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Abstract

Background: A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which
vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory
networks, in particular, genome-scale networks, is essential for comparative exploration of different species and
mechanistic investigation of biological processes. Currently, most of network inference methods are computationally
intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to
construct GRNs at genome-scale.

Results: Here, we present a software package for gene regulatory network reconstruction at a genomic level, in

which gene interaction is measured by the conditional mutual information measurement using a parallel computing
framework (so the package is named CMIP). The package is a greatly improved implementation of our previous
PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective
parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy
of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets
demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period.
In addition, successful application on a real genomic dataset confirms its practical applicability of the package.

Conclusions: This new software package provides a powerful tool for genomic network reconstruction to biological
community. The software can be accessed at http://www.picb.ac.cn/CMIP/.
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Fig. 1 Workflow of the CMIP software package. First, expression
datasets are used as input of the CMIP algorithm. Then the CPU or
GPU programs are selected to reconstruct networks. Finally, result
files recording interaction and relationship of gene pairs are

generated as output

Background

In the post-genome era, an important task of molecular
biology is to reconstruct gene regulatory networks
(GRNSs), which represent interactions between genes in-
side a cell or tissue. A GRN provides molecular interac-
tions and regulatory effects of components involved in a
biological process, and hence provides insights into the
molecular mechanism of the process [1, 2]. In detail,
GRNs can be used to interpret biological processes
through studying topological structure information of
sub-networks related to these processes, where genes fa-
cilitate specific biological functions together [3, 4]. GRNs
can help annotate genes clustered in modules and motifs
since genes in the same module or motif have similar
functions [5, 6]. GRNs can be utilized to identify dynam-
ical network biomarkers (DNB) at the critical states of
biological processes if stage-wise data are available,
which help biologists understand mechanism of bio-
logical process better [7, 8]. Therefore, reconstruction of
GRNs can not only support investigating roles of genes
and components involved in a biological process, but
also help study how a process is developed and
maintained.

In the last decade, many algorithms have been devel-
oped to infer GRNs based on reverse-engineering
methods, such as Bayesian network [9-11], Boolean net-
work [12, 13], linear and non-linear regression [14-18],
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differential equation [19, 20], information-theoretic ap-
proaches [21-26], probabilistic phylogeny network [27],
part mutual information network [28], and probabilistic
graphical models [29-32]. In 2011, we proposed a GRN
inference algorithm, named PCA-CMI, which can distin-
guish direct interactions of gene pairs from indirect ones
based on the conditional mutual information (CMI)
measurement [33-35]. However, two limitations of the
algorithm hinder its wide application. One is that an ap-
propriate threshold should be assigned to the method
for direct interactions judgment in advance, which is dif-
ficult for users since the threshold is hard to select be-
fore GRN reconstruction. The other is that the method
is time-costly especially for genomic network recon-
struction, which is a common restriction of most current
GRN inferring methods.

In this report, we describe a new software package
CMIP, which implements the PCA-CMI algorithm with
the goal of enable biologists to build genomic networks
easily. The CMIP package incorporates a threshold de-
termination method and a parallel computing process
for network inference. The threshold determination
method can choose an appropriate cutoff on-the-fly for
gene interaction judgment. Computing procedure of the
CMI measurement is optimized to make the algorithm
robust, in which parallel computing strategies are ap-
plied to accelerate calculation process. This paper de-
scribes the algorithm details, program implementation,
prediction performance, and practical application of the
CMIP package.
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Fig. 2 Diagram of threshold determination for gene interactions.
Relationship between interaction and cutoff is first investigated, and
then a fitting curve method based on exponential function is
adopted to simulate relationship between them. Finally, the
intersection of slope of the start and end sections of the fitting
curve was chosen as the threshold




The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):535

Table 1 Effectiveness of threshold determination method under
different criteria

Criteria/manners O-order 1-order 2-order 3-order Percentage
Offset less than 5% 3 7 4 4 45%
Offset less than 10% 5 9 9 7 75%
Offset less than 20% 7 10 10 10 93%

Methods

Workflow of the CMIP package

As showed in Fig. 1, the CMIP package first uses an ex-
pression data file as input, in which expression value of
genes under different experimental conditions are pro-
vided. Then, CMIP program calculates the correlation
value between gene pairs. During calculation process, a
threshold determination method is called to generate an
appropriate cutoff for direct interaction judgment. When
the process is finished, two result files are produced as
output. One is a gene interaction file, recording raw cor-
relation value of gene pairs. The other is a gene relation
file, providing the relationship between gene pairs. In
practice, relationship of a gene pair is assigned as 1
when their correlation value is over the interaction cut-
off. Otherwise corresponding value is assigned as 0.

Correlation calculation of the CMIP algorithm

The algorithm implemented in the CMIP package is as
follows. First, correlation values of each gene pairs are
calculated using the mutual information (MI) measure-
ment. Then a threshold determination method (de-
scribed in the “Threshold determination of gene
interaction” section) is called to provide an appropriate
interaction cutoff for gene pairs. An interaction is
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Fig. 3 Changes of the accuracy measurement for the CMIP algorithm.

The CMIP programs were conducted on 10 benchmark datasets with

0-,1-,2- and 3-order manners to test impacts of different
order parameters
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marked for gene X and Y when their raw correlation
value is over the cutoff. After that, for each gene inter-
action, their correlation values are updated through cal-
culating the conditional mutual information (CMI)
measurement (Eq. 1-4), which describes the dependence
of two genes given neighboring genes as condition. A
gene Z is defined as a neighbor of gene X and Y when it
has interactions with both gene X and Y. In practice, the
maximum CMI value between gene X and Y is kept. Fi-
nally, for gene X and Y, they are regarded as having dir-
ect interaction when their CMI value is over the
interaction cutoff and their relationship value is set to be
1 as output.

p(x,yl2) (1)

x,v|z)= > Py 2)log s o)

xeX yeY zeZ

Where I(X,Y|Z) is CMI measurement between gene X
and Y given gene Z as a condition; p(x,)z) are joint
probability of gene triple (X,Y,Z); while p(x|z), p(y|z), and
p(x,y|z) are conditional probabilities of gene X, Y, and
gene pair (X,Y) given gene Z as a condition. According
to information theory, the CMI measurement can also
be defined as follows.

H(X,Y|Z) = H(X, Z)
+H(Y,Z)-H(Z)-H(X,Y,Z) (2)

Where H(Z) is the entropy of gene Z; H(X,Z), H(Y,Z)
and H(X,Y,Z) are joint entropies of gene pair (X,Z), (Y,Z)
and gene triple (X,Y,Z); H(X,Y|Z) is the conditional en-
tropy of genes X and Y given gene Z as a condition.
Based on the Gaussian distribution, the entropy of gene
Z can be estimated as follows.

H(Z) = log [(2ﬂe)”/2|c(z)|1/2]

= log(2ne)'|C(2)| (3)

Where n is number of experiment, C(Z) is the covari-
ance matrix of gene Z, and |C(Z)| is the determinant of
the matrix. While joint entropies can be estimated simi-
larly through corresponding covariance matrixes. Based
on the entropy estimator, in practice the CMI measure-
ment (I) is calculated as follows.

1(X,Y|Z) = % lOgIC(X,Z)|.|c(Y,Z)|

IC(2)[lcX.Y,2)|

(4)

Where C(X,Z) and C(Y,Z) are covariance matrixes of
gene pair (X,Z) and (Y,Z); C(X,Y,Z) is covariance matrix
of gene triple (X,Y,Z); the |C()| is determinant of a
matrix.
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Table 2 Scores of various network inference methods on benchmark datasets

Measurements ARACNE CLR Ml GENIE3 Inferelator TIGRESS cmIp

AUROC 0.6689 0.7632 0.8004 0.7955 0.7014 0.8048 0.7945
AUPR 0.1465 0.2076 0.3537 03033 02172 0.3991 03637
Average 04077 04854 0.5771 0.5494 04593 0.6020 0.5791

Threshold determination of gene interaction

Given interaction of gene pairs, the number of interac-
tions decreases dramatically with the increase of the cut-
off and their relationship shows an exponential decay.
Therefore, in practice we chose to use an exponential
function to simulate relationship between interaction
and cutoff. Correlation values of gene pairs are first cal-
culated as mentioned in the “Correlation calculation of
the CMIP algorithm” section. Then direct interactions
between gene pairs under different cutoffs are estimated
and a scatter plot is generated (Fig. 2), where X axis is
the cutoff value and Y axis is the number of direct inter-
actions. After that, we fit the number of direct interac-
tions as a function of the cutoff value with an
exponential function. Finally, we chose the threshold as
the intersection of slope of the start and end sections of
the fitting curve, which represents the inflection point of
the curve.

Parallelization of the CMIP programs

In CMIP, parallel strategies were applied to speed up
computing process of correlation. In practice, a CPU
and a GPU version program of CMIP algorithm were

developed so that users could utilize them in different
computational environment. The CPU version program
is implemented based on the OpenMP framework [36],
where loop calculation is accelerated with the multi-
threads technology. In detail, the total computing task of
correlation is first calculated based on gene numbers,
and then computing tasks is partitioned equally to each
CPU node. While the GPU version program is imple-
mented based on the CUDA framework [37], where ser-
ial and parallel computing tasks are undertaken by CPU
and GPU cores respectively. In detail, a production-
consumption strategy is used in the GPU version pro-
gram, in which gene expression data used by correlation
calculation is first processed by the CPU cores (produc-
tion); then pre-processed data is delivered to GPU cores
for correlation calculation (consumption) using a parallel
mode; finally, the results are transferred from GPU to
CPU cores for aggregation.

Evaluation of network inference methods

Receiver operating characteristic (ROC) curve and
precision-recall (PR) curve are used to evaluate perform-
ance of different network inference methods. The ROC
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Table 3 Running time of different network inference programs
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Methods CMmIP? CMIPP MI ARACNE CLR GENIE3 Inferelator TIGRESS
Multi-threads Yes Yes No No No No Yes No
Time (seconds) 7 4 8 353 68 4715 2728 13089

?GPU version program, © CPU version program

curve is a graphical plot which illustrates discrimination
capacity of algorithm under various thresholds for binary
classifier problems, where the X and Y axis are false and
true positive rate respectively. While the PR curve shows
recognition capability of algorithm under various thresh-
olds for positive samples, in which the X and Y axis rep-
resent the recall and precision measurement
respectively. Commonly, area under the ROC curve
(AUROC) and area under the PR curve (AUPR) are cal-
culated to comprehensively evaluate performance of a
network inference method. In practice, the true positive
rate (TPR, also known as recall), false positive rate
(FPR), and positive predictive value (PPV, also known as
precision) and accuracy (ACC) are calculated as follows.

TPR = TP/(TP + FN)

FPR = FP/(TN + EP) 5)
PPV = TP/(TP + FP)

ACC = (TP + TN)/(TP+EN + TN + EP)

Where TP, TN, FP and FN are numbers of true positive,
true negative, false positive and false negative respect-
ively. Given a true interaction between genes X and Y, it
is recorded as a true positive item if it is predicted by
the algorithm. Otherwise, it is recorded as a false nega-
tive item. Similarly, for a non-interaction gene pair X
and Y, it is recorded as a false positive item when pre-
dicted by the algorithm. Otherwise, it is recorded as a
true negative item.

Results and discussion

Efficiency of the threshold determination method

In this study, we developed an automatic threshold de-
termination method for interaction cutoff prediction.
Here we show the efficiency of the method using numer-
ical experiments. First, 10 benchmark datasets (synthetic
datasets) were collected from the DREAM3 competition
website [38]. Then, we ran CMIP programs on these
datasets with 0-, 1-, 2-, or 3-order manner separately,
which means the CMI is calculated given 0, 1, 2, or 3
neighboring genes as conditions. Note that when no

Table 4 Running time of the CMIP programs in pineapple GRNs
reconstruction

Programs/time (seconds) Leaf base network
cMmip? 1828
CMIP® 2026

?GPU version program, ® CPU version program

Leaf tip network
2277
2733

neighboring gene is given as condition, the CMI meas-
urement is equivalent to the MI measurement. In prac-
tice, the CMIP programs were run with a predefined
cutoff, which was increased from 0 to 1 with a step size
of 0.02. For each running of programs, accuracy of the
CMIP algorithm under a certain cutoff was recorded.
After that, accuracies under different cutoffs were
checked, and the cutoff at which corresponding accuracy
measure reached its maximum was stored as the true
threshold. On the other hand, the CMIP programs were
run with the automatic threshold determination method
(see the “Threshold determination of gene interaction”
section for details) and a predicted threshold was
presented. Finally, offset of threshold was detected
through comparing the true and predicted threshold
values (Eq. 6).

|true threshold—predicted threshold|
x 100%

offset = (6)

maximum —minimum

In our work, the stringent, standard, and moderate criteria
are defined as offset less than 5, 10, and 20% respectively.
Results of offset detection are shown in Table 1, where
each cell represents the number of datasets for which the
offsets satisfy a certain criteria under a defined order
(0-, 1-, 2-, or 3-order). Totally, the proportion of datasets
that satisfies the stringent, standard, and moderate criteria
are 45, 75, and 93% respectively. These results demon-
strate that the new threshold determination method
developed in this study is effective and an appropriate cut-
off can be provided on-the-fly during calculation process
of correlation. Though in this study, we already include 10
datasets to test the threshold determination method, it is
possible that there are networks for which the current
threshold determination method might be not the best
option; therefore, development of new methods for
threshold determination is still needed in the future.

Parameter selection of the CMIP software

The CMIP algorithm is based on the CMI measurement,
where computational complexity increases exponentially
with the increase of the number of neighboring genes as
conditions, i.e. with the increase of orders. So an appro-
priate order parameter needs to be selected for the algo-
rithm. Here, we tested the impacts of different order
parameters on prediction accuracy. In practice, 10 syn-
thetic benchmark datasets were first collected from the
DREAMS3 website [38]. Then the CMIP programs were
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Website of the CMIP sof_'tware
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Fig. 5 Data processing pipeline of website for the CMIP algorithm. First, users can input transcriptomics data and submit their computing tasks
through the “Network Inference” module. When a task is finished, a notifying letter will be sent to users. Simultaneously, users can check results
of their tasks on the “Task query” module. In addition, users can obtain the CMIP software in the “Download” module

Source codes of
the software

run on these datasets with 0-, 1-, 2-, and 3-order man-
ners separately and the accuracy measurement was
inspected in each running. Inspection results show that
the accuracy of the CMIP algorithm gradually increased
with the increase of the order parameter from 0 to 3;
however, the increasing trend becomes flat after the
order of 1 (Fig. 3). Considering both the accuracy and
computational complexity, we recommend setting 1 to
be the order parameter for the CMIP algorithm.

Performance evaluation of the CMIP package on
benchmark datasets

The CMIP package was utilized to reconstruct GRNs on
10 DREAMS3 benchmark datasets for performance evalu-
ation. In practice, programs of the package were run
with a 1-order manner, ie. the CMI measurement of
gene pair was calculated given one neighbor gene as
condition. Subsequently, running results of CMIP were
compared with other popular network inference
methods using the AUROC and AUPR measurements.
Specifically, programs of popular GRN inference
methods were downloaded from website of the DREAM
projects [39] and recommended parameters were used
during running these programs. Mean scores of the
AUROC and AUPR measurement on 10 benchmark
datasets for various methods are shown in Table 2 and
Fig. 4. Given both the AUROC and AUPR measurements,
the CMIP algorithm achieves high performance and de-
livers competitive values to popular methods. For average
score of the AUROC and AUPR measurement, the CMIP
algorithm performs better than all methods except the
TIGRESS algorithm. These results demonstrate that the

CMIP algorithm is comparable to most currently used
network inference methods.

Application of the CMIP package on real biological
datasets

We further applied the CMIP software on real transcrip-
tome data to check its practical applicability. The CMIP
software was first used to build GRNs of pineapple
leaves. In detail, a GRN of leaf base and a GRN of leaf
tip were constructed based on genome-scale expression
data. Totally, 15,483 genes (201,537 interactions) and
13,543 genes (188,391 interactions) were included in the
base and tip GRNs respectively. Analysis of the node de-
gree distribution suggested that both the tip and the
base network showed small-world properties. Then, we
extracted genes linked to metabolic enzymes of Crassu-
lacean Acid Metabolism (CAM) in the base and tip net-
works. After that, genes linked to metabolic enzymes in
the tip network but missed in the base network were
identified as potential recruited regulators of CAM
photosynthesis. ~ Subsequently  experimental  study
showed that regulators identified from network compari-
son do play important roles in photosynthesis differenti-
ation [40]. This application of CMIP software on real
dataset shows its effectiveness and efficiency for genomic
GRNSs reconstruction.

Effectiveness of parallel computing framework of CMIP
programs

Since the CMIP software is developed to infer GRNs for
genome-scale datasets, parallel computation strategies
are adopted in the software to speed up computing
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process. Here, we compared running time of the CMIP
programs with popular network inference methods. In
practice, CPU version programs were run on a Linux
computing server, which has two Intel Xeon E5-2650
CPU units containing 32 CPU cores in total. While GPU
version programs were run on a Linux computing server,
which has 2 NVIDIA Tesla k20m GPU cards containing
4992 CUDA cores in total. In this study, all program
was executed on a synthetic dataset (collected from pub-
lished literatures), which included expression values of
500 genes under 343 biological treatments for Arabidop-
sis, Running times of different programs are shown in
Table 3. Programs of the CMIP algorithm are much fas-
ter than most popular methods. Running time of the
CMIP software applied in pineapple GRNs reconstruc-
tion is shown in Table 4. These results suggest that par-
allel computing strategies applied in the CMIP software
are efficient and the software can handle genome-scale
datasets within a reasonable time period.

Usage of the CMIP package

A service website of the CMIP programs is established so
that users can utilize them remotely (Fig. 5). Now, the
website can be accessed at http://www.picb.ac.cn/CMIP/.
The web service is created based on a remote resource
management system. Once a task is submitted to the
system, calculation resources include CPU and GPU
computing components will be automatically assigned. To
use the CMIP programs, users first need to submit their
computing tasks through inputting expression data on
the “Network inference” module. Then tasks are
handled by the management system. When a task is
finished, a notice letter will be sent to users. Alterna-
tively, users can query status of their tasks through
the “Job Result” module. Finally, summary informa-
tion of the task will be presented on the website. In
addition to the online manners, users can download
the source codes of CMIP software from the “Down-
load” module (Additional file 1), and then use it on
local computing servers.

Conclusions

In this study, we provide a new software package for net-
work inference, which can reconstruct genomic GRNs
within a short time period. The software package has a
number of novel features compared with other GRN in-
ference methods. First, CMIP can detect direct gene in-
teractions from indirect ones with a high accuracy based
on the CMI measurement. Results of performance evalu-
ation on benchmark datasets show that precision and
accuracy of the CMIP algorithms are comparable to
most currently used methods. Secondly, an automatic
threshold determination method is incorporated into the
CMIP algorithm, so users do not need specify a
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predefined cutoff for gene interaction judgment and an
appropriate threshold can be provided on-the-fly. Nu-
merical experiments confirm the efficiency of the thresh-
old determination method. Last but not least, the
OpenMP and CUDA framework are applied in the soft-
ware to speed up computing process of the CMIP algo-
rithms, which enables the software to build GRNs with
less running time. With this feature, the software is suit-
able to reconstruct genomic GRNs. The area of CMIP
that needs future development is that it can’t provide
directionality to edges of gene regulatory networks,
which is a common limitation of many current
methods, such as CLR [24] and minet [22]. This limi-
tation can be resolved by a two-steps routine. First,
using the CMIP software to build a gene regulatory
network as background model, then giving direction-
ality to edges of the network according to results of
biochemical perturbation experiments, or predicting
directionality for edges of the network based on time
series expression data [41].

Additional file

Additional file 1: S1- CMIP_code zip: source codes of the CMIP software
package. (ZIP 46 kb)
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