NF-κB staining was 

significantly reduced in TNFtg/Wnt4 mice (Fig. 3j). Moreover, Wnt4 also inhibited the 

expression of Cox-2 and Mmp9 in osteoclasts and bone marrow cells induced by TNF in 

vivo (Supplementary Fig. 3f,g).

Wnt4 prevents skeletal aging and bone loss

Aging creates a pro-inflammatory environment with elevated levels of cytokines that 

contribute to various chronic diseases including osteoporosis or osteopenia4,44–46. We 

further examined whether Wnt4 could protect against natural aging-mediated bone loss or 

osteopenia. µCT analysis revealed that there was a gradual loss of trabecular bone mass with 

advancing age from 6 to 24 months in WT mice (Fig. 4a). Further quantitative analysis 

showed that the most dramatic loss occurred between 6 and 12 months of age and average 

BMD dropped 42.7% while BV/TV dropped 67.1%. However, the reduction was 

significantly less with Wnt4 mice, with 32.0% in BMD and 41.9% in BV/TV respectively 

(Fig. 4b). Histological staining also confirmed that aged Wnt4 mice lost less trabecular bone 

than aged WT mice (Fig. 4c). Of note, we confirmed that Wnt4 transgene mRNA in bone 

tissues was still expressed in aged Wnt4 mice using RT-PCR although the levels of Wnt4 

mRNA declined over age (Supplementary Fig. 4a,b). Immunostaining also demonstrated 

that Wnt4 proteins in osteoblasts were strongly detected in aged Wnt4 mice, but weakly in 

aged WT mice (Supplementary Fig. 4c).

Morphometric measurements for osteoblasts, as well as serum Ocn concentrations, also 

remained significantly greater in Wnt4 mice than in WT mice across all ages (Fig. 4d,e). 

Osteoclast number rose in aged 18-month-old WT mice compared to 3-month-old mice (Fig. 

4f); however, in aged Wnt4 mice, osteoclast counts became significantly suppressed 

compared to aged WT mice (Fig. 4f). Notably, while serum Trap5b concentrations were not 

significantly different between Wnt4 and WT mice at 3 months of age, they increased 

drastically at 18 or 24 months in WT mice but not in Wnt4 mice (Fig. 4g). Furthermore, 

serum concentrations of Il-6 also showed a similar trend (Fig. 4h). Finally, we also 

examined whether natural aging-associated NF-κB activation was suppressed by Wnt4. 

While immunostaining of active p65 revealed intense NF-κB activities in the vicinity of 

trabecular bones in aged WT mice, NF-κB activities appeared less prevalent in aged Wnt4 

mice (Fig. 4i,j, yellow arrow). Consistently, the expression of Tnf, Cox-2 and Mmp9 was 

markedly weaker in aged Wnt4 mice compared with aged WT mice (Supplementary Fig. 

4d).
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Wnt4 inhibits TAK1-NF-κB signaling

Our in vivo results suggest that Wnt-4 secreted by osteoblasts may inhibit osteoclast 

formation and bone resorption in a paracrine fashion. To confirm our hypothesis, we 

examined whether Wnt4 could directly inhibit osteoclast differentiation using recombinant 

Wnt4 proteins (rWnt4). As evidenced by TRAP staining, rWnt4 protein significantly 

inhibited osteoclast differentiation of primary bone marrow macrophages induced by 

receptor activator of nuclear factor kappa-B (Rankl; Supplementary Fig. 5a). Similarly, the 

osteoclast-like differentiation of RAW264.7 cells induced by Rankl was also attenuated by 

Wnt4 (Supplementary Fig. 5b). Real-time RT-PCR confirmed that rWnt4 inhibited the 

expression of osteoclast marker genes, including Trap, Mmp9 and Ctsk, induced by Rankl in 

bone marrow macrophages and RAW264.7 (Supplementary Fig. 5c,d). Since Wnt4 inhibited 

the expression of NF-κB target genes in vivo, we also examined whether rWnt4 inhibited the 

expression of NF-κB target genes induced by Rankl. Real-time RT-PCR revealed that rWnt4 

potently inhibited induction of NF-κB-dependent genes Il6 and Birc3 by Rankl in bone 

marrow macrophages (Supplementary Fig. 5e) and in RAW264.7 cells (Supplementary Fig. 

5f). Consistent with our immunostaining in vivo, rWnt4 also significantly suppressed NF-

κB-dependent genes Tnf and Cox-2 in bone marrow macrophages (Supplementary Fig. 5g).

To further elucidate the molecular mechanism by which Wnt4 inhibited NF-κB and 

osteoclastogenesis, we examined each key step of NF-κB activation induced by Rankl. 

Activation of the Rank receptor leads to association of its cytoplasmic domain with Tnf 

receptor associated factor 6 (Traf6) which is essential in osteoclast differentiation47,48. Traf6 

forms a complex with transforming growth factor beta-activated kinase 1 (Tak1) and Tak1-

binding protein 2 (Tab2), leading to phosphorylation and activation of Tak149. In canonical 

NF-κB signaling, Tak1 then phosphorylates IκB kinase (IKK) complex and thereby initiates 

degradation of Iκbα, followed by phosphorylation and nuclear translocation of p65 to 

activate downstream target genes49. Western blot analysis revealed that rWnt4 potently 

inhibited the apical step of Tak1 phosphorylation, and the subsequent steps of p65 

phosphorylation and the phosphorylation and degradation of Iκbα induced by Rankl (Fig. 

5a). Furthermore, rWnt4 also suppressed Rankl-induced nuclear translocation of p65 (Fig. 

5b). Moreover, rWnt4 inhibited NF-κB-dependent transcription as determined by the NF-

κB-dependent luciferase reporter assay (Fig. 5c).

Since Tak1 also forms a complex with Nemo-like kinase (Nlk) and Tab2 in non-canonical 

Wnt signaling27,50, we hypothesized that rWnt4 stimulation may interfere with the 

formation of the Traf6-Tak1-Tab2 complex induced by Rankl. The co-immunoprecipitation 

(IP) revealed that Rankl induced the formation of the Traf6-Tak1-Tab2 complex using anti-

Traf6 antibodies (Fig. 5d, lane 1 and 2). However, addition of rWnt4 drastically inhibited 

the formation of the Traf6-Tak1-Tab2 complex (Fig. 5d, lane 2 and 4). On the contrary, we 

observed that rWnt4 stimulation induced the formation of the Tak1-Tab2-Nlk complex, the 

addition of Rankl partially reduced the formation of the Tak1-Tab2-Nlk complex (Fig. 5d, 

lane 3 and 4). Since Traf6-Tak1 signaling also activates p38 mitogen-activated protein 

kinase (p38), Jnk and extracellular signal-regulated kinase (Erk), we examined whether 

rWnt4 inhibited the activation of p38, Jnk and Erk induced by Rankl. Consistently, we found 
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that rWnt4 proteins also partially inhibited the phosphorylation of Erk, p38 and Jnk induced 

by Rankl (Supplementary Fig. 5h).

As the nuclear factor of associated T-cells c1 (Nfatc1) is the key transcription factor for 

osteoclastogenesis51, we examined the effect of rWnt4 treatment on its expression following 

Rankl stimulation in bone marrow macrophages. We found that the induction of Nfatc1 by 

Rankl was repressed by rWnt4 (Fig. 5e). Previously, it has been shown that the activation of 

NF-κB induced the expression of Nfatc1, which in turn activated osteoclast differentiation52. 

Both NF-κB and NFAT consensus binding sites exist at the Nfatc1 promoter. Upon 

induction by Rankl, p65 is recruited to the Nfatc1 promoter to activate its transcription and 

subsequently the newly-generated Nfatc1 can auto-amplify itself52. Chromatin 

immunoprecipitation (ChIP) assays revealed that rWnt4 significantly suppressed the Rankl-

induced p65 binding to the Nfatc1 promoter (Fig. 5f). Consequently, rWnt4 also potently 

reduced Nfatc1 binding at its own promoter induced by Rankl (Fig. 5g). While we 

previously found that Wnt4 activates non-canonical Wnt signaling in MSCs33, Wnt4 might 

stimulate canonical Wnt signaling by stabilizing β-catenin. To rule out this possibility, we 

examined whether rWnt4 proteins increased the levels of cytosolic and nuclear β-catenin in 

bone marrow macrophages. Subcellular fractionation revealed that, while rWnt3a increased 

the levels of cytosolic and nuclear β-catenin, rWnt4 did not induce in the accumulation of β-

catenin (Fig. 5h). Moreover, we also examined whether rWnt4 induced β-catenin-dependent 

transcription using a Topflash luciferase reporter. rWnt3a, but not rWnt4, significantly 

activated the luciferase reporter in bone marrow macrophages (Fig. 5i). In addition, two 

well-known Wnt/β-catenin target genes, Axin2 and Dkk1, were induced by rWnt3a, but not 

by rWnt4 (Fig. 5j).

rWnt4 proteins inhibit osteoporosis

To explore the potential clinical utilization of Wnt4, we first tested whether rWnt4 

prevented osteoporotic bone loss by inhibiting NF-κB. 3-month-old mice were 

ovariectomized and intraperitoneally administered with rWnt4 once a day for three weeks. 

µCT analysis revealed that, while mice that underwent OVX suffered marked loss in 

trabecular BMD and BV/TV one month after OVX, mice injected with rWnt4 had 

significantly less bone loss (Supplementary Fig. 6a-c). Histological analysis also confirmed 

that rWnt4 significantly inhibited trabecular bone loss induced by OVX (Supplementary Fig. 

6e–g). Moreover, rWnt4 also reduced serum Trap5b levels (Supplementary Fig. 6h). 

Immunostaining showed that rWnt4 inhibited NF-κB activity in osteoclasts and adjacent 

inflammatory cells upon OVX (Supplementary Fig. 6i). Consistently, we found that serum 

levels of Il-6 and Tnf induced by OVX were significantly reduced by rWnt4 (Supplementary 

Fig. 6j).

To further evaluate the therapeutic value of rWnt4 proteins, we examined whether rWnt4 

could reverse established bone loss in mice induced by OVX. We first performed OVX on 3 

month-old mice and waited for one month to establish bone loss. We then administrated the 

mice with rWnt4 or the vehicle control for one month. µCT analysis revealed that rWnt4 

significantly reversed OVX-induced reduction in trabecular BMD and BV/TV (Fig. 6a,b). 

Histological staining confirmed that rWnt4 reduced trabecular bone loss induced by OVX 

Yu et al. Page 7

Nat Med. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig. 6c). Histomorphometric analysis also showed that, while rWnt4 significantly increased 

osteoblast counts induced by OVX (Fig. 6d), rWnt4 significantly inhibited osteoclast 

formation (Fig. 6e,f). Consistently, rWnt4 reduced serum Trap5b concentrations induced by 

OVX (Fig. 6g) whereas it modestly increased serum Ocn concentrations (Fig. 6h). 

Immunostaining revealed that rWnt4 potently inhibited NF-κB activity in osteoclasts and 

adjacent bone marrow cells (Fig. 6i), as well as the expression of Tnf, Cox-2 and Mmp9 

(Supplementary Fig. 7). rWnt4 also significantly reduced serum concentrations of Il-6 and 

Tnf induced by OVX (Fig. 6j).

DISCUSSION

Using three different, but complimentary animal models, we demonstrated that Wnt4 could 

prevent osteoporosis and aging-related bone loss by inhibiting NF-κB, unraveling a novel 

crosstalk between non-canonical Wnt signaling and NF-κB. The gain- or loss-of-function 

mutations of Wnt signaling components have been identified in a variety of human bone 

disorders26,53,54. Recently, Wnt5a has been found to enhance osteoclast formation and bone 

resorption by activating the non-canonical JNK signaling pathway. Wnt5a enhanced 

osteoclastogenesis induced by Rankl through the Ror2 receptor32, suggesting that targeting 

Wnt5a may prevent bone erosion in arthritis. However, Wnt5a-haploinsufficient mice had a 

bone-loss phenotype with increased adipogenesis in bone marrow50. Thus, Wnt5a might not 

be an ideal therapeutic agent for arthritis and metabolic bone loss. On the contrary, we found 

that Wnt4 inhibited osteoclastogenesis and bone resorption in vitro and in vivo by inhibiting 

NF-κB while promoting bone formation, thereby holding more promising potential as a 

therapeutic agent for preventing skeletal aging, osteoporosis and arthritis compared to 

Wnt5a.

Various Wnt ligands can elicit different responses depending on the receptors and cell 

contexts. Wnt5a acts via Ror2 to enhance the expression of Rank in osteoclast precursors by 

stimulating the activator protein 1 and promotes Rankl-induced osteoclast formation32. 

Notably, we find that Wnt4 suppresses Tak1 activation induced by Rankl, resulting in the 

inhibition of IKK/NF-κB activation in macrophages and osteoclast precursors. While Tak1 

plays a role in non-canonical Wnt signaling by interacting with Nlk50, it also modulates 

canonical Wnt signaling55,56. The definitive role of Tak1 in both canonical and non-

canonical signaling might depend on cell context and individual Wnt ligands. Based on our 

results, Wnt4 might activate its receptors to promote Tak1-mediated non-canonical Wnt 

signaling in osteoclasts, and subsequently sequester Tak1 from effectively binding with 

Traf6 to induce the NF-κB signaling cascade. Although we showed that Wnt4 promoted 

Tak1 binding to Nlk, it is possible that Wnt4 might also promote the interaction between 

Tak1 and the Wnt signaling components, since it has been reported that Ror2 interacts with 

Tak155.

Most drugs currently used for osteoporosis are inhibitors of bone resorption, but cannot 

restore the significant bone loss that has already occurred at the time of diagnosis. 

Therefore, a better treatment module for osteoporosis would not only address issues with 

bone homeostasis, but also control local inflammation6–8,11. Multiple Wnt proteins, 

including Wnt4, have been detected in bone tissues or bone marrow54,57,58. Although the 
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inhibition of aging-associated bone loss and inflammation is mainly based on transgenic 

overexpression of Wnt4, multiple non-canonical Wnt ligands, including Wnt4, Wnt6, Wnt11 

and Wnt16, are expressed in osteoprogenitors57,58. They may collectively protect against 

aging-associated bone loss and inflammation. Importantly, we show that rWnt4 proteins 

effectively inhibit OVX-induced bone loss by inhibiting NF-κB. While canonical Wnt 

proteins have potential therapeutic value for treating osteoporosis by promoting bone 

formation, the constitutive activation of β-catenin might also increase the risk for cancer 

development which is associated with aging23,24. Since Wnt4 does not activate β-catenin in 

either osteoblasts or osteoclasts, our results suggest that rWnt4 proteins may be a better 

therapeutic agent for preventing skeletal aging and treating inflammatory bone diseases by 

inhibiting NF-κB.

ONLINE METHODS

Generation of transgenic mice and experimental animals

We used the plasmid pGL647, which contained the Col2.3 promoter to specifically drive 

osteoblast-specific gene expression in vivo. We subcloned the mouse Wnt4 gene into 

pGL647, flanked by the Col2.3 promoter. The fragments of the Wnt4 transgene were 

purified and microinjected into C57BL/6×SJL mouse oocytes (Charles River Laboratory) 

and the oocytes were surgically transferred to pseudopregnant C57BL/6 dams by the 

University of Michigan Transgenic Animal Model Core. We screened the founders by PCR 

using mouse tail genomic DNA and confirmed them by Southern blot analysis. We bred two 

transgenic founder mice with C57BL/6 mice for six generations to obtain a defined genetic 

background. TNFtg mice expressing hemizygous human TNF were purchased from Taconic 

Farms (#1006; B6.Cg(SJL)-Tg(TNF) N21+; Oxnard, California). WT C57BL/6 mice for 

rWnt4 injection were purchased from Jackson Laboratory (Bar Harbor, Maine). In all 

experiments, female transgenic mice and female WT littermates as controls were used. We 

established a sample size of at least 8 mice per group in OVX and aging experiments based 

on our previous experience22. We used a sample size of at least 6 mice per group in TNFtg/

Wnt4 experiments. The animals were randomly assigned to procedure groups including 

sham, OVX and rWnt4 injection. However, not all animal experiments were conducted in a 

completely blinded fashion. We ovariectomized 3-month-old transgenic and WT mice to 

induce osteoporosis. Two months after operation, we euthanized the mice and gathered their 

femurs for histological and µCT analysis. We collected blood samples and isolated serums 

for serology. Serum ELISA were performed with a mouse Trap5b assay kit (SBA Sciences), 

an Ocn ELISA kit (Biomedical Technologies), Il-6 and Tnf Quantikine ELISA kits (R&D 

Systems). All mouse protocols were approved by The University Committee on Use and 

Care of Animals at the University of Michigan, the Animal Research Committee at the 

University of California-Los Angeles or both.

Cell culture and viral infection

We grew cells in a humidified 5% CO2 incubator at 37 °C in alpha modified Eagle’s 

medium supplemented with 15% fetal bovine serum (FBS; Invitrogen, California, USA). 

Viral packaging was prepared as described previously59. For viral infection, we plated cells 

overnight and then infected them with lentiviruses or retroviruses in the presence of 
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polybrene (6 µg ml−1, Sigma-Aldrich, USA) for 6 h. We then selected the cells with 

puromycin for 3 days. Resistant clones were pooled and knock-down or over-expression was 

confirmed via Western blot analysis. For culturing of RAW264.7 cells, we used Dulbecco’s 

modified Eagle’s medium supplemented with 10% FBS. For primary bone marrow 

macrophages, we extracted bone marrow cells from mouse femurs, and treated them with 

100 ng ml−1 mouse macrophage colony-stimulating factor (M-Csf; R&D systems) for 2 

days. This allowed the induction to form osteoclast precursors used in the experiments. For 

induction of osteoclastogenesis, we treated the osteoclast precursors with 100 ng ml−1 

mouse Rankl (R&D systems) for up to 3 days. In all in vitro experiments involving Wnt3a 

and Wnt4 recombinant proteins (R&D systems) and Rankl, we used 100 ng ml−1.

Western blot analysis

We lysed cells in RIPA buffer (10 mM Tris-HCL, 1 mM EDTA, 1% sodium dodecyl sulfate 

[SDS], 1% Nonidet P-40, 1: 100 proteinase inhibitor cocktail, 50 mM β-glycerophosphate, 

50 mM sodium fluoride). We then separated lysates on a 10% SDS polyacrylamide gel and 

transferred to membranes by a semi-dry transfer apparatus (Bio-Rad). We blocked 

membranes with 5% milk for 1 h and then incubated with primary antibodies overnight. 

After rinsing, we incubated the immunocomplexes with horseradish peroxidase-conjugated 

anti-rabbit or anti-mouse IgG (Promega, Madison, WI) and visualized the membranes with 

SuperSignal Chemiluminiscent substrate (Pierce, Rockford, IL) as previously 

described22, 59. We purchased primary antibodies from the following commercial sources: 

anti-phospho-Tak1 (1:1000; 4531S; Cell Signaling, Danvers, Massachusetts), anti-Tak1 

(1:1000; MAB5307; R&D systems), anti-phospho-p65 (1:2000; 3033S; Cell Signaling), 

anti-p65 (1:2000; 06-418; Millipore, Billerica, Massachusetts), anti-phospho-Iκbα (1:1000; 

9246; Cell Signaling), anti-Iκbα (1:1000; sc-371; Santa Cruz, Santa Cruz, California), anti-

phospho-JNK (1:500; 9251; Cell Signaling), anti-JNK (1:1,000; 9258; Cell Signaling), anti-

phospho-p38 (1:1000; 9215; Cell Signaling), anti-p38 (1:1000; 8680; Cell Signaling), anti-

phospho-Erk (1:1000; 4284; Cell Signaling), anti-Erk (1:1000; 4696; Cell Signaling), anti-

Traf6 (2µg for immunoprecipitation; 1:1000 for Western blot; sc-8409; Santa Cruz), anti-

Nlk (2µg for immunoprecipitation; AB10206, Millipore), anti-Tab2 (1:1000; 3744; Cell 

Signaling), anti-Nfatc1 (1:1000; sc-7294; Santa Cruz), anti-HA (1:2000; H9658; Sigma-

Aldrich), anti-Tbp (1:2000; T1827; Sigma-Aldrich) and anti-α-tubulin (1:10000; 75168; 

Sigma-Aldrich).

ALP, ARS and TRAP staining

To induce MSC differentiation, we cultured MSCs in mineralization-inducing media 

containing 100 µM ascorbic acid, 2 mM β-glycerophosphate and 10 nM dexamethasone. For 

ALP staining, after induction, we fixed cells with 4% paraformaldehyde and incubated them 

with a solution of 0.25% naphthol AS-BI phosphate and 0.75% Fast Blue BB dissolved in 

0.1 M Tris buffer (pH 9.3). For detecting mineralization, we induced MSCs for 2–3 weeks, 

fixed the cells with 4% paraformaldehyde and stained them with 2% Alizarin Red solution 

(Sigma-Aldrich).

To perform TRAP staining and osteoclast quantification, we fixed cells with a mixture of 

3% formaldehyde, 67% acetone and 25% citrate solution, and then stained with a TRAP kit 
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from Sigma Aldrich according to manufacturers’ instructions. Images were taken and 

analyzed using an Olympus IX-51 microscope. We only counted TRAP+ multinucleated 

cells (>3 nuclei) as osteoclasts.

Luciferase assays

We infected primary bone marrow macrophages with lentiviruses expressing containing NF-

κB-dependent or Topflash luciferease reporters (System Biosciences) for 48hrs 

simultaneously with M-CSF treatment. After stimulation with Rankl or Wnt3a or Wnt4 for 

16 h, we isolated cell lysates. We then used a Dual-luciferase® Reporter Assay System to 

measure luciferase activities as described previously59.

Real-time RT-PCR and ChIP assays

We isolated total RNA from MSCs using Trizol reagents (Invitrogen). 2 µg aliquots of 

RNAs were synthesized using random hexamers and reverse transcriptase according to the 

manufacturer’s protocol (Invitrogen). We then performed Real-Time PCR reactions using 

the QuantiTect SYBR Green PCR kit (Qiagen) and the Icycler iQ Multi-color Real-time 

PCR Detection System. The primers for 18S rRNA are: forward, 5’-CGGCTACCAC 

ATCCAAGGAA-3’; reverse, 5’-GCTGGAATTACCGCGGCT-3’. The primers for Runx2 

are: forward, 5’-AGGGACTATGGCGTCAAACA-3’; reverse, 5’-

GGCTCACGTCGCTCACTT-3’. The primers for Sp7 are: forward, 5’-

CGCTTTGTGCCTTTGAAAT-3’; reverse, 5’- CCGTCAACGACGTTATGC-3’. The 

primers for Bglap are: forward, 5’-AGCAAAGGTGCAGCCTTTGT-3’; reverse, 5’- 

GCGCCTGGGTCTCTTCACT-3’. The primers for Alp are: forward, 5’- 

GGACAGGACACACACACACA-3’; reverse, 5’- CAAACAGGAGAGCCACTTCA-3’. 

The primers for Ibsp are: forward, 5’- ACAATCCGTGCCACTCACT-3’; reverse, 5’- 

TTTCATCGAGAAAGCACAGG -3’. The primers for Trap are: forward, 5’- 

GTGCTGCTGGGCCTACAAAT -3’; reverse, 5’- TTCTGGCGATCTCTTTGGCAT-3’. 

The primers for MMP9 are: forward, 5’- TCCTTGCAATGTGGATGT -3’; reverse, 5’- 

CTTCCAGTACCAACCGTCCT-3’. The primers for Ctsk are: forward, 5’- 

GAAGAAGACTCACCAGAAGCAG -3’; reverse, 5’- TCCAGGTTATGGGCAGAGATT 

-3’. The primers for Birc3 are: forward, 5’-ACGCAGCAATCGTGCATTTTG-3’; reverse, 

5’- CCTATAACGAGGTCACTGACGG -3’. The primers for Cox2 are: forward, 5’- 

AACCCAGGGGATCGAGTGT -3’; reverse, 5’- CGCAGCTCAGTGTTTGGG -3’. The 

primers for Tnf are: forward, 5’-CTGTAGCCCACGTCGTAGC-3’; reverse, 5’- 

TTGAGATCCATGCCGTTG-3’. The primers for Dkk1 are: forward, 5’-

CTCATCAATTCCAACGCGATCA-3’; reverse, 5’-GCCCTCATAGAGAACTCCCG-3’. 

The primers for Axin2 are: forward, 5’-TGACTCTCCTTCCAGATCCCA-3’; reverse, 5’- 

TGCCCACACTAGGCTGACA-3’. The primers for Wnt4 (endogenous) are: forward, 5’-

CTGGAGAAGTGTGGCTGTGA-3’; reverse, 5’-CAGCCTCGTTGTTGTGAAGA -3’. The 

primers for Opg are: forward, 5’-ACCCAGAAACTGGTCATCAGC-3’; reverse, 5’- 

CTGCAATACACACACTCATCACT-3’. The primers for Tnfsf11 are: forward, 5’-

CAGCTATGATGGAAGGCTCA-3’; reverse, 5’-GACTTTATGGAACCCGA-3’.

For extraction of tissue RNA, we dissected mouse femurs and pulverized them in liquid 

nitrogen. After extracting total RNA as described above, we removed residual genomic 
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DNA using Turbo DNA-free DNase removal kit (Ambion). For RT-PCR, primers for 

transgene specific Wnt4 are: forward, 5’-CTAAAGCCATTGACGGCTGC-3’; reverse, 5’-

GCGTAATCTGGAACATCATATGGG-3’. Primers for β-actin are: forward, 5’- 

CGTCTTCCCCTCCATCG -3’; reverse, 5’-CTCGTTAATGTCACGCAC-3’.

We performed ChIP assays using a ChIP assay kit (Upstate, USA) following the 

manufacturer’s recommendation. Briefly, we incubated cells with a dimethyl 3,3’ 

dithiobispropionimidate-HCl (Pierce) solution (5 mM) for 10 min at room temperature, 

followed by formaldehyde treatment for 15 min in a 37 °C water-bath. For each ChIP 

reaction, we used 2× 106 cells. We then quantified resulting precipitated DNA samples with 

Real-time PCR, and expressed data as the percentage of input DNA. Antibodies for ChIP 

assays were purchased from the following commercial sources: polyclonal anti-p65 

(Millipore); polyclonal anti-NFATc1 (Santa Cruz). The primers for Nfatc1 are: forward, 5’- 

CTGTGTTCCCACATGTCCTC-3’; reverse, 5’- GCGACTGCAGTGTGTTCTTT-3’. 9kb 

downstream for Nfatc1 are: forward, 5'- CTGGCACCAAAGTTGAGAGA-3'; reverse, 5'- 

GATGGCTCTACCTGCACAGA -3'.

OVX, bone histomorphometry, and scoring of arthritic joint swelling

We performed OVX or sham operation on 3-month-old female WT and Wnt4 mice under 

isofluorane anesthesia. For the preventive model, rWnt4 proteins (8 µg kg−1) were 

intraperitoneally injected daily for three weeks immediately after the surgery. For dual-

labeling, mice received intraperitoneal injection of calcein (0.5 mg per mouse, Sigma-

Aldrich) ten and three days before euthanasia. Mice were euthanized one month after OVX. 

For the therapeutic model, we first performed OVX on 3 month-old mice and waited for one 

month to establish bone loss. Mice received intraperitoneal injection of rWnt4 (20 µg kg−1) 

or vehicle control daily for one month before collection of bone samples. Eight to twelve 

mice were used in each group.

Following euthanasia, we fixed right femurs in 70% ethanol for 48 h and embedded in 

methyl methacrylate. 8 µm longitudinal sections were either stained with Toluidine blue for 

osteoblast count or examined under fluorescent microscope to evaluate BFR and MAR as 

described previously22. We fixed left femurs in 10% formaldehyde and embedded them in 

paraffin for preparation in 5 µm-thick sections. We analyzed osteoclast parameters after 

TRAP staining as described. For all bright-field and fluorescent microscopy analysis, we 

used Olympus-IX51 inverted microscope with SPOT advanced 4.0 and CellSens software.

We scored the swelling of hindpaws on 1-year-old TNFtg and TNFtg/Wnt4 mice on a scale 

of 0 to 3, as previously described60,61: 1 = mild arthritis (mild swelling of joint and paw); 2 

= moderate arthritis (severe swelling and joint deviation); 3 = severe arthritis (ankylosis 

detected upon flexion). We used histological sections of hindpaw and ankle joints to 

examine the tibiotalar and interdigital joints, and performed µCT imaging to further evaluate 

bone erosion and destruction of joint space associated with arthritis.
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Immunostaining and µCT analysis of mice

We extracted femurs from euthanized mice and fixed them in 10% neutral buffered formalin 

for 24 hrs. For µCT scanning, the specimens were fitted in a cylindrical sample holder (20.5 

mm in diameter) with the long axis of the femur perpendicular to the X-ray source. We used 

a Scanco µCT40 scanner (Scanco Medical) set to 55 kVp and 70 µA. The bone volume 

(mm3) over tissue volume and bone mineral density in the region of interest were measured 

directly with µCT Evaluation Program V4.4A (Scanco Medical). We defined the regions of 

interest as the areas between 0.3 mm and 0.6 mm proximal to the growth plate in the distal 

femurs, in order to include the secondary trabecular spongiosa. We used a threshold of 250 

was used for evaluation of all scans22. For visualization, we imported the segmented data 

and reconstructed them as a 3D-image displayed in µCT Ray V3.0 (Scanco Medical).

After scanning, we decalcified the specimens, sectioned them for staining as previously 

described22. Antibodies used include rabbit polyclonal anti-NLS-p65 (600-401-271; 1:200; 

Rockland), rabbit polyclonal anti-Mmp9 (38898; 1:500; Abcam), rabbit polyclonal anti-Tnf 

(34674, 1:200; Abcam), and rabbit polyclonal anti-Cox2 (15191, 1:400, Abcam). For 

quantification of p65 positive staining, we selected at least 10 images from each section per 

femur, measured the integral optical density (IOD) of nuclear-stained p65 using the Image 

Pro Plus 6.0 software (MediaCybernetics). We normalized the IOD by stained area, and 

presented the data as reported previously62.

Statistical analysis

Numerical data and histograms were expressed as the mean ± standard deviation. Two tailed 

Student’s t-test was performed between two groups and a difference was considered 

statistically significant with P < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Wnt4 promotes postnatal bone formation in vivo. (a) Western blot showing Wnt4 expression 

in primary calvarial cells extracted from WT and Wnt4 mice following osteogenic induction. 

(b) RT-PCR analysis of Wnt4 mRNA expression in various tissues and organs. (c–e) µCT 

reconstruction (c), BMD (d) as well as BV/TV (e) of metaphysis regions of distal femurs 

from 1, 2, and 3-month-old WT and Wnt4 mice. Scale bars, 200 µm; n = 12 per group. (f) 
H&E staining of femur sections from 1, 2, and 3-month-old WT (n = 8 per group) and Wnt4 

mice (n = 10 per group). Scale bars, 300 µm. Ob.S, osteoblast surface. Ob.N, osteoblast 
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number. BS, bone surface. (g) Histomorphometric analysis of osteoblast counts in 3-month-

old Wnt4 (n = 10) vs WT mice (n = 8). (h) BFR and MAR measurements from dual-

fluorescent calcein labeling of 3-month-old Wnt4 (n = 10) vs WT mice (n = 8). (i) ALP 

staining of femur bone marrow MSCs from Wnt4 vs WT mice, after osteogenic induction. 

(j) ARS of MSCs from Wnt4 vs WT mice after osteogenic induction. * P < 0.05, unpaired 

two-tailed t-test.
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Figure 2. 
Wnt4 attenuates osteoporosis induced by OVX. (a,b) µCT reconstruction (a) of metaphysis 

of distal femurs, as well as BMD and BV/TV (b) in WT vs Wnt4 mice at two months post 

OVX. Scale bars, 200 µm. (c) BFR measurement of calcein dual labeling in WT vs Wnt4 

mice two months after OVX or sham operation. (d, e) Morphometric analysis of osteoblast 

counts (d) and osteoclast counts (e) in WT vs Wnt4 mice after OVX or sham operation. (f) 
TRAP staining of femur sections from WT and Wnt4 mice after OVX or sham operation. 

(g–i) ELISA of serum concentrations of Ocn (g), Trap5b (h), Il-6 and Tnf (i) in WT vs Wnt4 
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mice after OVX or sham operation. Scale bars, 30µm. (j) Immunostaining and quantification 

of active p65 in trabecular bone cells and surrounding bone marrow cells in WT and Wnt4 

mice after OVX or sham operation. Scale bars, 30 µm. IOD, integral optical density. For b–
e, and g–j, n = 8 for sham groups; n = 12 for OVX groups. *P < 0.05, ** P < 0.01, unpaired 

two-tailed t-test.
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Figure 3. 
Wnt4 inhibits TNF-induced bone loss and NF-κB activation. (a,b) µCT reconstruction (a), 

BMD and BV/TV (b) of distal femoral metaphysis regions from WT, Wnt4, TNFtg and 

TNFtg/Wnt4 mice. Scale bars, 200 µm. (c) Comparisons of MAR and BFR in TNFtg mice 

and TNFtg/Wnt4 mice. (d,e) Morphometric analysis of osteoblast counts (d) and osteoclast 

counts (e) in TNFtg mice and TNFtg/Wnt4 mice. (f) TRAP staining of osteoclasts 

surrounding trabecular bones in WT, Wnt4, TNFtg and TNFtg/Wnt4 mice. Scale bars, 40 

µm. (g–i) ELISA of Ocn (g), Trap5b (h) and Il-6 (i) concentrations in serum collected from 
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WT, Wnt4, TNFtg and TNFtg/Wnt4 mice. (j) Immunostaining with anti-active p65 and 

quantification of NF-κB activity surrounding the trabecular bone in WT, Wnt4, TNFtg and 

TNFtg/Wnt4 mice. Scale bars, 40µm. TNF, TNFtg mice; T/W4, TNFtg/Wnt4 mice. For b–e, 

and g–j, n = 6 per group for WT and WNT4 mice; n = 8 per group for TNFtg and 

TNFtg/Wnt mice. *P < 0.05, ** P < 0.01, unpaired two-tailed t-test.
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Figure 4. 
Wnt4 attenuates skeletal aging by inhibiting NF-κB. (a–c) µCT reconstruction (a), BMD 

and BV/TV (b), as well as H&E staining (c) of distal femoral metaphysis regions from 6-, 

18- and 24-months-old WT and Wnt4 mice. Scale bars, 200 µm (a); 300 µm (c). (d) 

Morphometric analysis of osteoblast counts in distal femoral metaphysis from 3-, 18- and 

24-months-old WT and Wnt4 mice. (e) ELISA of Ocn concentrations in serum from 3-, 18- 

and 24-months-old WT and Wnt4 mice. (f) Morphometric analysis of osteoclast counts in 

distal femoral metaphysis from 3-, 18- and 24-months-old WT and Wnt4 mice. (g,h) ELISA 

Yu et al. Page 23

Nat Med. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of Trap5b (g) and Il-6 (h) concentrations in serum from 3-, 18- and 24-months-old WT and 

Wnt4 mice. (i) Immunostaining with anti-active p65 and quantification of NF-κB activity 

surrounding the trabecular bones from 24-months-old WT and Wnt4 mice. Scale bars, 25 

µm. For b, and d–i, n = 12 mice per group. *P < 0.05, ** P < 0.01, unpaired two-tailed t-

test.
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Figure 5. 
Wnt4 inhibits NF-κB by interfering with TAK1-TRAF6 binding. (a) Immunoblots showing 

the phosphorylation of Tak1, p65 and Iκbα in bone marrow macrophages after treatment of 

Rankl, rWnt4 and rWnt4 with Rankl. (b) Immunoblots showing p65 and Tata-binding 

protein (Tbp) in nuclear extracts of bone marrow macrophages treated with Rankl, rWnt4 

and rWnt4 with Rankl. (c) Relative NF-κB-dependent luciferase reporter activities in bone 

marrow macrophages after treatment of Rankl, rWnt4 and rWnt4 with Rankl. (d) 

Immunoblots showing the Traf6-Tak1-Tab2 complex formation induced by Rankl in bone 
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marrow macrophages. (e) Immunoblots showing the induction of Nfatc1 in bone marrow 

macrophages after treatment of Rankl, and rWnt4 with Rankl. (f) ChIP assays of the 

recruitment of p65 to the Nfatc1 promoter induced by Rankl. Anti-IgG and primers designed 

at 9 kb downstream of transcription start site (TSS) were used as negative control. (g) ChIP 

assays of Nfatc1 binding to the Nfatc1 promoter. (h) Immunoblots of β-catenin in cytosolic 

extract (CE) and nuclear extract (NE) of bone marrow macrophages treated with Wnt3a and 

Wnt4. (i) Relative Topflash luciferase activities in bone marrow macrophages treated with 

Wnt3a or Wnt4. (j) Real-time RT-PCR of Axin2 and Dkk1 in bone marrow macrophages 

treated with Wnt3a or Wnt4. n = 3; * P < 0.05; ** P < 0.01; unpaired two-tailed t-test.
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Figure 6. 
rWnt4 proteins attenuates established bone loss by inhibiting NF-κB. (a–c) µCT 

reconstruction (a), BMD and BV/TV (b), as well as H&E staining (c) of distal femoral 

metaphysis regions from mice after sham operation, OVX and OVX with rWnt4 injection. 

Scale bars, 200 µm (a); 300 µm (c). (d,e) Morphometric analysis of osteoblast (d) and 

osteoclast (e) counts in distal femoral metaphysis from mice after sham operation, OVX and 

OVX with rWnt4 injection. (f) TRAP staining showing osteoclasts surrounding trabecular 

bones in mice after sham operation, OVX and OVX with rWnt4 injection. Scale bars, 30µm. 
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(g,h) ELISA of Trap5b (g) and Ocn (h) concentrations in serum from mice after sham 

operation, OVX and OVX with rWnt4 injection. (i) Immunostaining with anti-active p65 

and quantification of NF-κB activity surrounding the trabecular bones from mice after sham 

operation, OVX and OVX with rWnt4 injection. Scale bars, 30 µm. (j) ELISA of Il-6 and 

Tnf concentrations in serum from mice after sham operation, OVX and OVX with rWnt4 

injection. n = 8 mice for sham group; n = 12 mice per group for mice receiving OVX and 

OVX with rWnt4 injection. *P < 0.05, ** P < 0.01, unpaired two-tailed t-test.
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