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Abstract

Background: Post-copulatory sexual selection has been shown to shape morphology of male gametes. Both directional and
stabilizing selection on sperm phenotype have been documented in vertebrates in response to sexual promiscuity.

Methodology: Here we investigated the degree of variance in apical hook length and tail length in six taxa of murine
rodents.

Conclusions: Tail sperm length and apical hook length were positively associated with relative testis mass, our proxy for
levels of sperm competition, thus indicating directional post-copulatory selection on sperm phenotypes. Moreover, our
study shows that increased levels of sperm competition lead to the reduction of variance in the hook length, indicating
stabilizing selection. Hence, the higher risk of sperm competition affects increasing hook length together with decreasing
variance in the hook length. Species-specific post-copulatory sexual selection likely optimizes sperm morphology.
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Introduction

Sperm competition and other postcopulatory processes have

been considered as important evolutionary selective forces [1], [2],

[3]. Sperm competition is reflected by epigamic behaviour and

morphology of animals [4], [5], [6], [7] and also by behaviour and

morphology of sperm cells [8], [9], [10], [11], [12], [13], [14]. It

has been shown that some sperm traits indicate the risk of sperm

competition [9] and could be influenced by directional [11], [15]

and/or stabilizing selection [11], [16].

Species with higher risk of sperm competition tend to have

longer and faster sperm - e.g. [4], [17], [14]. However,

phylogenetically controlled analysis of sperm variables across

mammals and birds did not confirm a clear association between

sperm competition and sperm length [18], [15]. On the other

hand, sperm competition acts to reduce between-male and within-

male variation in sperm length in various animal taxa, including

birds [19], [12], [16] and hymenopterans [13], possibly through

an increase in strength of post-copulatory selection on sperm traits

[20], [11]. Sperm length variation has been found as a good

indicator of extrapair paternity (i.e. the risk of sperm competition)

in passerine birds [16] and is recently used as a proxy measure for

sperm competition in comparative studies [21].

Sperm heads in many rodent species possess apical hooks [22],

[23], [24], [25]. The apical hook is an important structure for

linking sperm into aggregations (‘trains’), each consisting of

hundreds of cells [10]. Sperm cooperation by forming trains has

been presented as an advantageous strategy in sperm competition

and is considered as a main adaptive mechanism in sperm

competition in rodents [8], [9], [10]. It has been shown that

species with higher risk of sperm competition have sperm with

longer apical hooks [9] and the hooks are more flexible [26].

However, whether postcopulatory sexual selection decreases the

variation in hook size and sperm cell size in rodents remains

unclear.

This study aims at elucidating the influence of the risk of sperm

competition as an evolutionary force of stabilizing selection on

sperm morphology. In six rodent species (see Figure 1) we

investigated whether the species with higher risk of sperm

competition possess lower variance in sperm hook length and tail

length in a phylogenetically controlled analysis. Since relative testis

weight is a good indicator of promiscuity [9], [27], this measure

also reflects the risk of sperm competition. We hypothesized that in

more promiscuous species, due to a higher risk of sperm

competition, the mean values of sperm traits (i.e. hook length,

sperm tail length) are higher but the between male and within

male variances of these characters are lower.

Results

Both measured sperm traits (i.e. hook length and tail length)

differed significantly between the species (Anova, p,0.001; hook

length F(5,46) = 56.01; tail length F(5,46) = 27.19). Coefficients of

between and within-male variation (hook length: CVbm hook and

CVwm hook, tail length: CVbm tail and CVwm tail) in sperm traits

(Table S1) revealed low overall variance in the tail length. The
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most variable hook length was found in M. domesticus, the least

variable in A. agrarius (in case of CVbm) and in A. sylvaticus (in case

of CVwm). Sperm of M. musculus showed the largest variation in the

tail length and the relative testis weight (i.e. our proxy measure for

sperm competition) differed significantly between the species

studied (Anova, F(5,46) = 88.684, p,0.001). The highest relative

testis weights were observed in A. sylvaticus and followed by A.

agrarius. The lowest testis weights were detected in M. musculus and

by M. domesticus (Table S1).

The mean hook length, and both CVwm hook and CVbm hook,

were strongly associated with sperm competition (Table 1A). Hook

length increased and variation in this trait decreased with

increasing sperm competition (see slopes and associated SE in

Table 1A). Relative testis mass explained 88% variation in case of

CVwm hook, 82% in case of CVbm hook and 94% variation in case of

hook length (Table 1A, Figure 2).

Compared to sperm hook, the associations between sperm

competition and sperm tail length were much weaker. Although

testes mass explained as much as 53% variation in the tail length,

this relationship was not significant (p = 0.061, Table 1b) and there

was no association between sperm competition and CVbm tail and

CVwm tail (Table 1a).

The hook length was negatively correlated with its variation

(both CVwm hook and CVbm hook; Table 1b). This relationship was

significant (CVwm hook p = 0.013 and CVbm hook p = 0.004; 82%

and 90% variation explained, Table 1b). There was no significant

relationship between the tail length and its variation (Table 1c).

Discussion

Our data confirmed previous findings that have demonstrated

important role of post-copulatory sexual selection in evolution of

apical hook length in murine rodents. Across murine rodents,

species with higher risk of sperm competition possess longer apical

hooks [9], [26], and this is well supported also in the 6 species

selected in our study. In addition, we demonstrate that sperm

competition also affects the between and within male variation in

the hook length. In agreement with the idea of stabilizing post-

copulatory sexual selection on sperm traits [20] we have

documented that higher risk of sperm competition, as expressed

by relative testis weight, leads to reduced variance in the hook

length. The analysis has also shown that the variance in hook

length is decreasing with the increasing hook length.

The idea that higher risk of sperm competition is associated with

reduced variation in sperm length, which has been documented in

passerine birds [19], [12], [16], [28] and insects [13], seems

unsupported in rodents. In murine rodents it is probably the hook

morphology that determines fertilization success of sperm cell (i.e.

affecting ability of sperm cells to cooperate), while stabilizing

selection for optimal sperm length might be less important than in

organisms with specialized female sperm storing organs like birds

and hymenopterans. However, it should be noted that although

our analysis did not confirm the association between variance in

the tail length and sperm competition, the variance in the tail

length was low in the studied species generally. This may indicate

that even in house mice sperm competition may to some extent

play a role and has reduced the variance in the tail length. The

house mice compared with the field mice possess smaller testes and

about two to three times lower rate of multiple paternity [27], but

the multiple paternity rates in M. domesticus, 23% [29] and 26%

[30] suggest a certain degree of promiscuity in house mice.

Although M. domesticus in our samples had slightly higher relative

testes mass than M. musculus, the hook length variation indicates

higher levels of sperm competition in M. musculus. Detailed

information about multiple paternity levels is needed for both

house mouse subspecies to confirm this finding.

The apical hook morphology should point to different sperm

strategies in sperm cooperation [9]. Our results are consistent with

the described sperm behaviour. Sperm in the wood mouse

(Apodemus sylvaticus) form aggregations (trains) that move faster

than separate sperm cells [9], [10], while in the house mouse the

trains are slower than the particular spermatozoa [9]. The post-

Figure 1. Phylogeny of studied species. The figure illustrates the
phylogenetic relationships among the studied species [40], [41], [42].
doi:10.1371/journal.pone.0068427.g001

Table 1. Generalised linear least square tests of: a) the effect
of the relative testis weight (proxy measure for post-
copulatory sexual selection) on sperm length traits, b) the
effect of hook length on its variation c) the effect of sperm tail
length on its variation.

Sperm
trait Slope 6 SE t-value p l R2

a) relationships between relative testis weight and sperm traits

hook
length

25.662.96 8.63 ,0.001 ,0.0011.0,
0.14

0.94

CVwmhook 21.7060.28 26.07 0.004 ,0.0011.0,
0.13

0.88

CVbmhook 25.3161.25 24.26 0.013 ,0.0011.0,
0.11

0.82

tail length 95.5636.9 2.59 0.061 0.999 0.17, 1.0 0.53

CVwmtail 20.2160.78 20.27 0.804 ,0.0011.0,0.13 0.017

CVbmtail 0.0363.90 0.008 0.994 ,0.0011.0,
0.09

,0.001

b) relationships between hook length and hook variation

CVwmhook 20.06260.014 24.27 0.013 ,0.0011.0,
0.06

0.82

CVbmhook 20.21260.035 26.05 0.004 ,0.0011.0,
0.07

0.90

c) relationships between tail length and tail variation

CVwmtail 0.00160.009 0.036 0.97 ,0.0011.0,
0.11

,0.001

CVbmtail 0.00260.043 0.054 0.96 ,0.0011.0,
0.09

,0.001

CVwm is the average coefficient of within-male variation in hook length and tail
length. CVbm is the coefficient of between-male variation in sperm traits,
adjusted for sample size (see Methods). The statistical analyses were performed
in R and based on transformed variables to approach normality (arcsine square-
root for the proportion of relative testis weight, log for CVwm and CVbm). Slopes
were tested against the prediction of 0 using the t-test. Lambda (l) indicates
the level of phylogenetic dependence in the data, with superscripts giving p-
values for test of l=0 and l= 1 respectively. R2 values indicate the proportion
of total variance explained.
doi:10.1371/journal.pone.0068427.t001
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copulatory sexual selection seems to be stronger in field mice than

in house mice [27], [29] and may penalize sperm cells bearing

suboptimal hooks. Directional selection may thus act so that sperm

have longer apical hooks while stabilizing selection reduces

variation in the hook length. Field mice of the genus Apodemus

produce sperm with longer and uniform hooks, so they form more

effective trains. Contrary to that, sperm in house mice have shorter

and variable hooks, so they form less effective trains.

Within field mice, A. agrarius and A. sylvaticus may be considered

as species with high level of the risk of sperm competition and with

high level of promiscuity. This fact was indicated by sperm with

long apical hooks and the least variance in the hook length (Table

S1). It is consistent with the data on relative testis size and multiple

paternity rates [27]. Compared with previous two species, A.

flavicollis and A. microps showed shorter hooks and higher variances

(CVwm hook and CVbm hook) in the hook length. Surprisingly, the

tails in A. flavicollis and A. microps were shorter than in house mice,

on average, but the relative testis weight (Table S1) and the

multiple paternity rates [31], [27], [29] indicated stronger effect of

sperm competition in these field mice.

Different variations in hook length between field mice and

house mice interestingly match with different rates of acrosomal

reaction [32] and the related finding that the sperm in field mice

do not express membrane cofactor protein CD46 [33], [34], [32].

Accelerated acrosome reaction of sperm in field mice allowing

rapid fertilization proved to be advantageous in promiscuous

species [32]. Sperm in field mice may then be protected against

complement-mediated injury in female genital tract by other

complement regulatory proteins, CD55 and CD59 [34].

The association between the relative testis weight and the tail

length was quite strong, even though not significant (p = 0.06).

This finding may partly support the hypothesis that species with

higher risk of sperm competition have longer sperm [4], [17].

Although this hypothesis has been confirmed in some taxa (e.g.,

[14]), it was not confirmed by results of a comprehensive analysis

across mammals [18]. The influence of sperm competition on tail

length might be different in different groups of mammals. Data

from passerine birds also suggest that the relationship between

sperm competition and sperm length is not straightforward, with

different directions of the relationship found in different passerine

families [15].

We conclude that sperm competition in murine rodents affects

mainly apical hooks and stabilizing selection causes reduced

variance in the hook length in species with higher risk of sperm

competition. Both coefficients of variation (CVwm and CVbm) hold

a great potential for use in further studies on sperm competition in

different animal groups, but traits important in post-copulatory

sexual selection for particular taxonomical groups should be

identified. Unlike in passerines and some insects [19], [12], [13],

the variation in sperm tail length was not associated with sperm

competition in murine rodents.

Methods

Ethical Standards
All animal procedures were carried out in strict accordance with

the law of the Czech Republic paragraph 17 no. 246/1992, and

Animal Scientific Procedures paragraph 11, no. 207/2004, and

the local ethics committee of the Faculty of Science of Charles

University in Prague specifically approved this study in accordance

with accreditation no. 24773/2008-10001. Animals were sacri-

ficed by cervical dislocation.

Mice
Fifty-two males of six species were used, four field mice species:

herb field mouse Apodemus microps Kratochvı́l et Rosický, 1952

( =A. uralensis (Pallas, 1811), locality: Drnholec, Czech Republic),

striped field mouse Apodemus agrarius (Pallas, 1771) (locality:

Šebastovce, Slovakia), field mouse Apodemus sylvaticus (Linnaeus,

1758) (locality: Prague, Czech Republic), yellow-necked field

mouse Apodemus flavicollis (Melchior, 1834) (locality: Drnholec,

Czech Republic), two house mice species: eastern house mouse

Mus musculus Linnaeus, 1758 (locality: Sedlečko, Czech Republic),

western house mouse Mus domesticus Schwarz et Schwarz, 1943

(locality: Straas, Germany).

Age of individuals used in experiments was unknown because it

is difficult to infer the age of rodents captured in the field.

Although, sperm traits may potentially be affected by age in

rodents [35] we only used fully-grown males in reproductive stage

in this study with no obvious signs of senescence or immaturity

(e.g. weight of individuals was close to the population mean). Mice

were maintained in a pathogen-free facility for wild mice at the

Figure 2. Relationships between relative testis weight and
variation in sperm hook length in murine rodents. A) Relation-
ship between relative testis weight and within-male variation in sperm
hook length. The figure illustrates the linear regression of the coefficient
of within-male variation in apical hook length on the proportion of
relative testis weight for six studied rodent species. B) Relationship
between relative testis weight and between-male variation in sperm
hook length. The figure illustrates the linear regression of the coefficient
of within-male variation on the proportion of relative testis weight in
apical hook length for six studied rodent species.
doi:10.1371/journal.pone.0068427.g002
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Department of Zoology, Faculty of Science, Charles University in

Prague, Czech Republic.

Data Collection and Preparation
Sperm from cauda epididymis were studied. Sperm samples were

obtained by placing the incised cauda epididymis into microtubes

with PBS (pH 7.34) for 5 minutes at 37uC under 5% CO2. The

sperm suspension was then placed onto clean microscopic slides

and smeared. Smears were air-dried and then fixed in methanol

(8 min at 218uC) and in acetone (6 min at 218uC). Sperm were

evaluated under a light microscope (Olympus BX 51, 6006mag-

nification).

Only morphologically normal sperm were measured as reported

[36] – we carefully inspected sperm smears and avoided just few

broken sperm cells and cells with missing hook from analyses. The

sperm apical hook length and tail (flagellum) length were measured

using analySIS (Soft Imaging System) software. The sperm

dimensions were assessed by the measurement method described

by [9]. Thirty spermatozoa were analysed from each male. In

total, we analysed 1560 spermatozoa in 52 males. Males and testes

were weighed and the relative testis weight calculated. All

measurements were conducted by only one person (M.S.).

As a standardized measure of variation, we used the coefficient

of variation (CV = SD/mean6100), denoted as CVbm for the

between-male CV in mean length of sperm traits and CVwm for

the mean within-male CV in length of sperm traits. As CV will be

underestimated for small sample sizes, we corrected CVbm

according to the formula: Adjusted CVbm = (1+1/4n)6CVbm

[37]. Descriptive statistics of measured traits and their variation

are given for each species in Table S1. We calculated and

throughout the paper refer to coefficients of between and within-

male variation in apical hook length (CVbm hook and CVwm hook)

and sperm tail (CVbm tail and CVwm tail).

Statistical analyses: We applied a generalized least squares

regression method in a phylogenetic framework [38], [39] with the

phylogeny of species shown in Figure 1 [40], [41], [42] to evaluate

the prediction that sperm traits reflect the strength of post-

copulatory sexual selection in murine rodents. We used relative

testis mass as our proxy for the strength of post-copulatory sexual

selection in murine rodents. We have previously shown that the

relative testis size is strongly associated with levels of multiple male

mating in field mice (R2 = 0.836, slope = 20.0564.96[SE] [27].

Constant branch lengths were assumed. We made univariate

regressions for the three variables (total length, CVwm and CVbm)

for both sperm traits (sperm apical hook and tail) and the

proportion of relative testis weight. To improve normality, all CVs

were log transformed and the proportions of relative testis weight

arcsine-squareroot transformed. The slopes were tested against the

prediction of 0 using the t-test. For each test, an index of

phylogenetic dependence, l, was estimated, with values ranging

between 0 (phylogenetic independence) and 1 (complete phyloge-

netic dependence), and tested with a likelihood ratio test against

models with l values set at 0 and 1. The analyses were performed

in R [43] using the package APE [44] and a script provided by R.

P. Freckleton, Department of Animal and Plant Sciences, The

University of Sheffield.

Supporting Information

Table S1 Sperm hook length and tail length character-
istics and relative testis weight in studied rodents.

(DOCX)
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