
Hindawi Publishing Corporation
BioMed Research International
Volume 2013, Article ID 637424, 8 pages
http://dx.doi.org/10.1155/2013/637424

Research Article
Expression Sensitivity Analysis of Human Disease Related Genes

Liang-Xiao Ma,1 Ya-Jun Wang,1 Jing-Fang Wang,1 Xuan Li,1,2 and Pei Hao1,3,4

1 Shanghai Center for Bioinformation Technology, Shanghai 201203, China
2 Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
3 Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
4 Pathogen Diagnostic Center, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China

Correspondence should be addressed to Jing-Fang Wang; jfwang8113@gmail.com and Pei Hao; phao@sibs.ac.cn

Received 23 August 2013; Accepted 11 October 2013

Academic Editor: Zhongming Zhao

Copyright © 2013 Liang-Xiao Ma et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Genome-wide association studies (GWAS) have shown its revolutionary power in seeking the influenced loci on
complex diseases genetically. Thousands of replicated loci for common traits are helpful in diseases risk assessment. However it
is still difficult to elucidate the variations in these loci that directly cause susceptibility to diseases by disrupting the expression or
function of a protein currently. Results. We evaluate the expression features of disease related genes and find that different diseases
related genes show different expression perturbation sensitivities in various conditions. It is worth noting that the expression of
some robust disease-genes doesn’t show significant change in their corresponding diseases, these genes might be easily ignored in
the expression profile analysis. Conclusion. Gene ontology enrichment analysis indicates that robust disease-genes execute essential
function in comparison with sensitive disease-genes. The diseases associated with robust genes seem to be relatively lethal like
cancer and aging. On the other hand, the diseases associated with sensitive genes are apparently nonlethal like psych and chemical
dependency diseases.

1. Introduction

To elucidate the etiology and pathogenesis of the diseases,
scientists have made efforts to map human disease loci
genetically and clone many diseases genes [1, 2]. Recently
with the development of new sequencing technology and
high throughput microarray technology, the searching for
the genetic traits of the diseases and scanning of per-
sonal genomic variations are revolutionized. Genome-wide
association studies (GWAS) [3] showed its strong abilities
in detecting complicated genetic variations in genes and
building genomic variation patterns compared with linkage
analysis [4] and candidate gene studies [5]. GWAS havemade
contribution to establish plenty of disorder-gene association
pairs [6]. As reported, over 4008 SNPs are associated with
819 common diseases [7]. The Genetic Association Database
(GAD) [8] is a valuable resource of human genetic association
studies on complex diseases and disorders, which facility us to
rapidly establish the relationship of disorder-gene association
pairs. The association studies explained the relationships

between the diseases and genes on the genomic levels.
Diseases-associated studies have identified functional genetic
variations, but they didn’t well make sure the variations could
cause the diseases directly. Annotating the diseases associated
variations on different levels are necessary to identify the
outstanding risking genes. Here we wonder whether the
genes associated the same diseases show similar expression
features?

In order to probe the expression feature of disease genes
which are detected by the associated studies, we referred to
the method of gene expression sensitivity analysis [9]. We
firstly investigated human global gene expression characters
in response to the environmental perturbation. Gene expres-
sion patterns are different in various biological conditions,
a lot of case-control expression patterns have been profiled
using the high throughput microarray technology. Studies
show a group of genes’ expression that could be easily
disturbed with various external stimulations [9, 10]; however,
some genes are stably expressed in different environments,
which indicate that the genes show different expression
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sensitivity. For example, housekeeping geneswhich have been
well investigated in maintaining the basal cellular functions
have revealed its expression stability [11, 12]. Recently gene
expression sensitivity to external stimulation have been
studied in yeast and human [9, 10], which guide us to generate
the idea to investigate the expression sensitivity of diseases
genes.

It is worthy to obtain a global view of the intrinsic
properties of human disease gene expression as a response
to perturbations. Gene Expression Omnibus (GEO) database
[13] and Genetic Association Database (GAD) [8] were used
to analyze the human associated gene expression sensitivity.
A meta-analysis method could be used to seek the sensitive
genes and robust genes in the expression profiles globally.
Based on our calculation of sensitive values of gene expres-
sion, we firstly categorized the genes into robust and sensitive
groups. Furthermore we investigated the expression sensitiv-
ity of disease related genes in response to the perturbations
and found some of genes were detected by the association
studies previously, but the expression of these genes is
relatively stable in their corresponding disease studies. The
results also indicate some diseases related genes that show
their expression robustness (DGR) like cancer and aging
genes, and chemical dependency disease related genes seem
to be relatively sensitive (DGS).

2. Materials and Computational Methods

2.1. Data Collection and Preprocessing. The Genetic Associ-
ation Database (GAD) includes over 80,000 gene records
of genetic association studies. Importantly, the database has
a designation of whether the gene record was reported to
be associated with disease phenotype. The option Y means
that the gene of record was associated with the disease
phenotype; otherwise, the option N was not associated.
We collected the records in GAD that associated with
the disease phenotype and got the records only annotated
with the standard disease phenotype keywords from MeSH
(http://www.nlm.nih.gov/mesh/) vocabulary.

After filtering, 13277 records were used for further
investigation. In our study, 2588 disease related genes were
acquired from 13275 records from the Genetic Association
Database. Among these genes, 1804 genes were associated
with more than one disease and 784 were associated with
only one disease (Supplementary Material available online
at http://dx.doi.org/10.1155/2013/637424, Table S2).These dis-
eases related genes are mainly from human genetic associa-
tion studies of complex diseases and disorders. 1464 kinds of
diseases were extracted from 13275 records. To establish the
relationships between genes and their corresponding diseases
groups, the 1464 kinds of diseases were divided into 16 groups
by paring database.

We downloaded the HGU133plus2.0 microarray datasets
from the GEO database, each dataset had been normalized
with MAS5 when the authors submitted them into the
database as required (http://www.ncbi.nlm.nih.gov/geo/). To
calculate the expression level of each gene, we referred to
the methods from the previous work [9]. We discarded the

data sets with less than 6 arrays and changed the expression
values into 10 if the expression values are less than 10.Then the
expression values of all probes were logarithmic transformed
(base 2). We choose the maximum expression value as gene
expression value if multiple probes illustrate the same gene
expression.

2.2. Calculate Sensitive Values (SV) of Each Gene. In our
study, 167 datasets (labeled as 𝑀 in the Formula below) in
GEO were used to calculate the sensitive values of genes. In
each dataset 𝑗, we calculate the standard deviation (SD) and
mean of each gene (𝑔

𝑖
), getting the coefficient of variation

(CV) of each gene (𝑔
𝑖
)with SD dividedmean.TheCV of each

gene in each dataset is calculated as follows:

CV
𝑔𝑖𝑗
=

SD (𝑔
𝑖𝑗
)

mean (𝑔
𝑖𝑗
)

. (1)

In order to merge the results of different datasets and
minimum experimental variation during sensitivity analysis,
we employed the large scale meta-analysis method reported
in our previous work [9]. We ranked the CV of genes in each
dataset and constructed a matrix of ranked CV to datasets.
Sensitive values (SV) are calculated as mean of each ranked
CVs of all datasets:

SV
𝑔𝑖
=

∑
𝑀

𝑗=1
rank (CV

𝑔𝑖𝑗
)

𝑀
.

(2)

2.3. Defining SensitiveGenes andRobust Genes. In the current
study, we tried to establish the relationships between the
different kinds of disease and different sensitive genes. Firstly
we selected a group of genes whose expression could be
significantly disturbed and a group of genes whose expression
significantly stable. After calculating the sensitive values of
genes, we used the 5 percent as the cutoff value. The top 5
percent of genes are significantly sensitively expressed, we
took five percent of genes with lowest sensitive values as
robust genes groups, and five percent of genes with highest
SV were considered as sensitive genes.

3. Results

The Affymetrix HGU 133a plus 2.0 microarray covers 31835
genes, which represents more genes than the HGU133a
microarray does. The distribution of SV is skewed normal
distribution (Figure 1). The figure suggested that there are
more genes with a comparatively lower sensitive value than
those with higher sensitive values indicating existing more
robust genes than sensitive genes. Although the distribution
of sensitive values are skewed normal, we took five percent of
genes with lowest sensitive values as robust genes groups, and
also five percent of genes with highest SV were considered
as sensitive genes. Therefore, we got 1592 robust genes and
sensitive genes individually. Therefore, we got 1592 robust
genes and 1592 sensitive genes. After comparisonwith disease
related genes, we got 131 diseases related robust genes and 467
disease related sensitive genes respectively (Supplementary
Table S1).

http://www.nlm.nih.gov/mesh/
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Table 1: Enriched biological process. The table shows the main biological process that the robust genes and sensitive genes engaged. Most
robust genes take part in the translational elongation and viral transcription; however, the sensitive genes prefer to respond to the progesterone
receptor stimulation and regulation.

Robust genes Sensitive genes
Enriched biological process 𝑃 value Enriched biological process 𝑃 value
Translational elongation 3.12𝐸 − 41 Progesterone receptor signaling pathway 1.74𝐸 − 4

Viral transcription 5.42𝐸 − 39
Negative regulation of osteoclast

differentiation 7.11𝐸 − 4

Translational termination 8.26𝐸 − 38 Cell maturation 7.14𝐸 − 4

Protein complex disassembly 8.26𝐸 − 38 Golgi vesicle transport 9.89𝐸 − 4
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Figure 1: This figure demonstrates the distribution of the average rank order of gene expression standard deviations. The distribution of SV
is skewed normal distribution.

3.1. Functional Annotations of Expression Robust and Sensitive
Genes. In order to identify the biological functions in the cell,
we conducted GO enrichment analysis [14, 15]. The results
show that robust genes are strongly engaged in the cellular
component organization (GO: 0071842), reproductive pro-
cess (GO: 0022414), and viral reproduction (GO: 0016032)
(Figure 2 and Table 1). However the sensitive genes play
important roles in progesterone receptor signaling pathway
(GO: 0050847) and negative regulation of osteoclast differ-
entiation (GO: 0045671) (Figure 3 and Table 1). Furthermore
enrichments analysis for cell components modules indicates
that the robust gene are strongly enriched in the intracellular
(GO: 0005622) and ribosome (GO: 0005840) (Figure 3),
but the sensitive genes didn’t show enrichment in the cell
components. Based on the above observation, we conclude
that the robust genes are engaged in the basic biological
process.

3.2. A Case about Robust Genes Consistently Expressing in
Their Corresponding Disease. We have found the expression
of robust genes are stable in various conditions and inferred
that the some disease related robust genes may express
consistently in their corresponding diseases conditions. To
verify our assumption, we took colorectal cancer and its
associated robust genes HIF1A and MLH as an example.

HIF1A associated with colorectal cancer is one of robust
genes. Hypoxia-inducible factor-1 (HIF1) is a heterodimer
composed with HIF1A and HIF1B. HIF1 is functionally
important in cellular and systemic homeostatic responses
to hypoxia and initially found as transcription factor in
mammalian cells cultured under reduced oxygen tension
[16]. Fransén et al. found that polymorphic alleles in the
gene of HIF1A show significant higher risk for the devel-
opment of ulcerative colorectal cancer, which indicates that
the HIF1A polymorphisms display their importance in the
development of ulcerative intestinal tumors [17]. To view the
gene expression variations of colorectal cancer, we took a case
from a work [18] that analyzed expression changes in early
onset colorectal cancer (GDS2609).The expression of HIF1A
didn’t show significant change in the study (Figure 4(a)). The
robust gene HIF1A might be ignored in the colorectal cancer
expression analysis.

Another robust gene MLH1 involved in DNA mismatch
repair is also associated with colorectal cancer [19]. Liu
et al. revealed that colorectal cancer is associated with 2
missense mutations in exon 16 of the MLH1 [20]. Chan
et al. described a novel germline 1.8-kb deletion involving
of the MLH1 gene associated with hereditary nonpolyposis
colorectal cancer in a Hong Kong family [21]. Recently Nejda
et al. suggests that gender should be considered in colorectal
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Figure 2:The biological process GO enrichment graph illustrates that the robust genes play basic roles of cell developments. The color in the
rectangle is close to red; the genes are more enriched in that GO module, and the white color indicates the least enrichment in that module.

cancer association studies [22]. They found that nucleotide
polymorphism in MLH1 displays a higher risk in sporadic
colorectal carcinogenesis especially in men. A mechanism of
genomic instability has been identified in colorectal cancer
[23], the DNA mismatch repair genes MLH1 inactivated by
hypermethylation of their promoter could cause microsatel-
lite instability. We also found the expression of MLH1 in the
early onset colorectal cancer investigation (GDS2609) is not
significantly changed (Figure 4(b)). The expression profile
analysis may overlook importance of robust gene MLH1.
Therefore, we believe that diseases related robust genes are
easily ignored in the expression analysis. In order to know
the robust genes are enriched in what kinds of diseases,
we established the relationships between diseases and gene
expression sensitivities.

3.3. The Relationships between Diseases and Gene Expression
Sensitivity. The 1469 diseases with their associated genes
fromGADwere divided into 16 groups.The disease genes are
classified as robust disease gene groups and sensitive diseases
genes groups based on whether they were included in the
robust genes groups or sensitive genes groups.We performed
the enrichment analysis of disease genes based on the hyper
geometric distribution. The results (Table 2) show that the
cancer, aging, and pharmacogenomics are enriched with
robust genes (DGR), with𝑃 values of 0.001309, 0.025063, and
0.06734 individually, and psych, chemical dependency, and
reproduction are enriched with sensitive genes (DGS), with
corresponding 𝑃 values of 0.001954, 0.028318, and 0.055457.

We annotated the gene from DGR and DGS with Gene
Ontology [24]. Firstly the DGR and GDS were classified
into seven groups (Figure 5(a)) according to whether the
genes associated one or more diseases. In the DGR groups,
cancer genes are mainly engaged in the mismatch repair
(GO: 0006298), DNA catabolic process (GO: 0006308), and
base excision repair (GO: 0006284). The GO analysis of
DGS (Figure 5(b)) shows the genes only associated with
psych diseases are enriched in the learning (GO:0007612)
process and the genes associated both psych and chemical
dependency diseases are engaged in the dopamine secre-
tion (GO:0014046) and gamma-aminobutyric acid signaling
pathway (GO:0007214) and so forth. We conclude that the
DGR mainly engaged in more essential biological process
compared with DGS which mainly involve in the regulation
and response process.

4. Discussion and Conclusion

We parsed the GAD databases and selected diseases associ-
ated genes. Because the human genes show different expres-
sion sensitivity in response to the environmental perturba-
tion [9], we evaluated the expression features of diseases
genes with themethod of gene expression sensitivity analysis.
Because the finding of expression of robust genes is not easily
changed in various biological conditions, we assumed that the
disease related robust genesmight be expressed stably in their
corresponding disease conditions.The colorectal cancer asso-
ciated robust genes HIF1A andMLH did not show significant
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Figure 3: The biological process GO enrichment graph illustrates that the sensitive genes mainly regulate the cell metabolism. The sensitive
genes are enriched in the GO module with a yellow color.

Table 2: Expression sensitivity analysis of diseases genes.The cancer, aging, and pharmacogenomic related genes reveal their robustness, and
psych chemdependency and reproduction associated genes show their sensitiveness.

Disease Robustness Sensitiveness Disease Sensitiveness Robustness
Cancer 1.31𝐸 − 03 7.08𝐸 − 01 Psych 1.95𝐸 − 03 8.09𝐸 − 01

Aging 2.51𝐸 − 02 4.87𝐸 − 01 Chemdependency 2.83𝐸 − 02 4.32𝐸 − 01

Pharmacogenomic 6.73𝐸 − 02 9.44𝐸 − 01 Reproduction 5.55𝐸 − 02 1.85𝐸 − 01

expression changes in the studies of colorectal cancer [17, 18,
20, 22]. Importantly our results suggested the genes associ-
ated with different diseases also reveal different sensitivities.
We found the cancer, aging, and pharmacogenomics related
genes display expression robustness, and psych, chemical

dependency, and reproduction-associated genes are relatively
sensitive. In our study, the robust disease related genes were
investigated not only by combining the gene ontology but also
by grouped disease information. The defect of robust genes
could cause more lethal diseases, such as cancer and aging
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Figure 4: (a) The expression profile of gene HIF1A in GDS2609. (b) The expression profile of MLH1 in GDS2609.

diseases. Thus diseases related robust genes might play more
essential roles to keep health for human.

Additionally, the protein interaction network and gene
ontology provide extensive information to detail the relation-
ships between different diseases genes. It was found that the
structure of a cellar network and its functional properties
were connected with protein or “Hubs” which are more likely
encoded by essential genes [25, 26]. Human robust genes are
higher degree centrality than the random groups of genes in
the protein interaction network [9]. Gene ontology analysis
also indicates the robust genes play an essential role in the
cellar biology. The robust genes have shown its importance
in different levels. Recent studies reveal that some kinds of
diseases genes potentially encode hubs [27, 28]. Goh et al.
suggested that cancer genes are more likely to encode hubs in
the human disease networks and show higher coexpression
with the rest of the genes in the cell [29], which means
that cancer genes play critical roles in cellar development
and growth. Age-related diseases tend to attack the center of
the human protein network [30]. PPI network investigation
above indicated that the cancer and aging related genes are
potentially robust.

Based on the studies above, we believe that the different
diseases genes reveal distinct expression sensitivity. Diseases
that are associated with robust genes seem to be lethal, and
the diseases associated with sensitive genes are nonlethal
apparently. The gene ontology analysis indicates the robust
genes are more essential when compared with sensitive
genes. The robust genes those stably express in various
environmental conditions are easily ignored in the expression

analysis. Therefore the consideration of sensitivity of disease
genes might be greatly helpful in elucidating of etiology and
pathogenesis of the diseases. In practice, calculation of the
diseases genes’ sensitive values could be used to predict the
potential harm to heath. In addition, if a robust gene is a
potential drug target, it would have little therapeutic effects to
these diseases by disturbing the expression level of the robust
genes.
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