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Exactly 100 years ago, F.R. Lillie reported chemotaxis in 
animal sperm for the first time (Lillie, 1912). Chemo-
taxis refers to the directed movement of a cell or organ-
ism to the source of a chemical gradient; the chemical 
agent that elicits this movement is called a chemoattrac-
tant. Chemotaxis had previously been shown by Pfeffer 
(1884) for fern spermatozoids; however, attempts to 
demonstrate chemotaxis in animal sperm had failed. 
Lillie was an eminent scientist of the time; he was pro-
fessor of embryology at the University of Chicago, presi-
dent of the National Academy of Sciences of the USA, 
and a towering figure of the scientific community at the 
Marine Biological Laboratory (MBL) in Woods Hole, MA. 
From 1908 to 1925, he served as director of the MBL.

In a report entitled “The production of sperm iso-
agglutinins by ova” (Lillie, 1912), Lillie described an 
agglutination reaction when drops of seawater that 
had been conditioned with unfertilized eggs were in-
jected into a milky suspension of sperm from the sea 
urchin Arbacia punctulata. The sperm agglutinated—or 
clumped—into small masses, or beads. The reaction 
was reversible; after some time, the sperm freed them-
selves and regained full mobility. Lillie called the ova-
derived factor an iso-agglutinin because it acted on 
sperm of the same species. Because Lillie thought that 
the iso-agglutinin represented a key factor for fertiliza-
tion, he dubbed it “fertilizin” (Lillie, 1913). Lillie inter-
preted the agglutination as physical cross-linking of 
sperm by egg jelly molecules analogous to the antigen–
antibody reaction. The spontaneous reversal was later 
explained by fragmentation of fertilizin by a sperm  
enzyme called “lysin” (Tyler, 1941).

At the end of his manuscript (Lillie, 1912), Lillie re-
ported almost in passing that egg extracts also contain a 
chemotactically active agent distinct from the iso-agglu-
tinin. The short passage about the chemotactic behav-
ior is worth quoting for its clarity and succinct style:

“The egg-extracts contain not only an agglutinin for 
the spermatozoa, but also an aggregative agent, i.e., a 
substance towards which the spermatozoa are positively 
chemotactic. This may be readily demonstrated by the 
form of the reaction when a drop of the fluid to be 
tested is injected into a sperm suspension beneath a 
raised cover glass. If an aggregative agent be present, a 
ring of spermatozoa forms at or within the margin of 
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the drop, depending on the strength of the agent, and 
a clear zone arises between this ring and the general 
sperm suspension. The clear zone is produced by mi-
gration of the spermatozoa to the ring; in case the agent 
is very strong the ring expands, owing to immigration of 
spermatozoa, but the clear zone is never obliterated, no 
matter how much the ring may expand. In the case of 
Nereis, which has unusually large spermatozoa, the pas-
sage of spermatozoa across the clear zone to the ring 
may be readily studied under a low power of the micro-
scope, and it gives the impression of a regular rain fall-
ing on the ring.”

Lillie believed that the two reactions—agglutination 
and chemotaxis—served distinct functions and were 
caused by different substances. In the following years, 
Lillie was more interested in the agglutination reaction 
(summarized in his book “Problems of Fertilization”; 
Lillie, 1919), and he did not follow up on his study  
of the chemotactic response, perhaps because another 
Woods Hole luminary and founder of The Journal of 
General Physiology, Jacques Loeb, took a decided stand 
against chemotropism of sperm in animals (Loeb, 1914, 
1916, 1918). In general, for the next 50 years, studies of 
sperm chemotaxis produced mixed results. As late as 
1951 and 1952, Lord Rothschild concluded that “in the 
animal kingdom, spermatozoa probably meet or collide 
with eggs by chance” (Rothschild, 1952), and that “che-
motaxis of spermatozoa toward eggs has never been  
observed with certainty” (Rothschild, 1951). It was not 
until the experiments of R.L. Miller in the late 1960s 
and 1970s that chemotaxis in animal sperm was firmly 
established (Miller, 1966, 1970, 1985). To this day, che-
motaxis in mammalian sperm has proved to be exceed-
ingly difficult to study (Eisenbach and Giojalas, 2006; 
Armon et al., 2012). Numerous molecules—from odor-
ants to gases—have been proposed to attract sperm. 
However, their function as chemoattractants has not 
been as firmly established as the chemoattractants of 
sperm from marine invertebrates.

Ironically, the fertilizin hypothesis turned out to be 
incorrect, whereas Lillie’s observation of sperm chemo-
taxis stood the test of time. Indeed, A. punctulata has 
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densely populated by sperm from the surrounding sperm 
suspension. After some time, the sperm clumps come 
apart. Thus, Lillie’s observations were as precise as they 
were correct.

We also made use of Lillie’s egg-extract experiment  
to determine the amount of resact released by an egg;  
the equivalent concentration in the egg is 50 µM (Kashikar 
et al., 2012). This figure combined with a lower boundary 
of 0.8 fM µm1 for the gradient sensitivity of A. punctulata 
sperm allows us to estimate the maximal effective range 
of a chemical gradient that forms by radial diffusion of 
resact from the egg (0.4 cm) (Kashikar et al., 2012).

After the seminal discoveries of resact, and its cog-
nate receptor, guanylyl cyclase (GC) (Suzuki et al., 1984; 
Shimomura et al., 1986; Singh et al., 1988), an ever-
increasing number of signaling molecules have been 
identified in the chemotactic pathway of sea urchin 
sperm (Fig. 1). Rapid kinetic techniques combined with 
flash photolysis of caged compounds have enabled dis-
section of the sequence of signaling events from the  
receptor to the voltage-dependent Cav channels that 
mediate the Ca2+ response. Of note, this signaling path-
way endows Arbacia sperm with sensitivity to chemoattrac-
tant at the physical limit: they can respond to binding of 
a single resact molecule (Kaupp et al., 2003; Strünker  
et al., 2006; Kashikar et al., 2012). The identity and 
function of some signaling components have been firmly 
established, although the physiological roles of others 
continue to be vague. Notably, the identity of the Cav chan-
nels is unknown, and the function of the rise in pHi and 
the workings of the underlying Na+–H+ exchanger (NHE) 
are still enigmatic. Finally, the mechanisms underlying 

become the most valuable model of sperm chemotaxis 
research. The sea urchin agglutination phenomenon 
requires freely moving sperm and is probably produced 
by the swarming of sperm to a common focus (Collins, 
1976). Moreover, at high density, sperm of a related sea 
urchin, Strongylocentrotus purpuratus, form large-scale 
patterns solely mediated by hydrodynamic interactions 
(Riedel et al., 2005). At planar surfaces, sperm display 
hexagonal arrays of vortices. Thus, the agglutination re-
action is probably caused by vigorous chemotactic swim-
ming of sperm toward the drop of chemoattractant 
combined with hydrodynamic interactions. The disper-
sal of sperm clumps after some time is probably caused 
by dissipation of the chemical gradient and sperm adap-
tation to the chemoattractant.

About 70 years after Lillie’s discovery, the chemoattrac-
tant resact, a short peptide isolated from jelly of Arbacia 
eggs (Hansbrough and Garbers, 1981), was identified 
and the chemotactic response of Arbacia sperm to resact 
was unequivocally identified (Ward et al., 1985).

We repeated Lillie’s experiment using modern mi-
croscopy techniques and a caged form of resact. We did 
not inject resact into a sperm suspension by a pipette; 
instead, we created a gradient of resact concentration 
by releasing resact from the caged compound with a 
brief flash of UV light (Video 1). The intensity of the 
light flash formed a circular distribution. The results of 
this experiment recapitulate Lillie’s original observa-
tions, as did those of Ward et al. (1985): Sperm swarm 
to the site where the light intensity is highest and form 
clumps; an annulus of low sperm density forms that 
separates the area in the center of the gradient that is 

Figure 1.  Chemotactic signaling pathway in sea urchin sperm. Resact, the chemoattractant peptide, binds to receptor GC and, thereby, 
stimulates the rapid synthesis of cGMP. The ensuing surge in cGMP opens K+-selective cyclic nucleotide–gated (CNGK) (Strünker 
et al., 2006; Galindo et al., 2007; Bönigk et al., 2009) channels to produce a brief hyperpolarization of the cell membrane. This hyperpo-
larization activates two other signaling components: an NHE and a hyperpolarization-activated cyclic nucleotide–gated (HCN) channel 
(Gauss et al., 1998; Galindo et al., 2005). NHE activity causes a rapid alkalinization of the cytosol (Lee, 1984; Lee and Garbers, 1986). 
Upon opening of HCN channels, the ensuing Na+ inward current depolarizes the cell and leads to the opening of voltage-dependent 
Ca2+ channels (Cav). Recovery from stimulation involves restoration of resting [Ca2+]i by a Na+–Ca2+–K+ exchanger (NCKX) (Su and 
Vacquier, 2002) and hydrolysis of cGMP by a phosphodiesterase (PDE) (Su and Vacquier, 2006). The physiological role of a soluble 
adenylate cyclase (not depicted) (Nomura et al., 2005) and of the second messenger cAMP is not known.
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spatiotemporal precision. The last area of advance is in 
clarification of how the modulation of the 3-D flagellar 
beat shapes the sperm swimming path in 3-D (Su et al., 
2012). Time-resolved electron tomography of ultrathin 
cryo-sections of the flagellum will open the door to a 
new 3-D world of ciliary beat mechanics (Nicastro et al., 
2006; Ishikawa, 2012; Pigino et al., 2012).

Chemotactic signaling and swimming behavior in 
sperm of marine invertebrates might differ from those of 
mammals. However, the tools and concepts developed for 
the study of chemotaxis in sea urchin sperm will be invalu-
able to advance insights into chemotaxis of human sperm.

Elizabeth M. Adler served as editor.
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