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1  | INTRODUC TION

During the process of pregnancy, a large range of extracellular ves-
icles (EVs) with different sizes are extruded into the maternal cir-
culation, including macro-vesicles (also termed as syncytial nuclear 
aggregates or mononuclear trophoblasts), micro-vesicles (MVs) and 
exosomes.1-3 These distinct EVs could be distinguished by their spe-
cific features, including size, biogenesis process and biological func-
tions.4,5 Exosomes, with 30-150 nm in diameter and from endocytic 
origin, are the most studied EVs so far. Extracellular vesicles con-
tribute to cell-to-cell communication by transporting signalling mol-
ecules including proteins and nucleic acids. The cargos in these small 

vesicles may reflect the physiological or pathophysiological state of 
the source cells.6,7 Emerging evidence suggests that exosomes with 
functional cargos can be transferred between foetus and maternal 
bodies.8 A variety of body fluids such as blood, urine and amniotic 
fluid contain EVs released from trophoblast cells, immune cells and 
endothelial cells, among others.9-11 EVs are suggested as essential 
modulators of multiple processes of pregnancy, including implanta-
tion, migration and invasion of trophoblasts, and cellular adaptations 
to the physiological changes.1-3 Changes in the concentration, com-
position and bioactivity of EVs have been reported to be associated 
with pregnancy-related diseases.12,13 Given these important roles, 
EVs have great potential to be developed as non-invasive biomarkers 
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Abstract
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost 
all types of cells. Extracellular vesicles can be classified into distinct subtypes accord-
ing to their sizes, origins and functions. Extracellular vesicles play important roles in 
intercellular communication through the transfer of a wide spectrum of bioactive 
molecules, contributing to the regulation of diverse physiological and pathological 
processes. Recently, it has been established that EVs mediate foetal-maternal com-
munication across gestation. Abnormal changes in EVs have been reported to be 
critically involved in pregnancy-related diseases. Moreover, EVs have shown great 
potential to serve as biomarkers for the diagnosis of pregnancy-related diseases. 
In this review, we discussed about the roles of EVs in normal pregnancy and how 
changes in EVs led to complicated pregnancy with an emphasis on their values in 
predicting and monitoring of pregnancy-related diseases.
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of foetal and maternal conditions. In this review, we summarized the 
current knowledge about the functions of EVs in pregnancy and its 
complications. The contribution of macro-vesicles to normal and 
complicated pregnancies has been well documented in other liter-
atures.14,15 Therefore, we mainly focused on the roles of exosomes 
and MVs in normal pregnancy and its related diseases. The clinical 
values of EVs detection for the early diagnosis and monitoring of 
pregnancy-related diseases are also discussed.

2  | E Vs IN NORMAL PREGNANCY

Extracellular vesicles mediate foetal-maternal communications and 
participate in many important physiological activities during normal 
pregnancy, including embryo implantation, immunomodulation, spiral 
arteries remodelling, metabolism adaptations and delivery (Figure 1).

2.1 | EVs in embryo implantation

Extracellular vesicles take part in maternal-embryo interaction within 
human uterine microenvironment, promoting implantation, an earli-
est and essential step for successful pregnancy.16,17 Greening et al18 
detected the proteome of exosomes from endometrial epithelial cells 
(ECs) that were treated with oestrogen (E; proliferative phase) or oes-
trogen plus progesterone (EP; receptive phase). The proteins enriched 
in exosomes of EP-treated ECs are associated with embryo implanta-
tion and extracellular matrix remodelling, including fibulin1 (FBLN1), 
cysteine-rich 61 (CYR61), laminin α5 (LAMA5) and collagen type XV 
(COL15A1). Exosomes from EP-treated ECs could be taken up by 
trophoblast cells, promoting their adhesive capacity via activating 
focal adhesion kinase (FAK) signalling pathway. MicroRNAs (miRNAs) 
have been introduced as mediators of embryo-endometrium crosstalk 
in the implantation process.19 MiRNAs packaged in MVs could be de-
tected in human uterine luminal fluid, indicating their potential role in 
implantation.20,21 Vilella et al22 provide evidence that miR-30d is pre-
sent in exosomes and could be transferred from receptive endometrial 
epithelium to embryo trophectoderm, improving the adhesive ability 
of pre-implantation embryo. In addition, exosomal miR-30d could act 
as a transcriptomic regulator, leading to overexpression of genes in-
volved in embryo adhesion, such as Itgb3, Itga7 and Cdh5. The uptake 
of exosomal miR-30d increases the rate of murine embryonic adhesion 
to the endometrial epithelium in vitro. They further demonstrate that 
maternal and/or embryonic miR-30d deficiency impairs endometrial 
receptivity and embryo implantation rates in vivo by using wild-type 
and miR-30d knockout mice.23 Embryo itself can also generate MVs to 
enhance implantation by promoting the migration of trophoblast cells. 
Desrochers et al24 demonstrate that extracellular matrix proteins fi-
bronectin and laminin α5 on the surface of MVs from embryonic stem 
cells can bind to integrin α5β1 and laminin receptors on trophoblast 
cells to trigger the activation of FAK and JNK signalling pathways. 
Moreover, they confirm that the implantation efficiency is increased 
in surrogate mice after injecting embryonic stem cell-derived MVs into 

blastocysts, indicating an important role of EVs in mediating embryo 
implantation.

2.2 | EVs in immunomodulation

Recent studies have highlighted a critical interaction between EVs and 
immune cells in modulation of pregnancy during which maternal im-
mune system tolerates the growing foetus and maintains its normal 
functions.25,26 Tong et al27 performed proteomic analyses of macro-, 
micro- and nano-extracellular vesicles derived from 56 first trimester 
placenta by using an ex vivo placental explant culture model. Gene 
Ontology pathway analysis shows an enrichment of proteins involved 
in vesicle transport and inflammation in all three fractions of EVs, 
which supports the notion that EVs can influence immune system 
during early pregnancy. Stenqvist et al28 demonstrate that placental 
exosomes carry active TNF superfamily members, including Fas ligand 
(FasL) and TNF-related apoptosis-inducing ligand (TRAIL), which plays 
an immune-suppressive role through triggering apoptosis in activated 
peripheral blood mononuclear cells (PBMCs). The exposure to vil-
lous cytotrophoblast (VCT) exosomes suppresses PBMC activation. 
However, this effect is not observed in syncytin-2 (Syn-2)-silenced 
VCT exosomes, indicating an important function of exosomal Syn-2 in 
immune suppression.29 Kovacs et al30 suggest that trophoblastic EVs 
act as important players in immune tolerance, which is associated with 
their regulation of Treg differentiation. Extracellular vesicle-derived 
heat shock protein family E member 1 (HSPE1) promotes Treg differ-
entiation from CD4+ T cells and Treg cell expansion in vitro. Placental 
exosome-derived miR-499 is elevated in the first trimester in cows and 
could inhibit NF-κB activation via Lin28B/let-7 axis, thereby repressing 
inflammation response and forming an immune-tolerant microenviron-
ment in the uterus. miR-499 inhibition leads to inflammation dysregula-
tion and increased risk of pregnancy failure in vivo.31 Maternal immune 
system is essential for the uterus to prevent pathogenic infections.32 
Holder et al33 demonstrate that macrophage derived exosomes can 
be internalized by placental cells via clathrin-dependent endocytosis, 
increasing the release of pro-inflammatory cytokines such as IL-6, 
IL-8 and IL-10, potentially facilitating protective placental immune 
responses during pregnancy. Moreover, Delorme-Axford et al34 dem-
onstrate that primary human placental trophoblasts (PHTs) have anti-
viral immunity and can confer this resistance to non-placental cells via 
PHT-derived exosomes directly, shielding against viral infection during 
pregnancy. Primary human placental trophoblast-derived exosomes 
package the chromosome 19 miRNA cluster (C19MC) miRNAs, which 
are highly expressed and specific in human placenta, to attenuate viral 
replication in recipient non-placental cells by up-regulating autophagy.

2.3 | EVs in spiral artery remodelling and 
vascular function

To meet increased metabolic demands of the mother and foetus and 
to ensure adequate nutrients and oxygen supplies to the growing 
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foetus, early stage of pregnancy requires sufficient spiral artery 
remodelling and physiological adaptations in the cardiovascular 
system.35,36 Vascular smooth muscle cell (VSMC) migration is an im-
portant process during human uterine spiral artery (SpA) remodel-
ling, which contributes to the successful pregnancy. Salomon et al37 
show that exosomes isolated from extravillous trophoblast (EVT) 
cell lines (JEG-3 and HTR-8/SVneo cells) are capable of promoting 
VSMC migration, suggesting that EVT participate in SpA remodel-
ling through exosomes-mediated promotion of VSMC migration out 
of the vessel walls. They further show that endothelial cell migration 
in vitro can be stimulated by circulating exosomes from pregnant 
women. Intriguingly, the bioactivity of exosomes is greatest dur-
ing first trimester and gradually decline with increasing gestational 
age.38 Tong et al39 demonstrate that different size fractions of pla-
cental EVs can rapidly interact with ECs and localize to different or-
gans in vivo, which supports the notion that placental EVs are likely 
to have effects on endothelial functions. Placental nano-vesicles 
interact with ECs rapidly in vitro through a combination of mecha-
nisms including phagocytosis, endocytosis and cell surface binding. 
Interestingly, the nano-vesicles extruded from first trimester human 
placenta cannot affect endothelium-dependent vasodilation of 
uterine artery whereas it affects the ability of systemic mesenteric 
arteries to undergo endothelium- and nitric oxide-dependent vaso-
dilation in pregnant mice.40 There is evidence that normal circulating 
piglet foetal exosomes derived from the umbilical vein are able to in-
crease tube formation function of human umbilical vein endothelial 
cells (HUVECs). After coculture with normal circulating piglet foetal 
exosomes derived from the umbilical vein, the expression of pro-an-
giogenic genes VEGF and Notch1 are up-regulated while that of anti-
angiogenic gene TSP1 is down-regulated in HUVECs.41 Similarly, Jia 
et al42 provide evidence that both maternal and umbilical serum 
exosomes enhance HUVEC proliferation, migration and tube for-
mation abilities. Furthermore, the altered expression of a subset 
of migration-related miRNAs, including miR-210-3p, miR-376c-3p, 

miR-151a-5p, miR-296-5p, miR-122-5p and miR-550a-5p, has been 
identified in umbilical serum exosomes.

2.4 | EVs in metabolism

Increasing evidence suggests that EVs are involved in metabolic ho-
moeostasis.43,44 However, little is known about the role of EVs in 
metabolic regulation with regard to pregnancy. Nair et al45 demon-
strate that placental exosomes from normal glucose tolerant (NGT) 
pregnant women are able to increase insulin-induced glucose uptake 
in skeletal muscle from diabetic patients, suggesting placental ex-
osomes may engage in the changes of insulin sensitivity in normal 
pregnancies. Recently, Jeyabalan and colleagues demonstrate that 
treatment with exosomes from adipose tissue (AT) of NGT pregnant 
women affects the expression of glucose metabolism-related genes 
in placental cells. They provide data that the up-regulated genes in 
placental cells are associated with glycolysis (HK3 and TPI1), glu-
coneogenesis (PCK1 and G6PC), glycogen production (UGP2) and 
degradation (PYGM), suggesting that physiological adaptation by ex-
osomes could satisfy increasing glucose usage in foetus and placenta 
across pregnancy.46

2.5 | EVs in delivery

Signals of foetus maturation probably induce inflammatory re-
sponses and thus prepare the uterus for delivery.47,48 The previous 
study has shown that the activated form of p38 mitogen-activated 
protein kinase (MAPK) is a term parturition associated marker.49,50 
Sheller et al51 demonstrate that phosphorylated p38 MAPK is ex-
pressed in exosomes from amnion epithelial cells (AECs) and is up-
regulated in response to oxidative stress. Hadley et al52 have tested 
if senescent foetal AEC exosomes can cause inflammatory changes 

F I G U R E  1   Effects of EVs in normal 
pregnancy. EVs mediate foetal-maternal 
communications in normal pregnancy. 
EVs contribute to embryo implantation 
by promoting trophoblast adhesion. 
Placenta can interact with immune cells 
via EVs to balance immune activation and 
suppression across the gestation. EVs can 
activate endothelial cell (ECs) and vascular 
smooth muscle cells (VSMCs) to promote 
angiogenesis. EVs can accelerate glucose 
metabolism in the placenta and skeletal 
muscle. Moreover, inflammation signals of 
maturation in EVs can prepare uterus for 
delivery
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in maternal and placental tissues. Primary AECs are grown in normal 
cell culture (control) or oxidative stress condition, and myometrial 
and decidual cells are treated with those AEC-derived exosomes. 
Regardless of the source of exosomes, exosome treatments in-
crease the secretion of IL-6, IL-8 and prostaglandin E2 (PGE2) and 
induce the activation of NF-κB in uterine myometrial and decidual 
cells. However, exosomes produced under oxidative stress condi-
tion have a more dominant pro-inflammatory effect than control 
exosomes. In addition, more foetal exosomes are possible to reach 
maternal gestational tissues at term labour. Altogether, their data 
imply that foetal cell exosomes may contribute to the timing of birth 
by increasing uterine cell inflammation. Ithier et al53,54 suggest that 
foetal lung-derived C4BPA plays a role in birth timing determination 
by utilizing proteomics analysis of exosomes from foetal cord arte-
rial blood. They reveal that C4BPA could bind to CD40 of placen-
tal villous trophoblast to promote p100 processing to p52. In turn, 
RelB/p52 heterodimers transport to the nucleus to activate non-
canonical NF-κB pathway in placenta, which drives the epigenetic 
changes in pro-labour genes. A recent study in mouse model also 
suggests that non-specific inflammation builds up gradually across 
late gestation and reaches the peak at the day before the expected 
delivery. Exosomes from uterine tissues at late gestation contain 
pro-inflammatory cargos and could affect birth timing by promoting 
local inflammatory responses in foetal membranes.55

3  | E Vs IN COMPLIC ATED PREGNANCY

Abnormal changes of EV concentration and composition are in-
volved in pregnancy-related diseases, including pre-eclampsia (PE), 
gestational diabetes mellitus (GDM), preterm birth (PTB) and other 
adverse pregnancy outcome (Figure 2).

3.1 | EVs in inflammation

The dysregulation of the balance between pro- and anti-inflamma-
tory factors has been reported in complications of pregnancy.56,57 
Exosomes from extravillous trophoblast cells cultured under low 
oxygen tension could increase TNFα expression in HUVECs, thus 
inhibiting their migration.58 In addition, EV-induced active platelets 
could activate NLRP3 inflammasome in trophoblast cells via ATP-
purinergic signalling, leading to PE-like symptoms (ie pregnancy 
failure, elevated blood pressure, increased plasma sflt-1 and renal 
dysfunction) in mice. Notably, platelets induce placental sterile in-
flammation without blood clots and increase fibrin accumulation, 
indicating that EVs-activated platelets are linked with inflamma-
tory reaction directly in this setting.59 In PE patients, the level of 
plasma gelsolin, an anti-inflammatory factor of maternal origin, is 
much lower than that in healthy women at late stage of pregnancy, 
which may be associated with the shedding of EVs.60 The expression 
of high mobility group box 1 (HMGB1), a pro-inflammatory danger 
signal, is increased in macro-vesicles derived from trophoblast after 

treating placental explants with pre-eclamptic sera.61 Ospina-Prieto 
et al62,63 show that exosomal miR-141 derived from foetal tropho-
blast is elevated in PE patients and miR-141-enriched trophoblast 
exosomes could induce T cell proliferation, indicating that placental 
EVs regulate maternal immune cells and cause immune disorders in 
pregnancy as PE is associated with systemic pro-inflammatory en-
vironment. Kovacs et al64 demonstrate that PE-MVs could interact 
with monocytes and modify their phenotype and function. An al-
tered phagocytosis-associated molecular pattern is found in PE-EVs, 
including an elevated CD47 ‘don't eat me’ signal and a decreased 
exofacial phosphatidylserine ‘eat me’ signal along with decreased 
uptake of PE-EVs. Compared to healthy pregnancy MVs, PE-MVs 
suppress the chemotactic activity and the motility of monocytes and 
accelerate their adhesion. MiR-548c-5p is lowly expressed in serum 
exosomes and placental mononuclear cells in PE patients compared 
to normal pregnancies. MiR-548c-5p down-regulation is associated 
with increased secretion of inflammatory cytokines (IL-12 and TNF-
α) and nuclear translocation of NF-κB in macrophages, which in turn 
triggers the proliferation and activation of macrophages and stimu-
lates inflammatory response.65 Exosomes from GDM pregnancies 
increase the release of pro-inflammatory cytokines from ECs, in-
cluding GM-CSF, IL-6 and IL-8, among others,66 similar to exosomes 
isolated from cells cultured under high glucose condition.67 The 
levels of pro-inflammatory cytokines are positively associated with 
maternal BMI.68 Moreover, the inflammatory cargos in exosomes are 
involved in preterm labour (PTB) by inducing a localized inflamma-
tory response in mice.55 By using sequential windowed acquisition 
of all theoretical mass spectra (SWATH-MS) to screen differentially 
expressed proteins in circulating maternal exosomes, Menon et al69 
show that inflammation-associated molecules are enriched in PTB 
exosomes, suggesting that inflammation likely affects labour pro-
cess through exosomes. Gysler et al70 reveal that the level of plasma 
exosomal miR-146a-3p is higher in pregnant women with antiphos-
pholipid antibody (aPL) and adverse pregnancy outcome (APO) than 
those with aPL but without APO at 18-27 weeks of gestation. They 
suggest that miR-146a-3p is a mediator of aPL-induced IL-8 secretion 
in trophoblast cells, thus exerting a pro-inflammatory effect on the 
placenta.

3.2 | EVs in vascular dysfunction

Failures in endothelial functions and vasoconstriction responses 
increase the risk of vascular complications of pregnancy, especially 
PE.71,72 Exosomes from PE patients contain abundant placental anti-
angiogenic factors such as soluble fms-like tyrosine kinase-1 (sFlt-1) 
and soluble endoglin (sEng). These exosomes could be internalized 
by HUVECs and impair their proliferation, migration and tube for-
mation functions in vitro. Similarly, these exosomes cause vascular 
dysfunction and result in adverse pre-eclampsia-like birth outcome 
in mice.73 Cronqvist et al74 provide evidence that placenta-specific 
C19MC miRNAs derived from syncytiotrophoblast-derived extra-
cellular vesicles (STBEVs) could be transferred into the endoplasmic 
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reticulum (ER) and mitochondria of primary human ECs. When ECs 
are treated with PE derived STBEVs, the miRNA deposition is altered 
from the mitochondria to the ER and the cell membrane becomes 
ruffled. More importantly, the miRNAs are functional, causing a 
down-regulation of specific target genes including the PE-associated 
gene Flt-1. Interestingly, Ermini et al75 suggest that circulating form 
of Eng is not a soluble protein but a truncated extracellular domain 
of Eng. Circulating Eng are secreted from the syncytiotrophoblast 
(STB) via exosomes together with types 1 and 2 TGF-β receptors. 
This complex affects vascular homeostasis and induces hyperten-
sion through impairing TGF-β signalling. In PE, syncytiotrophoblast 
may extrude dangerous macro-vesicles that can subsequently trig-
ger EC dysfunction. For instance, aPL, the strongest maternal risk 
factor for PE, can result in an increased extrusion of macro-vesicles 
derived from trophoblast. In addition, the expression of 72 proteins 
in those macro-vesicles is altered, of which 13 proteins are involved 
in mitochondrial function. These altered macro-vesicles may trigger 
endothelial dysfunction and PE in pregnancies.76,77 Foetal growth 
restriction (FGR) may occur due to repressed angiogenesis and in-
sufficient blood supplement. When HUVECs are treated with circu-
lating piglet foetal exosomes derived from the umbilical vein under 
FGR condition, the expression of pro-angiogenic genes VEGF and 
Notch1 is down-regulated while that of anti-angiogenic gene TSP1 
is up-regulated. Furthermore, this study reveals that a lower level of 
exosomal miR-150 is associated with decreased proliferation, migra-
tion and tube formation of HUVECs.41 A number of studies suggest 
that placental STBEVs exert influence on maternal vasoconstriction 
responses across gestation. Spaans et al78 suggest that STBEVs im-
pair angiotensin II79 and NO78-mediated vasodilation through lec-
tin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in ECs. 

They suggest that the inhibition of LOX-1 increases endothelial ni-
tric oxide synthase (eNOS) expression in STBEV-incubated vessels. 
The decreased eNOS level is considered to be associated with de-
creased bioavailability of NO in PE. Motta-Mejia et al80 demonstrate 
that STBEVs isolated from both placenta perfusate and circulating 
plasma of PE have lower levels of STBEV-eNOS compared to normal 
pregnant group. Placental exosomes from PE patients reduce eNOS 
expression and NO production in HUVECs, which could be attrib-
uted to increased expression of miR-155 in exosomes.81 Neprilysin 
(NEP) is a membrane-bound metalloprotease that could reduce the 
activation of peptides such as vasodilators, natriuretics and diuret-
ics. A recent study suggests that active NEP is highly expressed in 
STBEVs of PE patients, which are likely to be associated with the 
pathogenesis of PE.82

3.3 | EVs in metabolic disorders

Metabolism dysregulation is closely related to some pregnant com-
plications, for instance, GDM and foetal overgrowth.83,84 Compared 
to AT exosomes of NGT controls, AT exosomes of GDM could in-
crease the expression of genes associated with glycolysis and gly-
cogenolysis in placental cells. It is possible that increased placental 
glycogenolysis in GDM accelerates glucose transferring to foetus, 
resulting in foetal overgrowth. Furthermore, ingenuity pathway 
analysis reveals the differential expression of mitochondrial func-
tion-related proteins in AT exosomes of GDM.46 The work from Nair 
et al45 shows that placental exosomes are capable of modulating 
insulin-stimulated migration and glucose uptake in primary skeletal 
muscle cells. Gene target and ontology analyses of differentially 

F I G U R E  2   Effects of EVs in pregnancy-related diseases. Abnormal changes of EVs concentration and composition are involved in 
pregnancy-related diseases. EVs mediate dysregulation of the balance between pro- and anti-inflammatory responses in immune cells, ECs 
and placenta. EVs can lead to failures in endothelial functions and vasoconstriction. Communications between placenta and important 
metabolism tissues via EVs are correlated with glucose metabolism and insulin resistance. Moreover, EVs can decrease implantation 
efficiency by inducing endometrial receptivity
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TA B L E  1   The clinical values of EVs in pregnancy complications

Pregnancy 
complications

Source of 
EVs

Pregnancy 
stage Targets Isolation method Detection method Clinical value References

Pre-eclampsia Plasma Early Total exosomes, 
exosomal PLAP

Ultracentrifugation, 
differential 
centrifugation

ELISA Elevated in PE at early 
pregnancy (AUC 
0.745 and 0.829)

85

Plasma Late Exosomal PLAP to 
total exosomes 
ratio

Ultracentrifugation ELISA Reduced in PE; lower 
in late-onset PE than 
early-onset PE

86

Plasma Late miRNAs profile Commercial kit Nanostring 
counter system 
miRNA assay

Potential markers of 
PE and subtypes 
of PE

88

Plasma Mid and 
late

miR-210 Commercial kit qRT-PCR Elevated in PE; higher 
in severe PE

89

Plasma Early miR-486-1-5p, 
miR-486-2-5p

Ultracentrifugation, 
differential 
centrifugation

RNA sequencing Elevated in PE at early 
pregnancy

85

Plasma Mid and 
late

miR-136, miR-494, 
miR-495

Ultracentrifugation qRT-PCR 6.4-, 3.9- and 2.1-fold 
higher in PE than 
normal pregnancy

91

Serum Late miR-155 Ultracentrifugation, 
differential 
centrifugation

qRT-PCR Elevated in PE 81

Serum Late miR-548c-5p Commercial kit qRT-PCR Reduced in PE 65

Plasma Early miR-517-5p, 
miR-520a-5p, 
miR-525-5p

Commercial kit qRT-PCR Reduced in PE at early 
pregnancy (AUC 
0.719)

92

Plasma Late PLAP+NEP+ EVs Size exclusion 
chromatography

FCM Elevated in PE 82

Urine Late Podocin+ EVs-to-
nephrin+ EVs ratio

Without isolation FCM Elevated in PE; 
correlated with renal 
injury

94

Urine Late ENaC, NKCC2 Differential 
centrifugation

WB Elevated in PE; 
correlated with renal 
injury

96

Gestational 
diabetes 
mellitus

Plasma Early, mid 
and late

PLAP+EVs Ultracentrifugation, 
differential 
centrifugation

ELISA 2.2-fold higher at 
early gestation in 
GDM than normal 
pregnancy

66

Plasma Early, mid 
and late

PLAP per exosome Ultracentrifugation, 
differential 
centrifugation

ELISA 63% lower at early 
gestation in GDM 
than normal 
pregnancy

66

Oral fluid Early Total exosomes Commercial kit NTA Elevated in GDM at 
early pregnancy (AUC 
0.81)

97

Plasma Late miR-125a-3p, 
miR-99b-5p, 
miR-197-3p, miR-
22-3p, miR-224-5p

Ultracentrifugation, 
differential 
centrifugation

RNA sequencing, 
qRT-PCR

Elevated in GDM; 
related to metabolism

45

Serum Early 10 miRNAs Differential 
centrifugation

qRT-PCR Elevated in GDM at 
early pregnancy

98

Plasma Late DPPIV+PLAP+ EVs Without isolation FCM Eightfold higher in 
GDM than normal 
pregnancy

99

Plasma Late 78 proteins Ultracentrifugation SWATH-MS Potential markers of 
GDM

100

(Continues)
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expressed miRNAs in GDM exosomes show that they are associ-
ated with pathways regulating cell migration and carbohydrate me-
tabolism. These findings imply that EV-mediated communications 
between placenta and important metabolism tissues (adipose tissue 
and skeletal muscle) are closely associated with glucose metabolism 
and insulin resistance during pregnancy.

4  | E Vs A S BIOMARKERS FOR 
PREGNANCY-REL ATED DISE A SES

Extracellular vesicles have a tissue-specific pattern and may reflect 
the status of source cells, which highlights their usefulness as indi-
cators of cellular function and as biomarkers for various diseases. 
Increasing studies suggest that EV concentration and content are of 
great diagnostic utility for women at risk of pregnancy-related dis-
eases (Table 1).

4.1 | Pre-eclampsia

Salomon et al85 show that the concentrations of total exosome 
and exosomal placental alkaline phosphatase (PLAP), a placental 
marker, are up-regulated in maternal plasma of PE at early, mid- 
and late gestation. Receiver operating characteristic curve (ROC) 
analysis is performed to assess the diagnostic potential of total ex-
osome and exosomal PLAP concentrations at early pregnancy (11-
14 weeks). The areas under the ROC curve (AUC) for total exosome 

and exosomal PLAP concentrations are 0.745 and 0.829, respec-
tively. Additionally, the relative concentration of placenta-derived 
exosomes (ratio of exosomal PLAP to total exosome number) is 
different between early-onset PE and late-onset PE.86 A pioneer 
study demonstrates that EVs derived from injured placenta induce 
PE-like symptoms like hypertension and proteinuria in mice by 
inducing endothelial injury, vasoconstriction and hypercoagula-
tion. These symptoms are reversed by enhancing EV clearance, 
indicating therapeutic value of placental EV production and clear-
ance rates.87 The analyses of exosomal miRNA profile in early- and 
late-onset PE women plasma have identified several dysregulated 
miRNAs in PE and its subtypes. Therefore, EVs profile may have 
potential values to be used as diagnostic markers for PE and its 
subtypes.88 Biro et al89,90 have detected serum exosomes from 
women with chronic hypertension (CHT), gestational hyperten-
sion (GHT), moderate PE, severe PE and normotensive pregnan-
cies. The expression levels of miR-210 are significantly increased in 
PE than that in other groups and are highest in the severe form of 
PE, showing miR-210 may have an important role in the pathogen-
esis of PE. Twelve differentially expressed miRNAs are identified 
in PE pregnancies, among which miR-486-1-5p and miR-486-2-5p 
are suggested as candidate indicators of early stage PE.85 In pe-
ripheral blood from patients with PE, exosomal miR-136, miR-494 
and miR-495 are 6.4-, 3.9- and 2.1-fold higher than that in normal 
pregnancies, respectively, according to a study enrolling 100 PE 
patients.91 In addition, miR-141,62 miR-15581 and miR-548c-5p65 
are detected with altered expression in PE and identified as the 
candidate miRNA markers. During the first trimester of pregnancy, 

Pregnancy 
complications

Source of 
EVs

Pregnancy 
stage Targets Isolation method Detection method Clinical value References

Preterm birth Plasma Early, mid 
and late

173 miRNAs Ultracentrifugation RNA sequencing Potential markers of 
PTB

103

Urine Late 16S rRNAs 
derived from 
Ureaplasma and 
Veillonellaceae

Differential 
centrifugation

RNA sequencing Elevated in PTB 104

Plasma Late 72 proteins Differential 
centrifugation, 
size exclusion 
chromatography

SWATH-MS Potential markers of 
PTB

69

Plasma Early 62 proteins Size exclusion 
chromatography

LC-MS PTB predictor at early 
pregnancy

105

Foetal growth 
restriction

Plasma Late PLAP+ exosomes 
to total exosomes 
ratio

Ultracentrifugation, 
differential 
centrifugation

NTA Reduced in FGR; 
corrected with birth 
weight percentile

106

Serum Mid miR-20b-5p, 
miR-942-5p, 
miR-324-3p, 
miR-223-5p, 
miR-127-3p

- RNA sequencing Elevated in FGR 107

Abbreviations: ELISA, enzyme-linked immunosorbent assay; FCM, flow cytometry; LC-MS, liquid chromatograph-mass spectrometer; NTA, 
nanoparticle tracking analysis; qRT-PCR, quantitative polymerase chain reaction; SWATH-MS, sequential windowed acquisition of all theoretical 
mass spectra; WB, Western blotting.
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miR-517-5p, miR-520a-5p and miR-525-5p are observed to be 
down-regulated in plasma exosomes of PE patients with later 
occurrence. A panel of three placenta-specific C19MC miRNAs 
shows modest diagnostic value with an AUC of 0.719.92 Neprilysin 
(NEP), a membrane-bound metalloprotease, is highly expressed in 
STBEVs from the plasma of PE patients as detected by flow cy-
tometry. Thus, the higher level of PLAP+NEP+ EVs is suggested as 
a promising biomarker of PE.82 Son et al93 demonstrate that the 
expression level of podocyte-specific protein nephrin is elevated 
in the urine of PE women and is correlated with proteinuria and di-
astolic blood pressure. The expression level of nephrin is reduced 
in pre-eclamptic renal tissue compared to that of normotensive 
pregnancies. The elevated urinary podocin+ EVs-to-nephrin+ EVs 
ratio is associated with renal injury in PE.94 In addition, abnormal 
increased sodium reabsorption also contributes to hypertension 
in PE. Impaired urine sodium excretion, Na/K ratio and elevated 
urine plasminogen are also found in PE.95 In urine EVs, increased 
expression of epithelial sodium channel (ENaC) and phosphoryla-
tion of Na-Cl2-K co-transporter 2 (NKCC2) are observed in PE, 
indicating the status of renal dysfunction.96

4.2 | Gestational diabetes mellitus

The aberrant changes in placental microenvironment may affect 
the release and content of placenta-derived EVs. The quantity 
of exosomes secreted from trophoblast cells cultured under high 
glucose condition is approximately three times higher than that 
cultured under normal glucose condition.67 Salomon et al66 have 
evaluated the diagnostic potential of placental exosome concen-
tration present in maternal plasma at early, mid- and late gestation. 
Compared to normal pregnancies, the concentration of placen-
tal exosome in GDM pregnancies increased about 2.2-, 1.5- and 
1.8-fold at each point of gestation, which indicates that exosome 
profile is of diagnostic value to screen asymptomatic popula-
tions. PLAP content per exosome (PLAP ratio) is determined to 
estimate the relative contribution of placental exosomes to total 
exosomes. PLAP ratio is lower in GDM than normal pregnancy 
even though both placental exosomes and total exosomes are 
higher in GDM, which implies that there are changes in the num-
ber of exosomes released from the placenta, increased release of 
exosomes from non-placental sources or a combination of both. 
Interestingly, Monteiro et al97 demonstrate that gingival crevicu-
lar fluid-derived EVs can distinguish patients at risk of GDM. At 
11-14 weeks of gestation, the concentration of oral EVs is higher 
in asymptomatic women compared to controls with an AUC value 
of 0.81. Five metabolism-related miRNAs, namely miR-125a-3p, 
miR-99b-5p, miR-197-3p, miR-22-3p and miR-224-5p, are consist-
ently detected with high expression in skeletal muscle, placenta, 
placenta-derived exosomes and circulating exosomes in GDM.45 
Gillet et al98 have determined the miRNA profile of serum EVs in 
GDM at early pregnancies. Ten miRNAs (miR-122-5p; miR-132-3p; 
miR-1323; miR-136-5p; miR-182-3p; miR-210-3p; miR-29a-3p; 

miR-29b-3p; miR-342-3p; and miR-520h) show significantly higher 
levels in GDM cases compared to controls. Bioinformatics analysis 
indicates that these miRNAs are involved in trophoblast prolifera-
tion and differentiation, as well as insulin regulation and glucose 
transport in pregnant women. STBEVs carry active dipeptidyl 
peptidase IV (DPPIV), which is able to break down glucagon-like 
peptide-1 (GLP-1) and then regulates glucose-dependent insulin 
secretion. The concentration of DPPIV+ STBEVs in GDM maternal 
plasma is more than eightfold higher than that in normal pregnan-
cies. Increased DPPIV biological activity is also demonstrated in 
STBEVs from GDM.99 A total of 78 exosomal proteins are differen-
tially expressed in GDM compared to NGT. Bioinformatic analysis 
shows that the differentially expressed exosomal proteins in GDM 
are enriched in pathways associated with energy production, in-
flammation and metabolism.100

4.3 | Preterm birth

Extracellular vesicles have been suggested as indicators of preterm 
birth (PTB), with an advantage of non-invasive isolation from mater-
nal blood and other biological fluids.101,102 In a longitudinal study, 
Menon et al103 include a cohort of patients with term birth and 
PTB and reveal a total of 173 miRNAs with significant changes in 
circulating exosomes across three gestational period by using next-
generation sequencing. The altered miRNAs can be divided into 
several clusters with different trends of changes over time. As such, 
miRNA content of exosomes in maternal blood may represent as 
biomolecular ‘fingerprint’ of the pregnancy progression. Moreover, 
bacteria-derived 16S rRNAs in urine EVs are capable of indicating 
pregnant status. Extracellular vesicles derived from Ureaplasma and 
Veillonellaceae are more abundant in the urine of PTB women than 
normal deliveries.104 Menon et al69 have compared the proteomes of 
maternal plasma exosomes among four groups, including term not 
in labour, term in labour, preterm premature rupture of membranes 
and PTB. They have identified 72 proteins with significant changes 
among these four groups. Similarly, Cantonwine et al105 have ana-
lysed circulating MVs from women between 10 and 12 weeks of 
gestation who subsequently develop spontaneous PTB at 34 weeks. 
Through ROC analysis with bootstrap resampling, they have identi-
fied 62 proteins qualified for diagnosis among 132 proteins evalu-
ated. A panel of three exosomal proteins (A2MG, HEMO and MBL2) 
exhibits a specificity of 83% with a median AUC of 0.89. These can-
didates, if further validated, will allow the stratification of patients at 
risk of spontaneous PTB before clinical manifestation.

4.4 | Foetal growth restriction

In a cohort study of pregnant women who give birth to small foetuses, 
Miranda et al106 have detected the concentrations of total and pla-
cental exosomes in the circulation by labelling CD63 and PLAP. The 
ratio of PLAP+CD63+ exosomes to PLAP−CD63+ exosomes is used to 
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describe the contribution of placental exosomes to the total. The ratio 
is positively correlated with the percentile of birth weight and displays 
a clear trend according to the severity of the disease. Thus, relative 
concentration of placental exosomes may be used as a marker for foe-
tal growth. Rodosthenous et al107 demonstrate that the expression 
levels of miR-20b-5p, miR-942-5p, miR-324-3p, miR-223-5p and miR-
127-3p are higher in pregnant women at second trimester who have 
a small gestational age (SGA) infants later. MiR-127-3p exhibits the 
most robust association with abnormal foetal growth, which has not 
been evaluated in relation to foetal growth by the previous studies.

5  | CONCLUSIONS

The current studies provide us a comprehensive understanding of 
EVs in normal and complicated pregnancy and an opportunity to de-
velop novel methods for early and efficient diagnosis of pregnancy-
related diseases. Extracellular vesicles play diverse roles across the 
gestation such as embryo implantation, immunomodulation, vas-
cular remodelling and metabolism adaptation by mediating foetal-
maternal crosstalk. The available data partially unravel the roles and 
underlying mechanisms of EVs in the physiology or pathophysiol-
ogy of pregnancy. Extracellular vesicle-derived bioactive molecules 
may explain their roles in regulating cellular functions and contrib-
ute to pregnancy-related diseases. Moreover, the concentration and 
content of circulating EVs show potential diagnostic value as they 
may reflect condition changes, metabolism status, foetal growth 
and foetal maturation. The development of precise diagnosis may 
allow implementation of appropriate intervention, which would be 
helpful for reducing the harm to both mothers and foetus. However, 
there are still several problems that need to be addressed before EVs 
reach the clinic in human reproduction field. First, there are still no 
recognized common methods for the discrimination and quantifica-
tion of different sub-populations of EVs. It is necessary to establish 
stable and reliable methods to achieve rapid separation and auto-
mated analysis of EVs. Second, due to the difficulty of imitating long-
term effects in vitro and the lack of suitable cell and animal models, 
controversial and inconsistent results still exist in different studies. 
Moreover, human tissues usually only can be obtained after delivery 
and cannot accurately reflect the dynamic changes of markers dur-
ing the whole pregnancy process. Therefore, more efforts should be 
devoted to giving an insight into the functions of EV in pregnancy 
and to apply EVs to the diagnosis, monitoring and treatment of preg-
nancy-related diseases.
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