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Abstract: Superhydrophobic surfaces have been widely employed in both fundamental research
and industrial applications because of their self-cleaning, waterproof, and low-adhesion qualities.
Maintaining the stability of the superhydrophobic state and avoiding water infiltration into the
microstructure are the basis for realizing these characteristics, while the size, shape, and distribution
of the heterogeneous microstructures affect both the static contact angle and the wetting transition
mechanism. Here, we review various classical models of wettability, as well as the advanced models
for the corrected static contact angle for heterogeneous surfaces, including the general roughness
description, fractal theory description, re-entrant geometry description, and contact line description.
Subsequently, we emphasize various wetting transition mechanisms on heterogeneous surfaces. The
advanced testing strategies to investigate the wetting transition behavior will also be analyzed. In
the end, future research priorities on the wetting transition mechanisms of heterogeneous surfaces
are highlighted.

Keywords: wetting transition; superhydrophobic; microstructures; contact angle

1. Introduction

Surface wettability is one of the most vital properties of a solid surface. The wettability
of a solid surface is determined by the chemical properties and the micro-texture of the
surface [1–4]. Young’s equation has been used to describe wetting on a smooth surface
from 1805 [5]. However, real surfaces are seldom perfectly smooth. Hence, the Wenzel (W)
and Cassie–Baxter (C–B) states are the two main kinds of solid–liquid wetting states on the
micro-structured surfaces [6,7]. The description of the W state is based on the hypothesis
that the water droplet completely penetrates the grooves of a rough surface, while the C–B
state assumes the water droplet is suspended on the top of the micro-structured surface,
which results in a composite interface. Compared with the W state, the C–B presents
the high apparent contact angle (CA) and the low contact angle hysteresis. Maintaining
the stability of the C–B state and avoiding the intrusion of water into the microstructure
are essential preconditions for realizing self-cleaning, water-repelling, and anti-sticking
properties [8].

The C–B state is not always stable, and the transition from the Cassie–Baxter to the
Wenzel state (C–B/W) can occur when it is induced by various factors, such as pressuriza-
tion, [9] vibrations, [10], and the gravity of the droplet itself [11,12]. Therefore, exploring
the conditions of C–B state stability and understanding the C–B/W transition mechanisms
have been a central topic in the study of superhydrophobic surfaces. Over 900 journal
papers studying wetting transition mechanisms have been published that cover materials
science, engineering, physics, and chemistry science technology.
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Here, we summarize the recent advances in the theoretical study and testing methods
of the wetting state transition mechanism. In the next section, the theory of fundamental
wetting models is discussed, which is followed by the description of the static contact angle
model. The advanced wettability transition mechanism is presented in Section 4, and a
comprehensive overview of the wetting stability testing methods is provided in Section 5.
To conclude, a brief outlook for future research directions is proposed.

2. Fundamental Wetting Theory

The first investigation of wetting phenomena can be traced back to 1612, which was
presented by Galileo through his report, “Bodies That Stay atop Water, or Move in it” [13].
Over the recent few decades, great progress in the wetting theories has been developed
to describe the wetting state models. In this section, the fundamental wetting theories
are summarized.

In 1805, Thomas Young proposed the primary law of wetting with a water droplet on
a flat and smooth surface, as shown in Figure 1a [5]. Young’s equation is given as:

cos θ =
γsv − γsl

γlv
(1)

where θ is the static contact angle, γsv, γsl , and γlv are the solid–vapor, solid–liquid, and
liquid–vapor surface tensions, respectively. Based on the value of θ, the property of the
surface can be divided into the hydrophobic (θ > 90◦) and hydrophilic (θ < 90◦) surfaces [14].
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Figure 1. Various states of droplet on a solid surface. (a) Young model, (b) Wenzel model, and
(c) Cassie–Baxter model.

Since Young’s equation is valid only for smooth and homogenous surfaces, in 1936,
Wenzel modified Young’s model and introduced the roughness factor (r) to describe the
wettability phenomena of the micro-structured surfaces, as shown in Figure 1b [3]:

cos θW = r
γsv − γsl

γlv
= r cos θ (2)

where θW is the static contact angle under the Wenzel state. The roughness factor (r) is
defined as the ratio of the true surface area and planar surface, which is higher than 1 for
a microstructured surface. In 1945, Cassie–Baxter described another wetting state for the
droplet on microstructured surface, shown in Figure 1c. The model supposed the droplet
is suspended on the top of the micro-structured surface, which results in a composite
interface [4]. In the C–B model, the apparent contact angle is influenced by the contribution
of two different phases, as described in the equation below:

cos θCB = fsl cos θsl + fla cos θla , (3)

where the θCB is the static contact angle under the Cassie–Baxter state, fsl and fla represent
the surface fractions of the phases of solid–liquid and liquid–air, and θsl and θla represent the
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corresponding contact angles. Since the θla is 180◦ in C–B state, so cos θla = cos 180◦ = −1,
then Equation (3) can be rewritten as:

cos θCB = fsl cos θsl − fla (4)

Lafuma et al. [9] derived the C–B/W transition in 2003. As shown in Figure 2, where
θ∗ is the apparent contact angle when minimizing the surface energy of a drop on a rough
substrate, θ is the apparent contact angle under Young’s state, ∅s is the fraction of solid in
contact with the liquid, and θc is denoted as the critical contact angle between the two states.
The coordinates of A, B, C, and D are (cos 180◦, cos 180◦), (cos θc, cos θ∗), (cos 90◦, cos 90◦),
and (cos 90◦, cos θ∗), respectively. When the apparent contact angle θ is larger than θc, it
follows the C–B state model that the air grooves would be trapped below the drop to form
the composite contact. When 90◦ < θ < θc, the two states might coexist. Various studies
have validated the existence of a metastable state based on simulation and experiment
results [15–17].
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Figure 2. Two models of superhydrophobicity. The solid line and dashed line represent Wenzel state
and Cassie–Baxter state, respectively. The dotted line represents the metastable situation where the
C–B state can also be observed for θ < θc. The coordinates of A, B, C, and D are (cos 180◦, cos 180◦),
(cos θc, cos θ∗), (cos 90◦, cos 90◦), and (cos 90◦, cos θ∗), respectively. Reprinted with permission
from Ref. [9]. Copyright@2003, Nature Publishing Group.

In recent decades, with the development of computer science, computer simulation has
become a vital research method. There are numerous methods that can be used to simulate
the droplet states on superhydrophobic surface. From the microscale state, molecular
dynamics (MD) study the flow behavior of statistical fluid from the perspective of molecular
atoms to explore the wetting state transition of droplets at molecular scale [18–28]. The
simulation dynamics are sometimes given by the Monte Carlo method. Bryk et al. [29] (2021)
found that the effective interface potential method can be used to determine the location of
the critical wetting transition. Lopes et al. [30] (2017) presented a Potts model simulation of
the C–B/W transition on a surface decorated by a regular distribution of pillars.

Meanwhile, for a larger scopic state, computational fluid dynamics (CFD) are normally
widely used. They include the lattice Boltzmann method (LBM) and the finite volume
method (FVM). LBM is a good choice from mesoscopic state for the simulation of superhy-
drophobic surface. There are numerous studies of superhydrophobic surface simulation
using LBM, such as contact angle of microdroplets on superhydrophobic surface [31–36]
and wetting transition between Cassie and Wenzel [37,38]. FVM is a mature algorithm in
the field of CFD. It is often used to solve macroscopic state problem instead of wetting
state transition.
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3. Corrections in the Static Contact Angle Model on Heterogeneous Surface

The W and C–B models measure the static contact angle with a solid phase area fraction
over the whole surface, but the assumption is not necessarily satisfied for heterogeneous
surfaces with complex morphologies [39]. McHale [40] (2007) indicated that the roughness
ratio of the W model and frictional contact area are valid only when the surface is isotropic
all over with uniform morphology. Therefore, it is very important to build a more accurate
and versatile description system to precisely reflect the relationship between the micro-
structure criteria and static contact angle. At present, the surface microstructure description
system includes a roughness description system, fractal theory description system, re-
entrant geometry description system, and contact line description system. Next, we will
review the advanced progress in these description systems.

3.1. Roughness Description System

The first statistical description of surface roughness can be traced back to 1966 evolved
from tribology. Greenwood and Williamson proposed a theory based on the assumption
that the height of the rough surface contour obeys a Gaussian distribution, shown in Fig-
ure 3a [41]. However, the detailed textures of a rough surface of a hydrophobic material
could elegantly affect its wetting performance. Jiang, et al. [42] (2020) summarized the
three typical types of structural morphologies that can change the surface wetting proper-
ties: pillar-structured surfaces, pore-structured surfaces, and groove-structured surfaces.
Kim et al. [43] (2020) demonstrated that the arrangement of the pattern also had a great
correlation with the static contact angle by experiment. They investigated the four shapes
of pattern arrangement (triangular, square, hexagonal, and octagonal). Cao et al. [44] (2021)
found a correlation between the depth-to-width ratio and static contact angle with the same
surface morphology by experiment. As the depth-to-width ratio increases, the air–solid
contact area also increases, which leads to an increase in the contact angle.
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Figure 3. The schematic diagram of microstructures model. (a) Roughness model: assuming that the
height of rough surface profile obeys Gaussian distribution. Reprinted with permission from Ref. [41].
Copyright@1966, Proc. R. Soc. (b) Fractal geometry model. Reprinted with permission from Ref. [45].
Copyright@1967, Science (New York, NY, USA). (c) Re-entrant structure model. Reprinted with
permission from Ref. [39]. Copyright@2020, Journal of Physical Chemistry. (d) Typical nanoparticle
coating model. Reprinted with permission from Ref. [46]. Copyright@2002, Nano Lett.

3.2. Fractal Theory Description System

When building a microstructure surface model, dimension scale plays an important
role in analyzing the influence of surface microscopic characteristics on the droplet wetting
state. There are many scales related to wetting, such as the atomic scale (10−10~10−9 m),
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microscopic scale (10−9~10−6 m), mesoscopic scale (10−6~10−2m), and macroscopic scale
(>10−2 m) [47]. However, since the modeling parameters in the statistical model are related
to the dimension scale of the rough surface, which is affected by the resolution of the
measuring instrument and the sample length of the rough surface, they are important
for accurate modeling. Hence, the fractal geometry, which combined the different scales
as shown in Figure 3b, is introduced for the analysis of the rough surface contact angle
problem [45]. The multi-scaled wetting contact angle of θCB and θW can be expressed by
Equations (5) and (6), based on the fractal theory:

cos θCB = f
(

L
l

)D−2
cos θ − fla (5)

cos θW =

(
L
l

)D−2
cos θ (6)

where D is the Hausdorff dimension, i.e., D = log(4)/log(3) = 1.2618, and
(

L
l

)D−2
is the

surface area magnification factor [48]. L and l are the upper and lower limit scales of the
fractal structure surface, and θ is the intrinsic contact angle of the material.

Both random and ordered fractal structures have positive influences on the superhy-
drophobic performance, as the fractal theory illustrated [49,50]. Meanwhile, limited to the
self-similarity and self-affinity, the complexity of micro/nanostructures is not satisfactorily
described by the fractal theory [45]. Davis et al. [51] (2017) designed three fractal struc-
tures, but the results showed no clear correlation between the static contact angle and the
fractal dimensions.

3.3. Re-Entrant Geometry Description System

Tuteja et al. [52] (2007) demonstrated that there is a third description system related
to the wetting performance, called “re-entrant geometry”. It exhibited the capability of
supporting repelling behavior to a droplet [53,54]. The re-entrant structures have distinctive
features with a wider top and a narrower bottom, shown in Figure 3c. The typical re-entrant
geometry can be realized with various possible geometries, such as micro-mushrooms,
micro-hoodoo arrays, fiber mats, micro-nail forests, micro-posts, and nanoparticle coat-
ings [39]. The contact angle of micro-hoodoo arrays can be described with the spacing ratio
by the following equation:

cos θCB = −1 +
1

D∗
[sin θ + (π − θ) cos θ] (7)

where D∗ is the spacing ratio, expressed as D∗ = (R + D)/R, in which R is the radius of
the micro-hoodoo, D is the half distance between micro-hoodoos. θ is the intrinsic contact
angle of the material. For a typical coated nanoparticle model, shown in Figure 3d, the θW
and θCB can be expressed by Equations (8) and (9), respectively [55]:

cos θw =

[
1 +

π

4 sin α

(
2R
D

)2
]

cos θ (8)

cos θCB =
π

4 sin α

(
2R
D

)2
− 1 (9)

where R is the radius of the nanoparticle. D is the distance between the centers of two
adjacent nanoparticles. α is the angle of the diamond cell. θ is the intrinsic contact angle of
the material.
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3.4. Fractal Theory Description System

Both the Wenzel and the Cassie–Baxter theories calculate the apparent contact angle
from the solid–liquid contact area. The actual measurement results of the contact angle
may not be consistent with the two classical theoretical models [56,57]. The solid–liquid
contact results from a microscopic surface demonstrated a significant impact of the contact
line on the surface wettability. Extrand et al. [58] (2002) proposed that the solid surface
energy and the microstructure of the contact line, rather than the inside geometry of the
contact area, were the main factors affecting the apparent contact angle. Gao et al. [57]
(2007) prepared three groups of microstructures with different morphologies and different
surface energies. It was found that the microstructure below the droplet did not affect the
contact angle. Oner et al. [59] (2000) found that, when the solid–liquid area fraction was
constant, the contact angle would increase as a result of the decreases in the contact length
of the three-phase contact line.

4. Corrections in the Wetting Transition Mechanism on Heterogeneous Surface

During the last two decades, there has been a drastic upsurge in the research publica-
tions related to the correction mechanisms of the C–B/W transition on a heterogeneous
surface [60–64]. In this section, the corrections of the wetting transition mechanism are
classified from three representative microstructure surfaces: flat-top pillar microstructure,
multi-scale microstructure, and re-entrant microstructure.

4.1. The Universal Transition Mechanism on Flat-Top Pillar Microstructure

Since the flat-top pillar is the simplest rough structure, it was used as a representative
model in the study of wetting transition [65,66]. For the longitudinal propagation of the
liquid, there are two ways in which transition can be induced. The first way is a depinning
mechanism in which the interface is curved due to the Laplace pressure inside the droplet,
shown in Figure 4a. When the hanging interface cannot remain pinned at the pillar edges,
the second way of the sag mechanism is induced with the curved liquid–air interface
touching the bottom, as shown in Figure 4b [11,65–71], where θe is the intrinsic contact
angle of microstructure sidewall, θpin is the contact angle of liquid–gas interface pinned at
the sidewall of the microstructure, sag is the sag depth at the top of the curved interface,
and H is the depth of the microstructure. For the lateral propagation of the liquid, Ren
et al. [72] (2014) found that the propagation of the liquid front proceeded in a stepwise
manner by numerical simulation, shown in Figure 4c,d. Lateral propagation of the liquid
front proceeds by one layer of the grooves, from W1 to W3. W2 is an intermediate metastable
state (a local minima). S2 is the transition state (saddle point) from W1 to W2, and S3 is the
transition state from W2 to W3.

For these flat-top pillar microstructures, various models have been proposed to explain
the transition mechanisms and criteria of the C–B/W transition, which can be mainly
divided into the thermodynamic analysis and the force-based analysis. Thermodynamic
analysis minimizes the Gibbs energy of the system [65,66,73,74], while the force-based
analysis establishes the balance of the capillary forces near the three-phase contact line
(TPCL) [68,75–77].

From the thermodynamic analysis perspective, since the C–B state has a higher energy
state than W state, the droplet penetration to the grooves is accompanied by a decrease in
the Gibbs energy. This is formed with two components. One is due to the replacement of the
solid–air interface with the solid–liquid interface, and the other is due to the change in the
liquid–air interfacial area [78–81]. Although the C–B/W wetting transition is energetically
favored, Patankar et al. [65] (2004) conducted a theoretical study to present an energy
barrier between the two states on a pillar-patterned surface, which requires extra work to
drive the transition with limited kinetics. The barrier energy for the C–B/W transition is
given as Equation (10) [65]:

GB1 = Gc − (r− 1) cos θeσlv Ac (10)
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with Gc defined in Equation (11):

Gc = Scσlv − cos θc
r Ac (11)

where Gc is the energy of a Cassie droplet on a rough substrate, GB1 is the barrier energy
for the transition of a Cassie droplet to a Wenzel droplet. θe is the equilibrium contact angle
of the liquid droplet on the flat surface. θc

r is the apparent contact angle of a drop under
Cassie state. Sc is the area of the liquid–vapor contact for a Cassie droplet. Ac is the area of
contact with the substrate projected on the horizontal plane under the Cassie state. σlv is
the liquid–vapor surface energy per unit area. The barrier energy of the C–B/W transition
by considering the sag state is given as Equation (12):

GB2 = Gw + (1−∅s)(1 + cos θe)σlv AW (12)

with Gw defined in Equation (13):

Gw = Swσlv − cos θw
r Aw (13)

where GB2 is the barrier energy for the Wenzel droplet without forming the liquid–solid
contact at the bottom of the valleys. Gw is the energy eventually reaching the equilibrium
shape of a Wenzel droplet. ∅s is the area fraction on the horizontal projected plane of the
liquid–solid contact. Sw is the liquid–vapor surface area of a Wenzel droplet. Aw is the area
of contact with the substrate projected on the horizontal plane under the Wenzel state.
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From the force-based equilibrium perspective, the resistance to the liquid penetration
was considered to be the force produced by the liquid–gas interfacial tension acting on the
protrusion side surfaces through TPCL. By considering the force equilibrium between both
capillary forces, the influence of gravity and the external pressure, different expressions
of the critical pressure were derived to study the C–B/W transition on a micro-structured
surface. Xue et al. (2012) gave a theoretical model for predicting the critical pressure on
the submersed substrates formed with the cavities and pillars [15]. It was found that both
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pillars’ and cavities’ geometries existed in the metastable state after depinning. The theory
had good agreement with the experiment by Lei et al. (2010), which demonstrated the
characteristic size of pillars and that the solid fraction played more important roles than
the pillar’s arrangement on the hydrophobicity with higher critical pressure [82]. Zheng
et al. (2005) gave the universal critical pressure (pc) formulation of pillars as below [75]:

pc = −
γ f cos∅0

(1− f )λ
(14)

where λ is the pillar slenderness ratio, f is the fraction of the projection area that is wet,
and γ f cos∅0 is the water–air interfacial tension.

4.2. The Asymmetric Wetting Propagation

Both lateral and longitudinal propagations were investigated for the asymmetric
wetting propagation [83–85]. For the lateral propagation, Fetzer et al. [86] (2011) conducted
experimental work to explain that the lateral asymmetries can be attributed to the curvature
of the contact line and the different mechanisms of depinning, such as nucleated jump-
like motion and continuous depinning from the sides. Priest et al. [83] (2009) found the
asymmetries were attributed to the continuity of the solid component by experiment, and
this behavior was consistent with the wettability of chemically heterogeneous surfaces.

For the longitudinal propagation, when the liquid–gas interface touches the bottom
of the microstructure, there are two possible contact modes for the sag mechanism: sym-
metric contact and asymmetric contact [73,85,87,88]. The asymmetric contact shortens the
progression of the metastable state to the Wenzel state; hence, it may affect the lifespan of
superhydrophobicity [85]. Kim et al. [89] (2018) used a numerical method to find there is
an asymmetric depinned stage during the wetting transition process, shown in Figure 5.
The wetting transition of a cylindrical cavity begins with an axially symmetrically pinned
interface of the liquid and vapor. It is followed by a symmetric depinned interface and
then the formation of an annular interface. Finally, the asymmetric depinned interface was
formed before reaching the Wenzel state. Giacomello et al. [88] (2012) explained the reason
for the asymmetric using the free energy minimization theory. At low filling levels, the
interface with the minimized free energy is a straight line, while, for higher liquid volumes
in the box, a quarter of the circle occupying one corner offered the minimal free energy.

Materials 2022, 15, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. The asymmetric wetting transition mechanism of flat-top pillar microstructure of 
cylindrical cavity. Reprinted with permission from Ref. [89]. Copyright@2018, the Journal of 
Physical Chemistry. 

4.3. The Wetting Transition Mechanism on Multi-Scaled Microstructure 
Various biomimetic studies found that multi-scaled microstructures can enhance the 

hydrophobicity of natural surfaces, with a typical example of a lotus leaf [73,90–95]. It 
mainly includes two ways: 1. the droplet infiltrates the nanostructures, 2. multi-scaled 
microstructure provides more pinning points during the depinning stage. Huang et al. [8] 
(2013) and Bormashenko et al. [96] (2015) found there is a typical stage that the droplet 
suspended on the microstructure can infiltrate the nanostructures under lower pressure. 
Meanwhile, Hemeda et al. [97] (2014) and Xue et al. [15] (2012) discovered that the multi-
dimension of microstructures provided more pinning points for the liquid–gas interface 
during the C–B/W transition. Many studies have investigated these wetting transition 
mechanisms with different methods. Zhang et al. [98] (2013) and Lee et al. [99] (2016) used 
the lattice Boltzmann method to investigate the C–B/W wetting transition on the multi-
scaled microstructures. Shen et al. [100] (2015) used an experimental method to investigate 
the wetting transition mechanism on a Ti6Al4V micro-nanoscale hierarchical structured 
hydrophobic surface. They demonstrated that the wetting transition process not only 
increased the apparent contact angle but also decreased the sliding angle significantly. 
Teisala et al. [101] (2012) used the experimental method to generate a hierarchically rough 
superhydrophobic TiO2 nanoparticle surface by the liquid flame spray. It was found that 
a wetting transition occurred on a superhydrophobic surface at the nanometer scale. 

The energy models were also used to explain the reason for the transition 
mechanisms on the multi-scaled surface. Gao et al. [57] (2006) explained that the 
micro/nanostructure makes C–B state wetting energetically favorable. The additional 
small-scale roughness on the side surface of the hydrophobic pillars increased the 
potential barrier for the C–B/W transition, thus making the C–B wetting state more stable. 
Liang et al. [102] (2017) built a 3-D model to analyze the wetting behavior from a 
thermodynamics perspective, shown in Figure 6. It shows the variations in normalized 
free energy (NFE) with apparent contact angle for C–B, C–B metastable, and W states. 
Here, the NFE decreases at first and then increases with the increase in the contact angle. 
However, the NFE curve of the C–B state is lower than that of the other two states. 
Nosonovsky et al. [103] (2009), Hejazi et al. [104] (2013), and Huang et al. [8] (2013) 
explained this with the capillary mechanisms by both computational and experimental 
work. They reported that the microstructures or defects on the substrates can significantly 
increase the wetting hysteresis due to three-phase contact line (TPCL) pinning. As 
illustrated in Figure 7, the bumps may pin the liquid–air interface because an advance in 

Figure 5. The asymmetric wetting transition mechanism of flat-top pillar microstructure of cylindrical
cavity. Reprinted with permission from Ref. [89]. Copyright@2018, the Journal of Physical Chemistry.

4.3. The Wetting Transition Mechanism on Multi-Scaled Microstructure

Various biomimetic studies found that multi-scaled microstructures can enhance the
hydrophobicity of natural surfaces, with a typical example of a lotus leaf [73,90–95]. It
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mainly includes two ways: 1. the droplet infiltrates the nanostructures, 2. multi-scaled
microstructure provides more pinning points during the depinning stage. Huang et al. [8]
(2013) and Bormashenko et al. [96] (2015) found there is a typical stage that the droplet
suspended on the microstructure can infiltrate the nanostructures under lower pressure.
Meanwhile, Hemeda et al. [97] (2014) and Xue et al. [15] (2012) discovered that the multi-
dimension of microstructures provided more pinning points for the liquid–gas interface
during the C–B/W transition. Many studies have investigated these wetting transition
mechanisms with different methods. Zhang et al. [98] (2013) and Lee et al. [99] (2016)
used the lattice Boltzmann method to investigate the C–B/W wetting transition on the
multi-scaled microstructures. Shen et al. [100] (2015) used an experimental method to
investigate the wetting transition mechanism on a Ti6Al4V micro-nanoscale hierarchical
structured hydrophobic surface. They demonstrated that the wetting transition process not
only increased the apparent contact angle but also decreased the sliding angle significantly.
Teisala et al. [101] (2012) used the experimental method to generate a hierarchically rough
superhydrophobic TiO2 nanoparticle surface by the liquid flame spray. It was found that a
wetting transition occurred on a superhydrophobic surface at the nanometer scale.

The energy models were also used to explain the reason for the transition mechanisms
on the multi-scaled surface. Gao et al. [57] (2006) explained that the micro/nanostructure
makes C–B state wetting energetically favorable. The additional small-scale roughness on
the side surface of the hydrophobic pillars increased the potential barrier for the C–B/W
transition, thus making the C–B wetting state more stable. Liang et al. [102] (2017) built a
3-D model to analyze the wetting behavior from a thermodynamics perspective, shown in
Figure 6. It shows the variations in normalized free energy (NFE) with apparent contact
angle for C–B, C–B metastable, and W states. Here, the NFE decreases at first and then
increases with the increase in the contact angle. However, the NFE curve of the C–B state is
lower than that of the other two states. Nosonovsky et al. [103] (2009), Hejazi et al. [104]
(2013), and Huang et al. [8] (2013) explained this with the capillary mechanisms by both
computational and experimental work. They reported that the microstructures or defects
on the substrates can significantly increase the wetting hysteresis due to three-phase contact
line (TPCL) pinning. As illustrated in Figure 7, the bumps may pin the liquid–air interface
because an advance in the liquid–air interface could result in a decrease in the contact angle,
which provides the stability of the composite interface.
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4.4. The Wetting Transition Mechanism on Re-Entrant Microstructure

Cai et al. [105] (2019) studied three types of nanostructures with different longitudinal-
section geometries, including base angles of 60◦ (inverted trapezoid), 90◦ (rectangular),
and 120◦ (regular trapezoid). It was shown that the inverted trapezoidal nano-structure
surface helped to keep the droplet in the C–B state, in which liquid did not penetrate the
nano-structure. This was also described in Refs. [106,107]. Savoy et al. [108] (2012) used
a molecular dynamics method to simulate the wetting behavior of different-size droplets
on a “T” shape structure via boxed molecular dynamics, which is a technique that is used
to quantify the free-energy landscape and estimate the transition rate as the drop moves
from one low free-energy basin to another. Further, they found that, at the same height,
the “T” structure surface needs to overcome a higher energy barrier than that of the square
column surface, which somehow enhanced surface evacuation (shown in Figure 8). Wang
et al. [109] (2019) validated the reason for the high superhydrophobicity of a “T” structure
by both experimental work and a simulation method. The strong pinning effect on the
contact line can significantly change the contact angle and wetting state of droplets.
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5. Wetting Transition Testing Methods

Lafuma et al. [9] (2003) first proposed a testing method by squeezing droplets with
two superhydrophobic surfaces to reflect the wetting stability. This method can be used
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to observe and study the droplet’s critical pressure and contact angle. The experiment
mainly utilizes a micro force sensor on an optical microscope platform. However, this
test is only valid for some superhydrophobic materials with poor wetting stability. In
recent years, several new versatile strategies were proposed to investigate the wetting
transition behavior. The methods include (1) optical, (2) acoustic, (3) confocal laser scanning
microscopy, (4) freeze stripping, and (5) high-speed camera methods. The principles and
merits of these measurement methods are listed in Table 1, and they will be explained in
detail in the following subsections.

Table 1. Summary of wetting transition testing methodology.

Method Principle Merits Reference

Optical reflection Different wetting states show different light
reflection intensity Simplest and direct [8,110–114]

Optical diffraction Change in diffraction pattern reflects the
change in gas layer thickness

The shape of the liquid–gas
interface can be calculated [82,115]

Confocal laser
scanning microscopy

Scanning the samples by fault section, and
three-dimensional reconstruction

Real-time observation of wetting
state transition process [16,61,116–118]

High-speed camera Very short exposure time High temporal resolution [11,118–120]

Freeze fracture a certain interface was immersed in liquid
nitrogen, and the droplet is frozen rapidly

Small applicable scale for
nano-scale microstructure surface [121–123]

Acoustic The differences of reflection of longitudinal
acoustic waves at the composite interface Versatile and integrable [106,124–126]

5.1. Optical Methodology

The optical methodology includes optical reflection and diffraction methodologies.
The reflection methodology is the simplest and the most direct way [8,110–114]. It measures
the total reflection from an underwater superhydrophobic interface to investigate the
wetting behavior and critical pressure of the C–B/W transition. The superhydrophobic
interface has a unique reflection property underwater. At the Cassie–Baxter state, the
gas–liquid interface satisfies the light total reflection conditions, and its reflected light is
relatively bright, shown in Figure 9a. However, at the Wenzel state, since the liquid has
penetrated the voids of the microstructure, there is only reflection light at a rough interface,
which is darker than that at the Cassie–Baxter state, shown in Figure 9b. Meanwhile, in
the meta state, the intensity of the reflected light is between those from the two states.
Huang et al. [8] (2013) used reflection methodology to investigate the wetting behavior
and to measure the critical pressure of C–B/W transition. Since it is difficult to effectively
quantify the intensity of the reflected light by visual observation, laser illumination and
photoelectric detection were introduced to quantify the intensity of the reflected light as a
function of the reflected light under pressure, as shown in Figure 9c. The critical pressure
of the C–B/W transition can be obtained from the inflection point on the reflection curve.

Compared to the reflection methodology, the optical diffraction methodology can
establish the shape of the liquid–gas interface. When a superhydrophobic surface is
submerged in water in a fluidic chamber, the surface pattern consisting of regular pillars
diffraction can be observed with a laser beam passing through the submerged grating
sample in water. The shape of the liquid–gas interface can be indicated by measuring the
intensity of several diffraction spots. Lei et al. [82] (2010) employed this method to control
and monitor the switching of the C–B/W transition. As shown in Figure 10, water was
injected into the chamber with a syringe through the inlet and outlet system. After blocking
the outlet valve, hydraulic pressure can be applied through the inlet. A laser beam was
aligned to pass through the fluidic chamber and a charge-coupled device (CCD) camera
was used to capture diffraction images as a function of the applied pressure. The pressure
for the transition between two states can be quantitatively measured.
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Figure 10. Schematic diagram of the experimental setup for the pressure-dependent observation of
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Through the optical diffraction methodology, Rathgen et al. [115] (2010) studied the
microscopic shape, contact angle, and the Laplace law behavior at the liquid–gas interfaces
on a superhydrophobic surface.

5.2. Acoustic Methodology

As the optical methods are neither versatile nor integrable, Dufour et al. [106] (2013)
presented an alternative method based on acoustic measurements. An acoustic transducer is
integrated on the backside of a superhydrophobic silicon surface with a droplet deposited
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on the superhydrophobic surface. By analyzing the reflection of longitudinal acoustic
waves at the liquid–solid–vapor interface, the transition of C–B/W can be tracked by
measuring the reflection coefficient, shown in Figure 11. Here the Pillar dimensions are
diameter a = 15 µm, pitch b = 30 µm, and height h = 20 µm, and the thickness of bulk silicon
is eSi ≈ 400 µm. The rtop* and rbottom* are the normalized acoustic reflection coefficients
at the top and bottom part of a micropillars array, respectively. With a plane acoustic
wave propagating onto a micro-structured superhydrophobic surface with two different
acoustic media, the absolute value of the reflection coefficient R2/1 can be calculated from
Equation (15):

|R2/1| = (ρ2υ2 − ρ1υ1)/(ρ2υ2 + ρ1υ1) (15)

where ρ is the density of the medium and υ is the velocity of the acoustic wave. They also
measured the evolution of reflection coefficients on the top and bottom parts of the pillars
during the changing of the droplet. The results are shown in Figure 11b. At time = 0 min,
an acoustic measurement was performed without a droplet, so the reflection coefficients at
the bottom and top interface equal 1. By applying a droplet on the surface at 2 min, the
reflection coefficient was reduced to 0.83, while the reflection coefficient of the bottom was
not affected. Evaporation occurred after 2 min, and to 11 min. Since the drop was in a meta-
Cassie wetting state, no notable change was observed for the reflection coefficients during
this time. A spontaneous wetting transition was observed after 11 min with a sudden
decrease in the reflection coefficients for both the top and bottom interface. Finally, the drop
was evaporated, with the recovery of the coefficients to 1.00. The traces of the coefficients
effectively described the wetting transition process. The acoustic methodology was also
used to study the wetting transition process with the change in the droplet densities [124].
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5.3. Confocal Laser Scanning Microscopy Methodology

Confocal laser scanning microscopy (CLSM) can continuously record the reflected
light during the wetting state transmission through a direct 3D nondestructive imaging
method. The setup is shown in Figure 12. The conventional 2D optical observation provides
only limited and no semi-quantitative information about the topological complex at the
water–gas interface. Since the interface below the liquid cannot be imaged by using a scan-
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ning electron microscope (SEM) or transmission electron microscope (TEM), CLSM could
provide a better measurement than an SEM, TEM, or atomic force microscope (AFM) [116].
Luo et al. [116] (2010) used a CLSM to observe the air trapped in the buried interface. They
presented two approaches to control the wetting state transition by either ultrasonic treat-
ment or introduction of a surface wetting agent, such as sodium dodecylbenzene sulfonate
(SDS), into the droplet. Papadopoulos et al. [61] (2013) imaged the dynamic collapse of
the C–B state process in detail. They presented the asymmetric contact of the water–gas
interface under the metastable evolution process using a CLSM with five detectors.
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Figure 12. Schematic illustration for the CLSM methodology. Side view and the CLSM 3D plan
view for observing a droplet on a superhydrophobic surface sheet. Reprinted with permission from
Ref. [116]. Copyright@2010, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

5.4. Freezing Fracture Methodology

The freezing fracture methodology can be applied for direct observation of the wetting
transition process of a droplet on a multi-scaled microstructure [123]. The droplet system
at a certain wetting state is immersed in liquid nitrogen, and the droplet would be frozen
immediately. The frozen droplet is observed by a scanning electron microscope. The set-up
of the experiment is shown in Figure 13. First of all, a liquid droplet of deionized water
is deposited into a holder, shown in Figure 13a, a nano-patterned surface of a Si wafer is
pressed onto the holder, followed by rapid freezing at 77 K, shown in Figure 13b. Next, the
patterned Si wafer is detached from the holder, shown in Figure 13c, which is placed in
an evaporation chamber equipped with a cooling stage. Layers of 3 nm Pt and 5 nm C are
deposited by electron beam evaporation onto the fracture to avoid sublimation. Ensikat,
et al. [127] (2009) applied this method to visualize the contact area between liquids and
superhydrophobic biological surfaces. To avoid the sublimation of the droplet and to
stabilize the imprint, Cannon et al. [121] (2010) modified the standard method by coating
the replica surface with thin platinum and carbon layers.
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5.5. High-Speed Camera Methodology

The high-speed camera can visualize the bouncing of the droplets on a microstructure
surface. Hao et al. [120] (2015) investigated the droplet impact dynamics by reflection
interference contrast microscopy (RICM) with a wavelength of 546 nm. The process was
also recorded by a high-speed camera with a frame rate of 50,000 fps. Li et al. (2010) also
used this method to capture the dynamic behavior of the droplet on different surfaces.
As shown in Figure 14a–e, there were five textured surfaces T20

10 , T40
10 , T40

20 , T80
20 , and T100

20 ,
respectively, where the textured surfaces are signified by the TP

D. D is the diameter of the
pillars, and P is the distance between to pillars. The image on each patterned surface was
very similar except for the counterparts on the T20

10 and T40
20 surfaces [128].
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6. Conclusions and Future Outlook

In this review, a general outline of the fundamental theories on wettability was dis-
cussed first, followed by the illustration of recent developments in the static contact angle
models for different heterogeneous surfaces. Different description systems were also dis-
cussed, including general roughness description, fractal theory description, re-entrant
geometry description, and contact line description. Further, the influence of different
microstructures on the transition mechanism from the Cassie–Baxter regime to the Wen-
zel regime has been discussed. The knowledge regarding the available experimental
approaches is critical in guiding the selection for different purposes and applications.
Therefore, the different measurement approaches are summarized in this review, including
optical methodology, acoustic methodology, confocal laser scanning microscopy methodol-
ogy, freeze stripping methodology, and high-speed camera methodology. A broad outlook
for potential future research on the wetting transition mechanism is listed as follows:

• At present, the metastable state is mainly described based on the energy barrier and
Laplace pressure, with certain limitations. Most of the theories for the metastable
state are based on regular periodic arranged structures. Hence, only the materials
with a regular microstructure can have their superhydrophobic properties predicted
approximately. Therefore, a thorough understanding of the theory of energy barrier
and Laplace pressure on different heterogeneous surfaces is essential.

• There is also an asymmetric contact configuration on the microstructure surface when
wetting is metastable. At present, there is a lack of a distinct calculation model for
asymmetric instability from a theoretical perspective.

• Most of the classical models on the transition mechanism with fractural geometry
and re-entrant geometry assume the droplet perpendicularly impacting the surface.
However, inclined surfaces are more common in reality. Hence, future research should
focus on droplet dynamics over inclined surfaces.

• The new testing techniques are essential to further discern and identify underlying
issues in wetting study since the wetting transition of the superhydrophobic state
under pressure is a complicated process. Therefore, future study on advanced testing
methods is necessary.

Author Contributions: Conceptualization, X.W., C.F. and B.W.; validation, X.W., C.Z. and Z.Q.;
investigation, X.W. and C.F.; writing—original draft preparation, X.W.; writing—review and editing,
B.W.; visualization, X.W. and Z.Q.; supervision, B.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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