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Abstract
The clinical presentation of major depression (MD) is heterogenous and comprises various affective and cognitive symptoms 
including an increased sensitivity to errors. Various electrophysiological but only few functional magnetic resonance imaging 
(fMRI) studies investigated neural error processing in MD with inconsistent findings. Thus, reliable evidence regarding neural 
signatures of error processing in patients with current MD is limited despite its potential relevance as viable neurobiological 
marker of psychopathology. We therefore investigated a sample of 16 young adult female patients with current MD and 17 
healthy controls (HC). During fMRI, we used an established Erikson-flanker Go/NoGo-paradigm and focused on neural 
alterations during errors of commission. In the absence of significant differences in rates of errors of commission in MD 
compared to HC, we observed significantly (p < 0.05, FWE-corrected on cluster level) enhanced neural activations of the 
dorsal anterior cingulate cortex (dACC) and the pre-supplementary motor area (pre-SMA) in MD relative to HC and thus, 
in brain regions consistently associated to neural error processing and corresponding behavioral adjustments. Considering 
comparable task performance, in particular similar commission error rates in MD and HC, our results support the evidence 
regarding an enhanced responsivity of neural error detection mechanisms in MD as a potential neural signature of increased 
negative feedback sensitivity as one of the core psychopathological features of this disorder.
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Introduction

Major depression (MD) is one of the most commonly diag-
nosed mental disorders in first world countries affecting 
more than 264 million people worldwide [1]. The disorder 
is characterized by core symptoms of persistent feelings 
of depressed mood or loss of interest, and is diagnosed by 
behavioral observations according to the diagnostic criteria 
defined in the DSM-5 [2]. However, it is well known that 
the clinical presentation of MD is heterogenous and symp-
toms comprise a culmination of various affective and cog-
nitive deficits. In particular, converging evidence suggests 

valence-specific maladaptions in MD, such as an excessive 
sensitivity to negative feedback and errors of commis-
sion [3–5], i.e. differences between intended and executed 
responses. This increased sensitivity may act as a crucial 
psychological factor in the development and maintenance 
of this disorder.

Electrophysiological studies have intensively investigated 
neurofunctional signatures of error processing. These studies 
inferred the existence of a generic, high-level human error 
processing system from the error-related negativity (ERN), 
a negative deflection in an event-related potential compo-
nent elicited about 50–100 ms after erroneous responses 
[6–10]. The anterior cingulate cortex (ACC) and adjacent 
pre-supplementary motor area (pre-SMA) were identified 
as a core system in error processing and as neural genera-
tor of the ERN [11–14]. In addition, functional magnetic 
resonance imaging (fMRI) studies reliably demonstrated the 
involvement of the inferior frontal cortex, encompassing the 
frontal operculum and the anterior insula in error processing 
[12, 15–18].
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Various electrophysiological studies have also investi-
gated neural error processing in MD, but revealed heterog-
enous findings regarding the amplitude of the ERN. In par-
ticular, studies using experimental tasks devoid of incentive 
manipulations, observed an elevated ERN in middle-aged 
and elderly patients with MD [19–21]. Other studies also 
demonstrated an increase in ERN amplitudes but only for 
errors after erroneous trials [22, 23]. However, no differ-
ences in ERN amplitudes in MD compared to healthy con-
trols (HC) were observed within the context of reward [20], 
and other studies even found an attenuated ERN-amplitude 
in young patients with MD [24], or in severely depressed 
patients during commission errors following erroneous tri-
als [25, 26].

Only few fMRI studies investigated the neurofunctional 
signature of error processing in MD so far. One fMRI study 
investigated neural error processing in patients with remit-
ted MD compared to HC and demonstrated neural hypoac-
tivity within the rostral ACC (rACC) and the dorsomedial 
prefrontal cortex (dmPFC) during commission errors [27]. 
A more recent fMRI-study in patients with remitted MD 
associated an attenuated neural activation within the mid-
dle frontal gyrus during commission errors with higher risk 
for depression recurrence [28]. Another fMRI-study mainly 
focused on neural activations of inhibitory control and corre-
sponding treatment response, but investigated neural altera-
tions of error processing in MD with a contextual paramet-
ric Go/NoGo-paradigm with three separate levels [29]. This 
study demonstrated an increase in neural activations within 
the medial frontal gyrus and the precuneus during errors of 
commission in MD relative to HC.

Of note, the examination of neural responses to errors is 
thought to be a viable neurobiological marker of psycho-
pathology [30–33] that holds promise towards improving 
diagnostic procedures and treatment outcome or monitoring. 
Furthermore, there is an ongoing search for neurobiologi-
cal markers, that could have the potential to serve as pre-
dictors for pharmacological treatment response in tailoring 
individual pharmacotherapy to patients´ needs. Consider-
ing the inconsistent findings regarding neural signatures of 
error processing in MD that presumably owe to different 
symptom state, symptom severity and experimental tasks, 
there is an inevitable need for replication and validation of 
neural responses of error processing in independent sam-
ples before these potential biomarkers can be translated 
into clinical practice. We therefore investigated a sample of 
patients with current major depression and non-depressive, 
healthy controls. During fMRI, we used an established mod-
ified Erikson-flanker Go/NoGo-paradigm without incentive 
manipulations, that has been shown to reliably elicit neural 
responses in brain areas corresponding to commission errors 
and error processing [34–37]. Based on previous electro-
physiological and neuroimaging studies using non-rewarding 

tasks [19–21, 29], we expected an increased neural response 
in MD of brain regions previously related to error process-
ing, and in particular of the ACC.

Methods

Subjects

As part of a broader research project with different experi-
ments of which findings are reported elsewhere [38, 39], we 
investigated a total of 33 young adult female participants 
aged 18–38 years. Of those, 16 patients were diagnosed with 
MD whereas 17 healthy participants (HC) served as con-
trol group with no current or lifetime psychiatric diagnosis. 
Participants in the MD- and HC-group were matched for 
their highest degree of education. Of note, patients with MD 
were on average about 5 years older than HC (Table 1). Two 
subjects in the MD-group also met the diagnostic criteria of 
dysthymia according to DSM-5. One further subject in the 
MD-group had a history of anorexia that was remitted for 
several years at time of investigation. 14 patients had a recur-
rent depressive disorder with an average of around three 
(SD = 2.08) episodes and two had a first depressive episode. 
Participants were recruited from inpatient and outpatient 
units of the Department of Psychiatry and Psychotherapy 
III of the Ulm University Hospital. All 33 participants were 
right-handed according to the Edinburgh Handedness Inven-
tory [40]. Regular smoking cigarettes was reported from 
three of the MD- and four participants of the HC-group but 
was prohibited at least 2 h before fMRI-scanning. Partici-
pants with any severe medical disorder, epilepsy, psychotic 
disorder, substance use disorder or regular consumption of 
alcohol or illegal drugs were excluded from the study. Anti-
depressant medication was not interrupted except of sedative 
drugs on the day of investigation. Patients of the MD-group 
took antidepressant medication of various kinds (see Supple-
mentary material Table S1). One patient had a concomitant 
medication with topiramate and another patient with prega-
balin, which were paused for a wash-out period of at least 
3 days prior to fMRI-scanning (corresponding to 5 times 
the half-life of the substances). All participants gave written 
informed consent prior to the study that was approved by the 
local ethical committee of Ulm University and conducted in 
accordance with the Declaration of Helsinki.

Psychometric measurements

All participants were screened by using the Structured Clini-
cal Interview for DSM-IV [SCID-I and -II; [41]] and clini-
cal diagnoses of patients with MD were verified by one of 
the study psychologists or physicians. Current depressive 
symptoms were assessed by a German version of the Beck 
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Depression Inventory, [second edition, BDI-II; [42]]. To 
assess impulsivity as personality trait, we used the Barratt 
Impulsiveness Scale 11th revision [BIS-11; [43–45]], a self-
reporting questionnaire composed of 30 items, each rated on 
a 4-point Likert scale [44]. Higher total sum-scores reflect 
higher trait impulsivity. Two-sided t-tests for unpaired sam-
ples were computed to analyze psychometric scales.

fMRI paradigm

During fMRI, we used a combined Erikson-flanker Go/
NoGo-paradigm [46], that has been established in several 
electrophysiological and fMRI studies on error process-
ing [34–37]. Five-letter strings were presented comprising 
the letters R, U, P, and V, with the action-relevant target 
always mid-standing. During Go trials, subjects were asked 
to respond with their right index finger on a two-button box 
to the target letter R and with their right middle finger to the 
target letter U. In NoGo trials, subjects should withhold their 
response upon appearance of the letters P or V. Target and 
flanker stimuli were combined either congruently or incon-
gruently. In congruent trials, all five letters were the same. 
In incongruent Go trials, targets were flanked by visually 
similar NoGo target letters (e.g., VVUVV). In incongruent 
NoGo trials, the central NoGo target was flanked by visually 
similar Go targets (e.g., UUVUU). The trial ended with the 
presentation of feedback stimuli (see Fig. 1). To ensure that 
task conditions and, in particular, incongruent NoGo trials 
provided enough errors for the study of error-related signals, 
the instruction to the participants emphasized speed over 
accuracy. Combination of the factors condition (Go, NoGo) 
and type (congruent, incongruent) yielded 66 trials of each 

level, resulting in a total of 264 trials. One trial lasted 1.9 s; 
mean intertrial interval was 3.01 s. The average stimulus-
onset asynchrony for events of the same combination of 
condition by type (e.g., incongruent NoGo) was 19.5 s. The 
duration of the whole task was 22 min. Reaction times and 
correctness of subjects` responses on each trial were regis-
tered by a standard personal computer.

fMRI data acquisition

Due to a scanner update during data acquisition, functional 
imaging data were obtained by a 3 T MAGNETOM Allegra 
(Siemens, Erlangen, Germany) for the HC-group, and by 
a 3 T MAGNETOM Prisma Scanner (Siemens, Erlangen, 
Germany) for the MD-group. A T2*-sensitive gradient echo 
sequence was used for functional imaging of both samples 
with an echotime (TE) of 33 ms, a flip angle of 90°, a field 
of view (FOV) of 230 mm, and a slice thickness of 2.5 mm 
with an interslice gap of 0.5 mm. At a repetition time (TR) of 
2000 ms, 35 transversal slices were recorded with an image 
size of 64 × 64 pixels during the Go/NoGo task. High-reso-
lution T1-weighted anatomical images were obtained using 
three-dimensional magnetization-prepared rapid acquisition 
with gradient echo sequences (1 × 1 × 1 mm voxels, band-
width (BW) 130 Hz/ Pixel, TR 2500 ms, TI 1.1 s, echotime 
(TE) 4.57 ms, flip angle 12°).

fMRI‑data analysis

Image pre-processing and statistical analyses were carried 
out using Statistical Parametric Mapping (SPM12, Wellcome 
Department, London, UK) with a random effects model for 

Table 1  Demographical and 
behavioral data of healthy 
controls (HC) and patients with 
major depression (MD)

Statistical analyses were conducted by two-sided unpaired samples t-tests. Significant results (p < 0.05) are 
highlighted in italic font
BDI beck depression inventory, BIS barratt impulsiveness scale, sem standard error of the mean, ms mil-
liseconds

HC MD t-test

Mean (sem) Mean (sem) t P

Demographical data
Age (years) 23.06 (1.03) 28.69 (1.15) – 4.41 0.001
Education (school years) 10.82 (0.41) 10.81 (0.42) 0.02 0.985
Smoking behavior
Subjects smoking cigarettes (n/total) 4/17 3/16
Cigarettes per day 7 (8.98) 12 (9.85) – 1.84 0.515
Psychometric measures
BDI 3.24 (0.96) 33.63 (2.87) – 11.86 0.000
BIS 57.76 (1.91) 65.25 (2.04) – 3.25 0.012
Incorrect incongruent NoGo trials
Errors of commission 13.24 (2.68) 7.75 (1.10) 2.36 0.074
Reaction time (ms) 420.63 (15.31) 452.28 (15.45) – 1.77 0.156
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group analyses. Data from each session were pre-processed 
including slice-timing, realignment and normalization into 
a standard template (Montreal Neurological Institute, MNI) 
with a spatial resolution of 2 × 2 × 2  mm3. Smoothing was 
applied with an 8-mm FWHM isotropic Gaussian kernel. 
Intrinsic autocorrelations were accounted for by AR (1) and 
low frequency drifts were removed via high-pass filtering 
(1/128 s). On the single subject level, individual event types 
were modeled as trains of delta functions at each stimulus 
onset convolved with a canonical hemodynamic response 
function. Fixed-effects analyses comprised modeling of 
individual events following the combination of the factors 
condition (Go, NoGo), type (congruent, incongruent) and 
response (correct, incorrect), resulting in eight conditions. 
The six realignment parameters were added to the design 
matrix.

According to our previous studies conducted with the same 
task with the primary focus on error processing [34, 37], sec-
ond level group analyses were computed within a 2 × 2 analy-
sis of variances (ANOVA) with the two factors ‘group’ (HC, 
MD) and ‘condition’ (NoGo/incongruent/correct, NoGo/
incongruent/incorrect). Congruent NoGo trials did not con-
sistently yield errors across subjects and were therefore not 
further analyzed. Computation of between-groups differences 
in neural activations related to errors of commission, were con-
strained to voxels significant (p < 0.05) within a conjunction 
analysis consisting of differential neural activation (incorrect 
minus correct incongruent NoGo trials) of each of the two 
groups. Within this inclusive mask, group differences were 
computed for the contrast of incorrect minus correct incon-
gruent NoGo trials. Here, significant group differences were 
inferred at a statistical threshold of p < 0.001, uncorrected at 
the voxel level in combination with a minimum cluster size 

of 183 contiguously significant voxels, corresponding to an 
FWE-corrected p-value of p < 0.05 at the cluster level. This 
specific number of 183 voxels was computed with a script 
from Tom Nichols and Marko Wilke (CorrClusTh.m v1.12 
2008/06/10) that defines the extent of a cluster of contigu-
ously significant (e.g. p < 0.001) voxels, to survive a family-
wise corrected cluster-size p-value of p < 0.05. The script can 
be found under https:// warwi ck. ac. uk/ fac/ sci/ stati stics/ staff/ 
acade mic- resea rch/ nicho ls/ scrip ts/ spm/ johns gems5/# Gem6. 
Due to fMRI data acquisition on two different MRI-scanners 
and significant differences in age of the two groups (MD and 
HC), scanner type and age were included as covariates in all 
fMRI-analyses. We also visually inspected one randomly 
selected EPI volume per each subject obtained from the Sie-
mens MAGNETOM Allegra and the Siemens MANGETOM 
Prisma scanner, and found no indication for systematic dif-
ferences in image quality. Moreover, only effects of condition 
differences but not of single conditions were allowed to enter 
computation group differences for statistical inference since 
only condition differences would compensate for putative, 
systematic contrast-to-noise scanner differences.

In case of significant group-by-condition interactions, indi-
vidual differential neural activations (incorrect NoGo minus 
correct NoGo trials; averaged over significant voxels) in the 
MD-group only were correlated with individual numbers of 
errors, BDI and BIS scores by computing Pearson correlation 
coefficients.

Fig. 1  fMRI-task: Erikson-
flanker Go/NoGo-paradigm. 
Presentation of each trial began 
with a centrally presented 
fixation cross for a period 
of 500 ms. Afterward, letter 
strings were centrally shown 
for a duration of 200 ms, fol-
lowed by a blank screen with 
a duration of 700 ms. The trial 
ended with the presentation of 
feedback stimuli. According to 
the subjects´ performance, the 
German expressions for either 
correct or wrong were presented 
for 500 ms. The figure depicts 
a sequence of an incongruent 
NoGo trial. The target letter ‘V’ 
is highlighted by a red rectangle 
for demonstrational purposes

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/johnsgems5/#Gem6
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/johnsgems5/#Gem6
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Results

Demographical and behavioral data

In line with the clinical diagnosis, significantly higher BDI 
sum-scores were observed in patients with MD relative to 
HC. In addition, we observed significantly higher BIS sum-
scores, measuring impulsivity as personality trait, in MD 
compared to HC. Regarding the behavioral responses in the 
Go/NoGo task during fMRI, reaction times and number of 
errors for incorrect incongruent NoGo trials did not signifi-
cantly differ between MD and HC. Corresponding mean 
scores, t- and p-values of the psychometric measurements 
and task responses in NoGo trials during fMRI are summa-
rized in Table 1. In addition, we observed significant slower 
reaction times in correct Go trials in MD relative to HC, 
whereas the number of correct responses in congruent and 
incongruent Go trials did not differ significantly between 
groups. Details on task responses in Go trials are provided 
in our supplementary material section (see Table S2).

fMRI data

A conjunction analysis comprising differential neural acti-
vations contrasting incorrect versus correct incongruent 
NoGo trials in each group, MD and HC, revealed significant 
(p < 0.05; FWE-corrected on cluster level) differential neural 
activations within the right and left anterior insula, the right 
and left inferior frontal gyrus (IFG), the left supramarginal 
gyrus, the left dACC and the adjacent pre-SMA and thus, 
in brain regions that have been consistently associated to 
neural error processing. More details are provided in our 
supplemenatry material section (see Table S3 and Fig. S1).

Comparing both groups, we observed significant 
(p < 0.05; FWE-corrected on cluster level) higher differen-
tial (incorrect versus correct incongruent NoGo trials) neu-
ral activations due to commission errors in MD relative to 
HC within pre-SMA and dACC (see Table 2 and Fig. 2). 
No significantly higher differential neural activations were 
observed in HC compared to MD.

Correlation analyses

No significant correlations between individual numbers of 
errors, BDI and BIS scores and individual differential neural 
activations during commission errors were observed in the 
MD-group.

Discussion

Several electrophysiological and few fMRI studies have 
investigated neurofunctional alterations of error processing 
in MD. However, corresponding results are far from consist-
ent. We investigated a sample of young female patients with 
MD and HC with fMRI and an established Erikson-flanker 
Go/NoGo-paradigm, to support reliable evidence for a neu-
rofunctional signature of error processing in MD. Despite 
a comparable number of commission errors in MD relative 
to HC, we observed a significant increase in error-related 
neural activations in MD within the dACC and the adjacent 
pre-SMA and thus in brain regions that were consistently 
associated to neural error processing.

According to the clinical diagnoses and similar to other 
studies [47–49], we observed significant higher BDI and 
BIS sum-scores in MD relative to HC. During the Erikson-
flanker Go/NoGo-paradigm, the rate of commission errors in 
incongruent NoGo trials did not significantly differ between 
MD and HC. An equal or even a fewer rate of commission 
errors in MD is in line with previous observations [10, 
24–26, 50] and has been interpreted as a cause of psycho-
motor retardation on the one hand, or a trade-off between 
accuracy and speed in MD on the other, in which responses 
are slower and perhaps more careful. Our finding of slower 
reaction times in correct and incorrect Go trials in MD and, 
although not statistically significant, slower reaction times 
and lower error rates in MD relative to HC in incongruent 
NoGo trials, is in line with this interpretation. Of note, a 
comparable rate of errors in both groups (MD and HC) may 
strengthen the interpretability of our fMRI results consid-
ering that neural alterations may not be confounded by an 
increased error rate [51].

Table 2  Significant (p < 0.001, k > 183Vx; FWE-corrected on cluster level) differential (incorrect minus correct incongruent NoGo trials) neural 
activations in patients with major depression (MD; n = 16) compared to healthy controls (HC; n = 17), with scanner type and age as covariates

BA Brodman area, L left, R right, MNI montreal neurological insitute (x-, y-, z-coordinates are provided in mm); Z z-score of standard norm dis-
tribution, dACC dorsal anterior cingulate cortex, pre-SMA pre-supplementary motor area

BA Anatomic L/R Cluster size Z MNI

Label x Y Z

MD > HC 6 Pre-SMA R 358 4.64 8 14 44
R 4.21 8 6 56

24 dACC L 4.21 -6 12 36
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During fMRI, we observed differential neurofunctional 
activations related to commission errors within the dACC, 
pre-SMA, right and left IFG and anterior insula, as well as 
left supramarginal gyrus in HC and MD. Enhanced neural 
activations of these brain regions have been consistently 
associated with error processing [11, 12, 15–18, 52], sup-
porting that our task induced reliable neural responses.

Comparing the two groups, MD and HC, we observed 
significantly enhanced differential neural activations 
related to errors of commission within the dACC and the 
pre-SMA in MD relative to HC. The dACC responds to 
various types of performance feedback such as errors or 
conflicts [52]. Increased neural activations within this 
region were consistently associated with performance and 
error monitoring [13, 15, 16, 53, 54]. Beyond a pure moni-
toring function, the dACC also directs attention toward 
task-relevant stimuli and maintains associations between 
actions and their outcomes, including the implementation 
of task sets [52]. The neural signaling of the dACC may 
serve to improve task performance by modulating con-
trol over the motor system and allocations of capacities 
of different competing neural systems [9]. Our observa-
tion of enhanced neural activations within the dACC dur-
ing commission errors in MD is also in line with several 
electrophysiological and one fMRI study [19–21, 29], that 
demonstrated an increased neural response pattern of this 

region during error processing in MD. By contrast, two 
other fMRI studies described diminished error-related neu-
ral activations of frontal brain areas including the ACC 
[27, 28]. It is of note, however, that both studies inves-
tigated patients with remitted depressive disorder rather 
than patients with current MD as in our study. In addition, 
we observed significantly enhanced neural activations of 
the pre-SMA. Neural activations of this region have been 
associated with error detection [6, 8, 13, 59] and the iden-
tification of response conflicts [16, 54, 60, 61], with errors 
representing a special case of higher order conflict pro-
cessing [13, 60]. Beyond the observation that both, dACC 
and pre-SMA contribute to the ERN [11–14], there is evi-
dence that these two regions response at different points 
in time. In particular, neural activations of the pre-SMA 
due to errors are thought to emerge earlier and to provide 
[62] and to precede [63] error-related signals as an input 
to the dACC. It has been also suggested that the pre-SMA 
reliably responds to negatively valenced signals that may 
arise from either error or conflict monitoring. In addition, 
neural signaling within the pre-SMA encodes the informa-
tion to evaluate previous decision processes, necessary to 
learn from errors and to adjust erroneous behavior [64]. 
Unfortunately, we were not able to specifically investigate 
post-error adjustments as trial composition and stimulus 
arrays in our task are inappropriate for this purpose.

Fig. 2  Significant differen-
tial (incorrect minus correct 
incongruent NoGo-trials) neural 
activations corresponding to 
errors of commission in patients 
with major depression (MD; 
n = 16) compared to healthy 
controls (HC; n = 17) masked 
within a conjunction analyses 
of differential (incorrect minus 
correct incruent NoGo trials) 
neural activations in HC and 
MD at a statistical threshold of 
p < 0.05. Bar charts depict fMRI 
parameter estimates extracted 
from the significant cluster 
within the dorsal anterior cin-
gulate cortex (dACC) and the 
pre-supplementary motor area 
(pre-SMA) for HC and MD; 
error bars is standard error of 
the mean. HC healthy con-
trols, MD patients with major 
depression; iNoGo +  = correct 
incongruent NoGo-trials; iNoGo 
incorrect incongruent NoGo-
trials; iNoGo ∆ incorrect minus 
correct incongruent NoGo-tri-
als; *** = statistical significance 
(p < 0.05, FWE-corrected on 
cluster level)
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With enhanced neural activations in error-related brain 
regions in the absence of statistically significant differ-
ences in error rates in MD compared to HC, our data sup-
port an increased responsivity of neural error detection in 
MD compared to HC. These enhanced neural responses 
may reflect a potential neural correlate of the clinically 
relevant and frequently observed enhanced sensitivity to 
negative environmental cues or errors [3–5]. However, 
a growing body of work indicates that also substance 
abuse is characterized by abnormal error-related neural 
responses of the ACC [55–58], potentially related to or 
mediated by increased impulsivity. This speaks against 
clinical specificity of our present observation. On the other 
hand, patients with substance disorder were not included 
in our study, and we also did not find a significant correla-
tion between differential dACC/pre-SMA activations and 
individual BIS scores in MD.

Some shortcomings are to discuss. Our study was con-
ducted in a relatively small sample size comprising only 
female participants. This may compromise the strength and 
the generalizability of our data, and present results await 
empirical replication with larger samples of both sexes. 
Moreover, our patients with MD were investigated under 
antidepressant medication that may have potentially altered 
neural activations relevant for error processing. However, 
similar error-related neural alterations in MD were also 
found in patients with MD without antidepressant medica-
tion [10]. Also, another electrophysiological study observed 
no differences in error-/event-related potential amplitudes 
between patients with MD with and without antidepressant 
medication [65]. As another limitation, mean age of patients 
with MD and controls differed significantly by about 5 years 
and patients were investigated with a different fMRI-scanner 
of the same manufacturer with the same field strength and 
acquisition parameter as HC. For compensation, age and 
scanner type were included as covariates in all fMRI-anal-
yses. Also, visual inspection focusing on systematic differ-
ences in image quality between both MR scanners revealed 
no evidence that would speak against the comparability of 
fMRI activation patterns derived from both devices. We also 
found no hints for considerable differences in contrast-to-
noise ratios between the two scanners, which is supported by 
the rather equivalence of neural signaling during incongru-
ent correct NoGo trials in both groups as indicated in our 
Fig. 2. Finally, even if one MR scanner would have had a 
systematically greater contrast-to-noise ratio than the other, 
this signal gain would have affected both event types (cor-
rect and incorrect NoGo trials). Since the critical depend-
ent variables were never signal changes against baseline 
but always signal changes between trials of different event 
types, any putative global signal differences are automati-
cally taken into account by these condition differences used 
for between-group comparisons in our analysis.

Conclusion

The neural system for the identification of errors has been 
intensively investigated in healthy subjects by electro-
physiology and functional neuroimaging studies. In major 
depression, the clinical observation of increased sensitiv-
ity to errors and negative feedback may suggest altera-
tions in neural networks for error processing. However, 
reliable evidence for these neural alterations is limited by 
inconsistent findings despite their relevance as potential 
neurobiological marker of clinically relevant psychopa-
thology. We therefore investigated a sample of female 
patients with current major depression by fMRI and an 
Erikson-flanker Go/NoGo-paradigm compared to HC. 
In the absence of significant differences in error rates of 
commission, we observed significantly enhanced neural 
activations of the dACC and the pre-SMA in MD relative 
to HC. These brain regions are well related to neural error 
processing. Present results therefore support the notion of 
enhanced responsivity of neural error processing mecha-
nisms in MD as a potential neural signature of this dis-
order. Whether enhanced error-related recruitment of the 
dACC and pre-SMA is merely an expression of increased 
negative feedback responsibility of patients with depres-
sion or whether this phenomenon is functionally in service 
of ongoing behavioral adjustments, successful or unsuc-
cessful, cannot be answered with present data and remains 
an open question for future studies in search of clinically 
relevant imaging biomarkers of depression.
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