
TELEMEDICINE AND TECHNOLOGY (HB BOSWORTH, SECTION EDITOR)

AI (Artificial Intelligence) and Hypertension Research

Franco B. Mueller1

# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Purpose of Review This review a highlights that to use artificial intelligence (AI) tools effectively for hypertension research, a
new foundation to further understand the biology of hypertension needs to occur by leveraging genome and RNA sequencing
technology and derived tools on a broad scale in hypertension.
Recent Findings For the last few years, progress in research and management of essential hypertension has been stagnating while at
the same time, the sequencing of the human genome has been generating many new research tools and opportunities to investigate
the biology of hypertension. Cancer research has applied modern tools derived from DNA and RNA sequencing on a large scale,
enabling the improved understanding of cancer biology and leading to many clinical applications. Compared with cancer, studies in
hypertension, using whole genome, exome, or RNA sequencing tools, total less than 2% of the number cancer studies. While true,
sequencing the genome of cancer tissue has provided cancer research an advantage, DNA and RNA sequencing derived tools can
also be used in hypertension to generate new understanding how complex protein network, in non-cancer tissue, adapts and learns to
be effective when for example, somatic mutations or environmental inputs change the gene expression profiles at different network
nodes. The amount of data and differences in clinical condition classification at the individual sample level might be of such
magnitude to overwhelm and stretch comprehension. Here is the opportunity to use AI tools for the analysis of data streams derived
from DNA and RNA sequencing tools combined with clinical data to generate new hypotheses leading to the discovery of
mechanisms and potential target molecules from which drugs or treatments can be developed and tested.
Summary Basic and clinical research taking advantage of new gene sequencing-based tools, to uncover mechanisms how complex
protein networks regulate blood pressure in health and disease, will be critical to lift hypertension research and management from its
stagnation. The use of AI analytic tools will help leverage such insights. However, applying AI tools to vast amounts of data that
certainly exist in hypertension, without taking advantage of new gene sequencing-based research tools, will generate questionable
results andwill miss many new potential molecular targets and possibly treatments.Without such approaches, the vision of precision
medicine for hypertension will be hard to accomplish and most likely not occur in the near future.

Keywords Artificial intelligence . Deep machine learning algorithms . Whole genome and RNA sequencing . Hypertension
treatment . Gene and protein networks . Target molecules . Cancer and hypertension research publications

Introduction

Recent calls to transform howwe approach one of the pressing
global health problems, hypertension, summarize in detail
current shortcomings in detection, control, appropriate

treatment, and management of the condition [1•]. Progress in
hypertension has stalled, and it appears that over the last de-
cade ,very few new insights have been generated to better
understand the biology and the pathophysiology of the condi-
tion. At the same time, new research tools to better understand
the biology of conditions derived from DNA and RNA se-
quencing are now widely available. The premise of this article
is that broad application of these new tools of molecular biol-
ogy and genetics, which include RNA and whole genome
sequencing with associated protein-omics and metabolomics
in hypertension research, has the potential to help lift hyper-
tension research and management from its stagnation, and
ultimately lead to a more precise therapeutic management
and care at the individual (single) patient level (N-of-1). The
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individual patient (N-of-1) is what physicians treat in daily
practice, and all too often patients poorly fit treatment guidelines,
with elderly patients, women, ethnic minorities and or patients
with severe co-morbidities underrepresented or excluded from
randomized controlled trials (RCTs) to establish such guidelines.

It is tempting to assume, with today’s availability of huge
financial medical claims data, clinical records, public health
data sources, and databases enabling the generation of vast
data inputs, that analysis of such data streams by artificial
intelligence algorithms will find better treatment solutions
for individual patients and thereby lead to better population
blood pressure control and outcome. Ultimately, artificial in-
telligence (AI) algorithms that incorporate learning-processes
prompted by inheritance and interactions between biological
entities and environment will help make precision medicine
possible. However, before such algorithms can be applied
successfully in hypertension on a large scale, inputs need to
add data and knowledge gained by the broad use DNA and
RNA sequencing and related technologies.

Current Antihypertensive Drug Treatment
was Built on a Large Foundation of Basic
and Clinical Research

Starting in the 1940′s, giants of hypertension research and
treatment, using established sciences of physics, chemistry,
biochemistry, and biology, generated the data and knowledge
that ultimately led to seven or more pharmaceutical drug clas-
ses that successfully lower blood pressure long-term at

relatively low risk and cost, thereby providing physicians with
an effective armamentarium to reduce the sequelae of hyper-
tension: heart, kidney disease, and stroke. Initial pathophysi-
ological insights enabled separation of primary forms of hy-
pertension from secondary ones, such as hypertension due to
hyperaldosteronism, the obstruction of the renal artery with
excessive renin and angiotensin II production, or tumors of
the adrenergic nervous system. Understanding of these sec-
ondary forms, together with mechanisms discovered in prima-
ry hypertension, such as renal salt and water metabolism, the
renin-angiotensin aldosterone system, the functioning of pre-
and postsynaptic receptors of the adrenergic nervous system,
and mechanisms of calcium entry into vascular smooth mus-
cle cells, led to antihypertensive drug development based on
molecular targets identified by such research. Early on, using
the understanding of these mechanisms in primary hyperten-
sion, attempts were made to personalize treatment at the indi-
vidual patient level [2, 3•]. However, such treatment ap-
proaches had little chance to succeed given the powerful fi-
nancial interests of pharmaceutical manufacturers who advo-
cated every newly approved drug to reduce blood pressure in
every hypertensive patient.

Figure 1 shows the human clinical trials publication history
of ant ihyper tens ive drugs f rom seven di f fe ren t
pharmacotherapeutic classes [4]. In many of these classes,
multiple different active ingredients with different safety, side
effect, and efficacy profiles haven been tested and approved
for treatment. The black line in Fig. 1 represents the sum of all
trials smoothed by the moving average which is peaking in the
late 1980s and early 90s, thereafter, flattening and declining

Fig. 1 History of human clinical trials in hypertension; Diuretic—blue,
BBS (Betablockers)—orange; AABS (alpha blockers)—gray; CCA
(calcium channel blockers)—yellow; CEIS (converting enzyme
inhibitors)—light blue; ARBS (angiotensin receptors blockers)—green;

RIS (renin inhibitors) —dark blue; Other (clonidine, hydralazine, and
methyldopa)—brown; Diet—gray; Smoothed line of the sum of all
clinical trial by moving average: black. Source: PubMed accessed
January 15, 2020
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over the last 5–7 years even when including dietary trials.
Except for atrial natriuretic peptide, discovered in 1981 [5],
all pharmacotherapeutic principles and molecular targets were
discovered and tested starting in the late 40s throughout the
60s, 70s, and early 80s. This basic research was fundamental
to generating the seven pharmacotherapeutic drug classes and
high public interest in hypertension. As many physicians who
specialize in hypertension treatment will attest, the antihyper-
tensive medications of these drug classes enable effective
blood pressure control in almost all patients (maybe as high
as 95%) with very few patients resistant to treatment, as doc-
umented by the difficulties of finding such patients for the
enrollment in renal denervation studies. Of course, as Dzau
and Balatbat remind us, in practice, large gaps exist in detec-
tion, blood pressure control, and treatment compliance [1•].

Two Innovative Discoveries that Shape
Biology and Computing

Two fundamental innovative discoveries, one shaping our un-
derstanding of living biology, the other our scientific ap-
proach, need to be incorporated into research of blood pres-
sure biology. Large scale gene sequencing and algorithmic
computation, the basis of all AI programs, will greatly impact
the development of precision treatment, thereby leading to
better blood pressure control and treatment compliance.

In 1953, Watson and Crick discovered the double-stranded
helical structure of the DNA, consisting of a sequence of

nucleobases of four different chemicals containing the blueprint
for every living cell and inherited by its offspring [6••]. Although
they did not, as they believed, “unlock all secrets of life”, they
showed that the information is stored in DNA as a sequence of
base symbols (A, G, T, C) in a fixed alphabet, thus providing
evidence that biology is computational [7]. DNA sequences de-
fine the level of protein expression in a cell, and these in turn
cause other proteins to be expressed according to the interdepen-
dencies specified in the protein expression network [7].

In 2003, the first human genome was sequenced costing
roughly $2.7 billion over a 10-year period. Although the hope
that knowing the sequence would vastly accelerate the develop-
ment of new treatment approaches for many different diseases,
this did not occur in the expected timeframe. However, the
project-generated technologies that now enable sequencing of a
whole genome in 26 h for $1000 or less. We are now able to
sequence whole exomes and genomes in virtually any tissue and
most recently, in single cells of tissues, possibly multiple times
over a patient’s lifetime. The engineering progress in sequencing
is outpacing computer hardware development. Plotting the re-
duction of sequencing cost, as a measure of sequencing technol-
ogy progress over time, and comparing it to the curve ofMoore’s
Law, which plots a long-term trend in the computer hardware
industry that shows the doubling of “compute power” every
2 years [8], highlights a large gap between the two curves
(Fig. 2a). One is tempted to speculate and ask if current computer
hardware technology would be able to handle the vast amount of
data and analysis were whole gene sequencing to be applied
today in the clinical setting on a large scale.

Fig. 2 a Reduction in DNA sequencing costs compared toMoore’s Law,
which describes a long-term trend in the computer hardware industry that
involves the doubling of “compute power” every2 years. The first human
genome cost roughly $2.7 billion in 2003. In 2016, a whole human
genome can be sequenced for $1000 or as low as $699. Source:

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP) Available at: www.genome.gov/
sequencingcostsdata accessed January 15, 2020. b Whole genome
(WGS), exome, and RNA sequencing studies in cancer (orange) and
hypertension (blue). Source: PubMed accessed January 15, 2020
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The capability to sequence the whole genome and RNA
has vastly improved our understanding of living biology in
terms of complex computational interaction networks that
act in cells and between cells based on DNA. It encodes in-
formation for more than 20,000 proteins with instructions
controlled by regulatory mechanisms, also coded by DNA
and RNA, that specify how much new protein of each kind
is produced or not. As an example, the KEGG pathway data-
base, one of multiple such databases which try to capture our
current knowledge of molecular gene expression interactions,
reactions, and relation networks, lists more than 500 network
pathways with 29,000 genes [9]. However, the unique number
of genes in the database is only 7394, indicating that for more
than 12,000 protein coding genes, our knowledge of how
these genes interact within the network of human biology is
still lacking. A new understanding is emerging that these bio-
logical networks are shaped by continuous molecular learning
processes. Interactions between the biological entity and its
environment adapt the network to optimize outcomes for the
biological entity. Learning in this context can be understood
as a computational process.

In 1936, Alan Turing discovered and described that the
execution of step-by-step procedures for processing informa-
tion can be defined, captured, and studied systematically. He
showed how to design a universal Turing machine that can
execute every possible mechanical procedure. He also proved
that not all well-defined mathematical problems can be solved
mechanically [10••]. These step-by-step procedures, now
commonly known as algorithms, follow computational laws
that are as striking as physical laws [11]. Turing understood
that these computational laws do not only apply to program-
ming digital computers (machines) but to biology, and that
natural phenomena can be understood as computational pro-
cesses or algorithms. He described how such algorithms apply
to biology in “The Chemical Basis of Morphogenesis” [12••]
and predicted in “Intelligent Machinery, A Heretical Theory”,
that if a machine is to be intelligent, then it will need to learn
by experience, and he states “…why one should not start from
a comparatively simple machine, and, by subjecting it to a
suitable range of ‘experience’ transform it into one which
was more elaborate and was able to deal with a far greater
range of contingencies” [13]. Turing thereby describes the
foundation of artificial intelligence as a learning process.
Today, the foundation of most, if not all programs of artificial
intelligence, is based on machine learning algorithms.

Cancer Research Leading the Way Using Gene
Sequencing Tools

Cancer research has applied modern tools derived from DNA
and RNA sequencing on a large scale, enabling the improved
understanding of cancer biology and leading to clinical

applications such as improved diagnosis and prognosis, iden-
tification of new therapeutic targets, decision support for ther-
apeutic choices, and application in disease monitoring [14•].
Sequencing cancerous tissue obtained from tumors alongside
samples of normal tissue, usually blood, allows genetic vari-
ants to be identified and classified in either somatic mutations
only found in tumor samples or inherited (germline) polymor-
phisms. Analyses of data from tens of thousands of patients in
such studies are generating wide-ranging insights in cancer
biology. Somatic mutations arise both from endogenous and
exogenous mutational processes. Exogenous mutations can
arise from chemicals such as tobacco, aflatoxin B, chemother-
apeutic agents, ionizing radiation, and ultraviolet light, all of
which damage DNA, generating mutations when damaged
bases are incorrectly repaired or copied. Cell intrinsic process-
es (endogenous mutations), such as errors that occur during
DNA replication and or impaired DNA repair due to activity
of viruses, or increased amounts of reactive oxygen species
that may be generated by long-term exposure to certain dietary
behaviors, occur at a constant rate throughout life and accu-
mulate with increasing age [14•]. Growing evidence in cancer
research further suggests that, among the thousands of muta-
tions acquired by a cancer cell, only a handful instruct the cell
to act as an autonomous clone. These are called driver muta-
tions, and the remaining are termed “passenger” mutations
[15]. These driver mutations are of high interest because they
are causative, and drugs that target the function of resulting
proteins can be therapeutic. Cancer research is developing
tools to identify driver mutations either by identifying muta-
tion frequency, which requires to estimate the background
mutation frequency, or by function-based approaches.

Figure 2b shows the number of cancer publications
responsible for driving the improved understanding of cancer
biology and treatment using whole genome, exome, or RNA
sequencing. In comparison, studies in hypertension, excluding
pulmonary hypertension, using whole genome, exome, or
RNA sequencing, total less than 2% of the number cancer
studies [16]. One can argue that cancer research has the
advantage of being able to obtain and sequence cancerous
tissue alongside samples of normal tissue.

What Can Hypertension Research Learn
from Cancer Research?

True, sequencing the genome of cancer tissue has provided
cancer research an advantage and is helping to understand
cancer biology, but tools derived from DNA and RNA se-
quencing can also be used in hypertension research. We can
identify the gene and RNA transcriptome not only in blood
and urine specimen, kidney, and possibly vascular tissue, but
also at the single cell level of these tissues. Combing RNA
with whole genome sequencing will enable research into
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control mechanisms of extended and complex protein net-
works of blood pressure control that still must be discovered.
Let us not forget that the discovery of how the renin angioten-
sin aldosterone system interacts with sodium excretion and
blood pressure control is one of the earliest descriptions of a
protein network acting within different cells and across tissues
and organs in medicine. Understanding how complex protein
network, in non-cancer tissue adapt and learn to be effective
when somatic mutations change the gene expression profiles
at different network nodes, is one of the challenges to be
uncovered. Initial studies of somatic mutations in hyperten-
sion follow the blueprint of cancer research and have identi-
fied such mutations in secondary hypertension of primary al-
dosteronism [17], paraganglion and pheochromocytoma [18],
and Cushing’s disease [19] but also in voltage-gated calcium
channels [20], vascular disease formation [21], and pulmonary
hypertension [22].

In cancer research, many algorithms have been developed
for detecting somatic mutations. However, compared to pro-
liferating cancer cells, in which the mutations confer a selec-
tive advantage, the frequency of DNA molecules carrying
functionally relevant somatic mutations in normal cells and
therefore possibly in hypertension is much lower [23•], but
new approaches are emerging to characterize somatic muta-
tions in normal and non-tumor tissue in bulk and single cell
sequencing [23•]. While whole genome sequencing can detect
most types of somatic mutations, including structural variants,
in non-cancer tissue, the detection is limited to high frequency
mutations, as the sequencing depth required to detect such low
frequency mutation today remains prohibitively expensive. A
solution overcoming this problem might be integrating bulk
and single cell sequencing approaches to detect somatic
mutations in non-cancer tissue.

The New Frontier of Hypertension Research

Generating new insights into the complex gene and protein
interactions and regulatory networks that adapt to mutational
changes over a patient’s lifetime is critical to gain a deeper
understanding of hypertension biology and to find the next
generation of treatment tailored to the individual patient.
How will we be able to understand the complex network of
gene and protein interaction involved in hypertension at the
individual patient level? Are there somatic mutations that
change the hypertension gene and protein network at critical
network nodes, and if so, will we be able to identify them? Are
there somatic mutations of genes that are capable of interfer-
ing with the blood pressure set point in individual patients?
These, and many more such questions, are the new challenges
of hypertension research. Data from patient tissue samples,
organ fluids, bloodwork, and single cells can be gathered to
study genomics, proteomics, metabolomics, and lipidomics

and to generate new hypotheses that ultimately will lead to
new treatment targets, but there are additional challenges. The
amount of data and differences in clinical condition
classification at the individual sample level might be of such
magnitude to overwhelm and stretch comprehension.
Furthermore, researchers’ efforts often tend to be based on
previous efforts and hypotheses which can bias outcomes
and overly restrict the research direction and assessment of
molecular markers and targets that are correlated with the
condition but ultimately do not prove to be causative.

Given such challenges, there is an opportunity to apply
artificial intelligence or, a more appropriate term, deep ma-
chine learning tools, to the analysis of data streams generated
by DNA and RNA sequencing tools and clinical data to gen-
erate new hypotheses that will lead, if confirmed, to actional
insights, such as discovery of potential mechanisms and target
molecules for which drugs or treatment can be developed and
tested. These tools do not work by having expert-developed
analytical techniques programmed into them; rather, users
feed them sample problems (e.g., a network of gene expres-
sion) and solutions (how the gene expressions ultimately re-
late to different clinical conditions) so that the software can
develop its own computational approaches for producing the
same solutions [24, 25]. Numerous tools, such as deep
autoencoders, deep belief, and deep neural networks, are al-
ready being researched and tested for cancer diagnosis, gene
selection/classification, variants identification, and numerous
other applications [26•]. Deep learning algorithms are run
with unsupervised and supervised training methodologies. In
supervised learning, labeled data (e.g., hypertension yes/no)
are used to train, and weights are used to minimize the error to
predict a target value for classification or regression, whereas
unsupervised learning is usually used for clustering, feature
extraction, or dimensionality reduction [24,26•]. The principle
aim of these tools will be not to uncover the cause of hyper-
tension but to generate new hypotheses and to develop diag-
nostic classifications not only in broad terms but ultimately at
the patient level as well. Results can then be tested, confirmed,
or discarded by additional mechanistic studies and, when ap-
plied, treatment effectiveness.

In conclusion, the use of deep machine learning tools will
be critical to generate new hypotheses and clinical classifica-
tions about the biology of hypertension. They will help lever-
age potential actional insights generated by DNA and RNA
sequencing, related techniques, and the vast clinical knowl-
edge already available. However, to obtain such new insights
in hypertension biology, broad use of new DNA and RNA
sequencing and related technologies needs to generate an ad-
ditional foundation of data and knowledge. This will be crit-
ical for the generation of new hypotheses and molecular un-
derstanding of the condition and will help lift hypertension
research, detection, management, and treatment out of its stag-
nation. Applying AI tools to vast amounts of data, that
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certainly exist in hypertension, without taking advantage of
these new gene sequencing-based research tools, will generate
questionable results and will miss many new potential molec-
ular targets. Without such approaches, the vision of precision
medicine for hypertension will be hard to accomplish and
most likely not occur in the near future. Furthermore, many
might be tempted to argue, given that many of the modern
hypertensive drugs are available as generics at relatively cheap
rates, that the quest for treatments to more precisely target the
pathophysiology at the individual patient level might signifi-
cantly increase the financial burden of hypertension. While
possibly true short term, such financial considerations must
be weighed against possible better outcomes such as reaching
blood pressure targets or improved compliance especially in
patient groups underrepresented in past trials. The current
Covid-19 pan epidemic underscores the importance of linking
basic gene sequencing and molecular and clinical research.
Angiotensin converting enzyme 2 (ACE2), discovered with
the help of an expressed sequence tag database in 2000, is
an additional pivotal component of the renin angiotensin sys-
tem [27, 28]. SARS-CoV-2 uses ACE2 in the lung as a recep-
tor to enter cells and questions emerged over the benefits or
harms of RAS blockade during SARS-Cov-2 exposure [29].
As of May 2020, there are at least seven dedicated studies to
investigating the effect of anti-hypertensive regimen on the
course of COVID-19 in patients with hypertension.
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