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Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel 
expressed on the apical membrane of epithelial cells, where it plays a pivotal role in chloride 
transport and overall tissue homeostasis. CFTR constitutes a unique member of the 
ATP-binding cassette transporter superfamily, due to its distinctive cytosolic regulatory 
(R) domain carrying multiple phosphorylation sites that allow the tight regulation of channel 
activity and gating. Mutations in the CFTR gene cause cystic fibrosis, the most common 
lethal autosomal genetic disease in the Caucasian population. In recent years, major 
efforts have led to the development of CFTR modulators, small molecules targeting the 
underlying genetic defect of CF and ultimately rescuing the function of the mutant channel. 
Recent evidence has highlighted that this class of drugs could also impact on the 
phosphorylation of the R domain of the channel by protein kinase A (PKA), a key regulatory 
mechanism that is altered in various CFTR mutants. Therefore, the aim of this review is 
to summarize the current knowledge on the regulation of the CFTR by PKA-mediated 
phosphorylation and to provide insights into the different factors that modulate this 
essential CFTR modification. Finally, the discussion will focus on the impact of CF mutations 
on PKA-mediated CFTR regulation, as well as on how small molecule CFTR regulators 
and PKA interact to rescue dysfunctional channels.

Keywords: cystic fibrosis transmembrane conductance regulator, protein kinase A, phosphorylation, cystic 
fibrosis, VX770, VX809, F508del-CFTR mutation

INTRODUCTION

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride 
and bicarbonate channel expressed at the apical surface of secretory epithelia, including the 
airways, sweat glands, gastrointestinal tract, and other tissues (Riordan et  al., 1989; Rommens 
et  al., 1989; Riordan, 2008). The CFTR has a critical role in transepithelial ion and fluid 
secretion and homeostasis, and mutations in this gene have been implied in the pathogenesis 
of cystic fibrosis (CF; Li and Naren, 2005). CF, the most common life-shortening rare disease 
among Caucasians, is an autosomal recessive genetic disease affecting around 32,000 individuals 
in Europe and about 85,000 individuals worldwide (Zolin et  al., 2020). The absence of a 
functional CFTR leads to a decrease in chloride ion secretion that, together with the consequent 
alteration of water homeostasis, results in the accumulation of dehydrated mucus, recurrent 
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bacterial infection, and ultimately organ failure. Although CFTR 
mutations cause a multiorgan disease, respiratory failure is the 
major cause of morbidity and mortality for CF patients (Ratjen 
et  al., 2015). Although CF nowadays remains an incurable 
disease, the identification of the defective CFTR gene in 1989 
(Riordan et  al., 1989; Rommens et  al., 1989) has prompted 
significant advances in the development of molecular therapies 
aimed at addressing the underlying cellular defect (De Boeck 
and Amaral, 2016; Veit et  al., 2016).

The CFTR gene, expressed on the long arm of chromosome 
7 (Kerem et  al., 1989), encodes for a unique member of the 
large protein superfamily of ATP-binding cassette (ABC) 
transporters (Klein et  al., 1999), which carries a cytosolic 
regulatory domain that is actively phosphorylated (Collins, 
1992; Serohijos et  al., 2008). Whereas most of the ABC 
transporters are active pumps using ATP as the energy source 
for the transport of small molecules, CFTR is an ATP-gated 
ion channel where ATP hydrolysis controls channel opening 
(Dean et al., 2001). Cystic fibrosis transmembrane conductance 
regulator, like other ABC transporters, is composed of two 
nucleotide-binding domains (NBDs), involved in channel 
regulation through ATP binding and hydrolysis, and two 
transmembrane domains (TMDs), containing six helices that 
span the plasma membrane to form the ion channel pore 
(Riordan et  al., 1989; Callebaut et  al., 2018). In the CFTR, 
however, the NDB1 domain is linked to the NDB2 one by 
an additional structural region, a distinctive cytoplasmic 
regulatory (R) domain with many charged residues and multiple 
phosphorylation sites that allow the tight regulation of channel 
activity and gating.

Importantly, the gating of the channel is strictly coupled 
to the phosphorylation of the R domain by protein kinase A 
(PKA; Egan et  al., 1992; Vergani et  al., 2005a,b) and protein 
kinase C (Chappe et  al., 2003; Seavilleklein et  al., 2008). 
PKA-dependent phosphorylation triggers large conformational 
changes that remove the R region from its position and allow 
NBDs dimerization to occur. Consequently, ATP binds to the 
CFTR leading to the opening and activation of the channel, 
while ATP hydrolysis closes it (Gunderson and Kopito, 1995; 
Figure  1). In addition to regulating the gating of the channel, 
PKA-mediated phosphorylation is involved in the regulation 
of multiple processes, such as CFTR trafficking and stability 
at the plasma membrane (Chin et  al., 2017a).

This review will discuss the role of PKA in CFTR activity 
regulation, and how this physiological mechanism of channel 
activation is disrupted by CF mutations. Furthermore, in light 
of the recent advances in the development of CFTR modulators, 
we  will discuss the impact of these novel molecules on the 
PKA-mediated regulation of mutant channels.

CFTR GATING REQUIRES 
PKA-MEDIATED PHOSPHORYLATION

Although the molecular mechanisms underlying CFTR activation 
have been studied for years, several questions remain unanswered. 
This section discusses how channel gating strictly depends on 

the intrinsic structure of the CFTR protein and several 
posttranslational modifications, primarily phosphorylation.

One of the major challenges to the understanding of the 
regulation by the R region of the opening and the gating of 
CFTR has been the resolution of the CFTR structure. A crucial 
breakthrough has been represented by the construction of 
medium-high-resolution models of the 3D structures of the 
full-length CFTR, first from zebrafish (Zhang and Chen, 2016) 
and then from humans (Liu et  al., 2017). These molecular 
structures of the CFTR, determined using cryo-electron 
microscopy, provide insights into a dephosphorylated, ATP-free 
conformation, which represents a closed and inactive state of 
the channel (Zhang and Chen, 2016; Liu et  al., 2017). Of note, 
Liu and colleagues with the resolution of the human CFTR 
structure reveal a previously unresolved helix belonging to the 
R region docked in an inward-facing conformation between the 
two halves of CFTR, where it acts as a steric block precluding 
channel opening (Liu et al., 2017). On the other hand, activation 
of the CFTR channel is strictly coupled to the formation of a 

FIGURE 1 | The impact of PKA-mediated phosphorylation on CFTR channel. 
The cystic fibrosis transmembrane conductance regulator (CFTR) structure 
consists of two membrane spanning domains, two nucleotide-binding domains 
(NBD1 and NBD2), and the unique cytoplasmic regulatory (R) domain. Among 
these, the latter represents a critical site of channel regulation due to its 
enrichment in protein kinase A (PKA) consensus motifs, with multiple serines 
and threonines as phosphorylation targets. Moreover, there is an additional 
phosphorylation site in the regulatory insertion (RI) segment of NBD1. In the 
closed CFTR state (left channel), the NBD1 interacts with the R domain creating 
steric hindrances which prevent it from dimerization with NBD2. Upon PKA-
dependent phosphorylation (right channel), large conformational changes occur 
that decrease this interaction leading to the release of the R region from its 
inhibitory position and allow NBDs dimerization, ultimately ATP binding and 
CFTR-mediated chloride secretion. Thus, the open probability of the channel is 
dependent on the access of PKA to the main phospho-sites (S422, S660, 
S737, S768, S795, and S813). Phospho-sites critical for CFTR channel 
activation are shown in red. Phosphoserines S737 and S768 are shown in 
yellow since they have been shown to either activate or inhibit CFTR gating. 
The role of the major PKA consensus sites in the regulation of CFTR function is 
detailed in Table 1.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Della Sala et al. PKA-Mediated Phosphorylation in CFTR Regulation

Frontiers in Physiology | www.frontiersin.org 3 June 2021 | Volume 12 | Article 690247

closed NBD dimer, and thereby to the initial conformational 
changes driven by the PKA-dependent phosphorylation of the 
R domain (Liu et  al., 2017; Mihalyi et  al., 2020).

Thus, the open probability of the channel is dependent on 
the access of PKA to the multiple consensus sites in the R 
domain (Liu et al., 2017), including 18 potential phosphorylation 
sites (12 serines and 8 threonines) on a 200 residues long 
domain. Specifically, in the fully phosphorylated protein, eight 
phosphoserines (residue positions 660, 700, 712, 737, 753, 
768, 795, and 813) and partial phosphorylation of serine at 
position 670 (Baker et  al., 2007) have been detected by mass 
spectrometry (Townsend et  al., 1996; Neville et  al., 1997) and 
NMR (Baker et  al., 2007). Recently, Lucaks and colleagues 
implemented a novel CFTR affinity enrichment method, followed 
by an advanced mass spectrometry technique, to establish the 
phospho-occupancy of CFTR upon PKA phosphorylation 
(Schnur et  al., 2019). Among the previously described 15 
PKA consensus sites, they identified 10 PKA phospho-sites 
in the R and NBD1 domain of CFTR (serine 422, 660, 670, 
686, 700, 712, 737, 753, 768, and 795; Schnur et  al., 2019). 
Table  1 provides a comprehensive description of the major 
phospho-sites and their effect on CFTR channel activity 
regulation. The role of each phosphoserine in the modulation 
of CFTR activity is quite complex and multiple experiments 
have been attempted to address this problem by site-direct 
mutagenesis, where the putative phosphorylation sites in the 
R region were substituted with alanines (Kanelis et  al., 2010; 
Marasini et  al., 2012, 2013). Of note, among such studies, 
the replacement of serine at position 700, 795, and 813 revealed 
a decrease in channel open probability (Rich et  al., 1993; 
Vais et  al., 2004; Chen, 2020), whereas mutations of serine 
737 and 768 increased the activity, thus implying a phospho-
dependent inhibitory effect of these residues on the CFTR 
channel function (Wilkinson et  al., 1997; Kongsuphol et  al., 
2009). Accordingly, phosphorylation of these inhibitory sites 
by AMPK inhibits CFTR-mediated chloride secretion by 
maintaining the channel in a closed state (Kongsuphol et  al., 
2009). These findings appear to be  in apparent contrast with 
the results of the work by Riordan and colleagues aimed at 
investigating whether individual PKA phospho-sites act 
cooperatively or distinctly in the regulation of channel activity. 
This study investigated the impact of the reintroduction of 

S737 and S768  in a CFTR variant insensitive to PKA, namely, 
the 15SA mutant, in which the 15 PKA consensus sites were 
replaced by alanines (Hegedus et  al., 2009). Reintroduction 
of S737 or S768 or both restored a significant level of channel 
activation by PKA, thus indicating that phosphorylation of 
these sites stimulates CFTR channel activity. Furthermore, a 
mutant CFTR in which all phosphorylation sites have been 
removed, completely eliminates the PKA-dependent regulation 
of the channel activity (Xie et  al., 2002). In line with this 
finding, a CFTR mutant containing six or more serine-to-
aspartate substitutions mimicking the effect of phosphorylation 
results in channel opening even in the absence of PKA 
(Rich et  al., 1993).

Overall, these experiments highlight that the effects of 
PKA-dependent phosphorylation of the R domain are correlated 
to conformational changes triggered by the negative charges 
of the phosphate group introduced on phosphoserines 
(Zhang et  al., 2017, 2018; Schnur et  al., 2019).

As a confirmation, circular dichroism, X-ray scattering, and 
NMR experiments showed a reduced density of the 
phosphorylated structure, suggesting that upon phosphorylation 
the R domain becomes entirely disordered and less compact 
(Baker et  al., 2007; Bozoky et  al., 2013). Further evidence of 
the structure of phosphorylated CFTR, in its ATP-bound 
conformation, comes from cryo-electron microscopy (Zhang 
et  al., 2017, 2018). These images, comparing the conformation 
in a phosphorylated and ATP-bound state (Zhang and Chen, 
2016; Liu et al., 2017) with the dephosphorylated and ATP-free 
conformation (Zhang et  al., 2017, 2018), define the structural 
changes of the two human and zebrafish CFTR orthologs. 
These structures further reveal the clearly distinct position of 
the R domain after phosphorylation. Upon PKA binding, 
phosphorylation promotes the release of the R domain from 
its inhibitory position, causing NBDs dimerization and flipping 
of the TMDs into an outward-facing conformation, ultimately 
leading to channel opening and activation of its ATPase function 
(Sorum et  al., 2015; Figure  1).

On the other hand, how phosphorylation triggers the ATPase 
activity of CFTR has remained unclear. Whereas PKA-mediated 
phosphorylation of the R domain is absolutely required (Chang 
et  al., 1993; Winter and Welsh, 1997; Seibert et  al., 1999), 
whether ATP binding is essential for CFTR gating is still 

TABLE 1 | PKA phospho-sites in CFTR and their role in channel activity regulation.

PKA consensus site Domain Mechanisms involved in PKA-mediated phosphorylation References

Serine-422 RI-domain of NBD1 Phosphorylation disrupts the interaction with S660 in the R domain promoting 
NBDs dimerization, formation of the two ATP-binding pockets and CFTR 
activation

Hudson et al., 2012; 
Dawson et al., 2013

Serine-737, 768 R-domain Phosphorylation leads to CFTR channel opening in the 15SA CFTR variant 
insensitive to PKA. In contrast, phosphorylation by AMPK of these sites 
maintains CFTR in a closed state

Hegedus et al., 2009; 
Kongsuphol et al., 2009

Serine-768, 795, 813 R-domain Phosphorylation leads to CFTR binding to the 14-3-3b isoform in the ER and 
promotes its forward trafficking to the cell surface

Liang et al., 2012

Serine-660, 700, 795, 813 R-domain Phosphorylation leads to conformational change and release of the R domain 
from its inhibitory position, promoting NBDs dimerization and CFTR gating

Rich et al., 1993; 
Vais et al., 2004; 
Chen, 2020
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controversial. In the following paragraph, we will describe how 
phosphorylated CFTR channels are gated through ATP-dependent 
and independent mechanisms.

EFFECTS OF PKA-MEDIATED 
PHOSPHORYLATION ON ATP BINDING

The widely accepted model of CFTR activation establishes that 
phosphorylated CFTR channels are gated through an ATP-dependent 
mechanism that is based on conformational changes (Sorum et al., 
2015). In these models, the ATP molecule powers the gating 
cycle by inducing the opening through NBD1:NBD2 dimerization 
as well as the closing through its hydrolysis (Higgins and Linton, 
2004). While PKA phosphorylation promotes the release of the 
R domain from its position, the binding of ATP triggers the 
dimerization of the NBDs that, in turn, leads to channel opening 
and  activation (Vergani et  al., 2003, 2005b; Csanady et  al., 2010). 
Therefore, the phosphorylation of the R domain increases the rate of 
channel opening by stimulating conformational changes that 
enhance the affinity for ATP (Winter and Welsh, 1997).

Following this obligatory modification, the ATP generally 
bound only to NBD1 is released, and it binds to the two sites 
at the NBD1:NBD2 interface (Aleksandrov et  al., 2018). Recent 
studies by Csana and colleagues support a model wherein ATP 
binding to both NBDs enhances their dimerization and 
consequently channel opening (Mihalyi et  al., 2016). Instead, 
the ATPase activity at NBD2 subsequently promotes destabilization 
of the NBD dimer, leading to channel closure (Mihalyi et  al., 
2016). Additionally, Lewis and colleagues have found that in 
the CFTR closed state, the NBDs dimer is prevented, due to 
the inhibitory interaction of the R domain with the regulatory 
insertion (RI) domain of NDB1 (Lewis et  al., 2004). Although 
the majority of the canonical phosphorylation sites are located 
within the R domain of CFTR, an additional residue (S422) 
in the RI region plays a key regulatory function (Lewis et  al., 
2004). In particular, S422 of the RI domain interacts with 
S660  in the R domain, creating steric hindrances on NBD1, 
which prevent it from dimerization with NBD2 (Hudson et  al., 
2012; Dawson et  al., 2013). Upon phosphorylation by PKA of 
these two serines, the alpha-helical content of both the RI and 
the R regions decreases (Hudson et  al., 2012; Dawson et  al., 
2013). Therefore, phosphorylation by PKA weakens the interaction 
between the R domain and NBD1, ultimately allowing the 
formation of the NBD1:NBD2 dimer (Aleksandrov et al., 2018).

Different from the wild-type CFTR channel, where the gating 
is dependent on ATP binding, in gating mutants where ATP 
binding is impaired, the introduction of a second mutation, 
like the K978C or the NBD2 deletion, restores the open 
conformation of the channel, but PKA-mediated phosphorylation 
of the R domain is still required for full channel activation 
(Eckford et al., 2012). These examples of ATP-independent CFTR 
channel appear to be regulated by phosphorylation, via allosteric 
interactions between the R domain and the NBD1 region (Eckford 
et al., 2012). Nonetheless, further studies are required to understand 
the molecular basis for such ATP-independent gating and 
CFTR regulation.

Overall, phosphorylation represents an additional level of 
control of CFTR activity besides ATP binding and hydrolysis. 
Given that the ATP concentrations within a cell are high enough 
for constant activation of the channel, phosphorylation is essential 
for the prevention of futile cycling of the channel between the 
open and closed conformations (Higgins and Linton, 2004).

EFFECTS OF CF-CAUSING MUTATIONS 
ON PKA-MEDIATED PHOSPHORYLATION 
OF CFTR

Considering the essential role of PKA-dependent phosphorylation 
of the intrinsically disordered R domain in modulating CFTR 
gating (Hallows et al., 2003; Billet et al., 2015, 2016), it is plausible 
that CF-causing mutations may disturb this mechanism of channel 
regulation. The most common CFTR mutation, consisting of the 
deletion of phenylalanine (F508del) located at the interface between 
NBD1 and the intracellular loop  4, interferes with the correct 
R domain folding and assembly (Riordan, 2005; Hwang et  al., 
2018). As a consequence, the aberrant channel is targeted to 
early ER-associated degradation (Farinha and Amaral, 2005). 
Moreover, the resulting thermal instability of this mutant form 
further contributes to its removal from the plasma membrane 
(Okiyoneda et  al., 2010), which has been shown to contain only 
2% of mature F508del-CFTR compared to the normal wild-type 
(WT) channel amount (Van Goor et al., 2011). Importantly, Wang 
and colleagues demonstrated that the phosphorylation rate of 
F508del-CFTR by PKA is significantly lower than that of WT-CFTR, 
suggesting that the abnormal protein does not constitute a good 
substrate for the kinase (Wang et  al., 2000). The same results 
were obtained from the analysis of the other two disease-causing 
CFTR mutations, R170G and A1067T, both occurring in coupling 
helices that allow the correct channel activation by phosphorylation 
(Chin et  al., 2017b).

Furthermore, a relevant study by Pasyk et  al. exploited 
mass spectrometry to quantitatively assess PKA-mediated 
phosphorylation of serine 660 of F508del-CFTR at the ER 
and reported a drastic reduction of phosphorylation upon 
forskolin stimulation in comparison with the WT form 
(Pasyk  et  al., 2009). Interestingly, COPI-mediated retrograde 
trafficking from the Golgi to the ER, which prevents misfolded 
F508del-CFTR from successfully reaching the apical cell 
membrane (Rennolds et  al., 2008; Okiyoneda et  al., 2010), 
has been linked to phosphorylation-dependent interactions 
between the channel and 14-3-3 proteins (Liang et  al., 2012). 
In particular, selective binding of 14-3-3 protein isoforms to 
specific PKA-phosphorylated sites within the R region decreases 
this  retrograde retrieval, ultimately resulting in augmented 
CFTR  biogenesis. Unfortunately, whether the impaired 
phosphorylation caused by the deletion of F508 negatively 
impacts this protein-protein interaction has yet to be elucidated.

Another relevant process that contributes to the maintenance 
of channel density at the plasma membrane is the endosomal 
trafficking of the CFTR, which ensures the internalization and 
recycling of abundant or misfolded proteins (Moore et al., 2007). 
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Notably, Holleran and collaborators revealed that cell surface 
F508del-CFTR is targeted to lysosomes and displays defective 
PKA-regulated exocytosis, consisting of significantly slower rates 
of translocation to the plasma membrane from the Rab11+/
EHD1+ endosomal recycling compartment upon PKA challenge 
(Holleran et  al., 2013). Therefore, these data suggest that the 
abnormal phosphorylation of the mutant CFTR by PKA could, 
at least partly, account for the defective peripheral trafficking 
of the channel. Moreover, it has been shown that the excision 
of the RI polypeptide from the NBD1 of F508del protein, which 
contains the additional PKA consensus site S422, may be beneficial 
for the life cycle of the mutant channel (Aleksandrov et  al., 
2010). Specifically, removal of this region was found to promote 
the escape of F508del-CFTR from the ER quality control machinery 
and thus the increased apical surface stability. In addition, recent 
evidence confirmed that the amount of phosphorylated S422, 
which represents a minor PKA target site, is decreased in the 
aberrant F508del protein (Pankow et al., 2019). However, further 
analyses are required to clarify whether the presence of the RI 
hampers the F508del-CFTR stability independently of its 
phosphorylation state and to evaluate the biological consequence 
of its reduced phosphorylation in the mutant CFTR.

Another important CFTR genetic defect that could potentially 
interfere with PKA-mediated phosphorylation of the channel 
is the G551D mutation, a class III mutation with a worldwide 
frequency of ∼4% (CFF patient registry, 2019). The disease-
causing substitution occurs in the NDB1 domain and strongly 
impairs the ATP-dependent channel gating, without hindering 
channel trafficking to the plasma membrane (Gregory et  al., 
1991; Bompadre et al., 2007). Interestingly, Chang and colleagues 
demonstrated that the R domain of this mutant form undergoes 
normal phosphorylation despite its lack of ATP binding (Chang 
et  al., 1993). In contrast, a very recent study showed that 
G551D-CFTR exhibits defective phosphorylation-dependent 
activation as a result of a decreased sensitivity to PKA-mediated 
phosphorylation. Stimulation of mutant channels with high 
doses of PKA induced a remarkable increase in their activity, 
thus suggesting that the intrinsic phosphorylation defect of 
G551D-CFTR might be  one of the major causes of low basal 
functionality. Moreover, phosphorylation of the serine residue 
737 of G551D occurred at a lesser extent compared to WT-CFTR, 
highlighting a possible causative factor of the slower activation 
rate of the aberrant protein (Wang et  al., 2020).

Taken together, abnormal PKA-mediated phosphorylation 
underlies multiple molecular defects observed in mutant CFTR 
channels and represents a promising therapeutic target for the 
treatment of CF. Therefore, the following paragraph will focus 
on how currently available CFTR modulators impact on the 
phosphorylation of the channel by PKA.

EFFECTS OF CFTR MODULATORS ON 
PKA-DEPENDENT REGULATION OF  CFTR

In recent years, major advances have been made in the field 
of precision therapy against the underlying cause of CF. A variety 
of small molecules, designed to target specific channel defects 

and collectively known as CFTR modulators, have been developed 
to improve or even restore the expression, activity, and stability 
of defective CFTR variants (Lopes-Pacheco, 2016). Of outmost 
relevance are CFTR correctors, which rescue the misprocessing 
of mutant CFTRs, and potentiators, that are intended to restore 
the defective cAMP-dependent chloride channel activity at the 
cell surface (Lopes-Pacheco, 2016). Nonetheless, how these 
therapeutic agents act on the PKA-mediated phosphorylation 
of CFTR mutants is still largely unaddressed.

Importantly, there are some paradigmatic exceptions of CFTR 
modulating drugs whose relationship with PKA-dependent 
phosphorylation has been investigated and will be now discussed. 
The potentiator VX-770 (ivacaftor) is approved both as a single 
therapy for G551D mutants and as a combination with either 
the corrector VX-809 (lumacaftor; Connett, 2019) or VX-445 
and VX-661 for F508del carriers (Bear, 2020). Importantly, 
ivacaftor was found to enhance channel activity in an 
ATP-independent manner (Eckford et  al., 2012). However, 
non-phosphorylated CFTR does not exhibit any significant ion 
current increase upon VX-770 stimulation, suggesting that its 
potentiating action is strictly dependent on the phosphorylation 
state of the channel (Eckford et  al., 2012). Conversely, Jih and 
collaborators demonstrated that this potentiator can increase 
the activity of a CFTR lacking the R domain, thus arguing 
with the previous hypotheses of a phosphorylation-dependent 
mechanism (Jih and Hwang, 2013). Recently, a study by Uliyakina 
et  al. revealed that the absence of the RI domain strongly 
emphasizes VX-809-mediated rescue of F508del-CFTR but 
negatively impacts the channel currents stimulated by VX-770 
(Uliyakina et al., 2020). Therefore, these two modulators display 
a contradictory behavior in the absence of the unique region 
containing the PKA phosphorylation site, S422, but future 
analyses are needed to dissect the role of RI in mutant CFTR. 
Additionally, another molecule, VRT-532, which had been 
formerly identified as a potentiator (Van Goor et  al., 2006), 
showed to significantly amplify the activity of G551D-CFTR 
mutants. Despite its direct interaction with the aberrant channel 
(Pasyk et  al., 2009), VRT-532 did not induce an increase in 
CFTR phosphorylation, suggesting that its mechanism of action 
occurs at stages that are downstream of the PKA kinase activity 
(Pyle et  al., 2011).

Conversely, correctors based on 3-(2-benzyloxy-phenyl)-5-
chloromethyl-isoxazoles, like UCCF-152, were found to stimulate 
potent and rapid phosphorylation of the R domain of WT, 
temperature-rescued F508del-CFTR and G551D-CFTR, while 
also increasing iodide currents, leading to their classification 
as CFTR activators (Pyle et  al., 2011). The specific residues 
phosphorylated upon the interaction with UCCF-152 have not 
been yet identified, but this isoxazole neither raises cellular 
cAMP levels nor directly activates PKA, suggesting a possible 
enhancement of the propensity of the R domain to 
be  phosphorylated by releasing steric hindrances (Sammelson 
et al., 2003). To date, no additional analyses have been performed 
to further characterize UCCF-152 as a candidate CF-treating 
agent. The impact of CF-causing mutations on PKA 
phosphorylation of CFTR, and the effect of CFTR modulators 
on the activity of mutant channels is summarized in Table  2.
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Overall, our current knowledge of how CFTR modulators 
interfere or promote PKA-dependent phosphorylation of the 
channel remains scarce, and future efforts are needed to allow 
a better understanding of their impact on this essential molecular 
modification of the channel.

CONCLUSION

In conclusion, PKA-dependent phosphorylation plays a key 
role in multiple steps during the life cycle of CFTR. While 
interactions resulting in phosphorylation at the CFTR R domain 
regulate channel opening and activity, other phosphorylation 
events at the C and N terminal ends of CFTR modulate channel 
stability and trafficking at the PM. Importantly, CFTR mutations 
leading to CF impair different steps of CFTR biogenesis that 
are regulated by these phosphorylation events. Targeting 
PKA-mediated phosphorylation thus represents a promising 
strategy to rescue the activity of different CF-causing CFTR 
variants. Nonetheless, how correctors and potentiators, including 
their highly effective combinations, like the recently approved 
Trikafta, impact on the PKA-mediated phosphorylation of CFTR 
still needs to be  thoroughly investigated. Future studies in this 

direction might help to maximize therapeutic efficacy, ultimately 
normalizing the life expectancy of CF patients.
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