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Deep learning has achieved considerable success in medical image segmentation.

However, applying deep learning in clinical environments often involves two problems:

(1) scarcity of annotated data as data annotation is time-consuming and (2) varying

attributes of different datasets due to domain shift. To address these problems, we

propose an improved generative adversarial network (GAN) segmentation model, called

U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised

learning approach and unsupervised domain adaptation (UDA) approach are modeled

into a unified framework for effective segmentation. We improve GAN by replacing

the traditional discriminator with a U-shaped net, which predicts each pixel a label.

The proposed U-shaped net is designed with high resolution radiographs (1,024 ×

1,024) for effective segmentation while taking computational burden into account. The

pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which

decreases the number of feature maps while retaining their salient features. Moreover,

we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the

computational burden of training the encoder from scratch. A semi-supervised learning

approach is proposed learning from limited annotated data while exploiting additional

unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking

the source and target domain data as the annotated data and the unannotated data in

the semi-supervised learning approach, respectively. Compared to the previous models

dealing with the aforementioned problems separately, U-shaped GAN is compatible with

varying data distributions of multiple medical centers, with efficient training and optimizing

performance. U-shaped GAN can be generalized to chest radiograph segmentation for

clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets.

U-shaped GAN is shown to significantly outperform the state-of-the-art models.

Keywords: semi-supervised learning, unsupervised domain adaptation, generative adversarial network, medical

image segmentation, chest radiograph
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1. INTRODUCTION

Recently, deep learningmodels have gained increasing popularity
in medical segmentation. However, deep learning models with
supervision require substantial pixel-level annotated data to
achieve sufficient accuracy and prevent over-fitting (1–4). Pixel-
level annotation is expensive, especially with medical images,

because it is time-consuming and requires highly skilled
experts (3, 5). Therefore, medical image datasets are usually
small, which cannot meet the requirement of deep learning, due
to a lack of annotations (6, 7). Even if a model is well-trained
on a certain medical dataset, its accuracy decreases when it is
applied to unseen domains (8, 9). The deep learningmodels suffer
an accuracy drop between two domains due to domain shift (8).

These problems limit the application of deep learning models in
clinical environments.

An alternative to supervised learning is semi-supervised

learning, which involves using unannotated data to identify
specific hidden features of the dataset to facilitate prediction.
Semi-supervised deep learning using generative adversarial
networks (GANs) (10) has been highly successful (1, 2), especially
with nonmedical images (3). A semi-supervised GAN model
was proposed to distinguish between predicted probability maps
and the ground truth (2). In Souly et al. (1), a GAN was used
to generate fake images close to real images as learned by the
segmentation network. In medical segmentation, a few semi-
supervised models have been developed using the model in
Hung et al. (2) to improve the prediction accuracy with specially
designed loss functions for particular image types, such as
computed tomography of the liver (3), retinal optical coherence
tomography (11), and pediatric MRI (12).

Domain adaptation (DA) suffers domain shift by transferring
knowledge from the source domain to the target domain (13–16).
A popular solution is transfer learning, which fine-tunes parts
of a pre-trained model with annotated target domain data (13).
However, transfer learning approaches rely on additional
annotated data on the target domain, which is expensive or
sometimes impractical. Instead, unsupervised domain adaptation
(UDA) ismore appealing to generalizemodels in clinical practice.
UDA using GAN is becoming increasingly popular in the
medical field (14–16). GAN-based UDA models use generators
to transform the target data to the source domain, discriminate
the source data from the target data, and improve segmentation
accuracy with a specific training method (16), net structure (14),
or training loss (15).

Deep learning algorithms require large amounts of data,
which cannot be collected from a single medical center.
Therefore, data from multiple collection centers, comprising
large medical centers and small clinics, are required (17–19). The
large medical centers provide partly annotated datasets for semi-
supervised learning, while the clinics provide unannotated data.
The annotated and unannotated data may come from either the
same or different domains in the dataset collected from multiple
centers. A single model that can deal with the semi-supervised
and UDA approach at the same time is urgently needed.

To tackle the aforementioned problems, we propose an
improved GAN model, called U-shaped GAN, for medical

image segmentation. U-shaped GAN is improved by replacing
the traditional discriminator with a U-shaped net to assign
each pixel a label. Training the segmentation model with
images of high resolution is effective; however, it increases the
computational burden (20, 21). U-shaped GAN is designed with
high resolution radiographs for effective segmentation while
considering computational burden. The pointwise convolution is
applied to U-shaped GAN for dimensionality reduction, which
decreases the number of feature maps while retaining their
salient features. Moreover, the U-shaped net takes a pretrained
ResNet-50 as an encoder to reduce the computational burden
of training from scratch. A pixel-level semi-supervised loss is
proposed to leverage the unannotated data to assist the annotated
data for semi-supervised learning. U-shaped GAN is extended to
UDA with minimal modification. The semi-supervised learning
approach and UDA approach are merged into a single model to
handle datasets from multiple medical centers conveniently and
efficiently. We evaluate U-shaped GAN on lung segmentation
for radiographs.

To conclude the introduction, we outline the major
contributions of this work as follows:

(1) U-shaped GAN is proposed for high resolution medical
image segmentation while taking computational burden
into account.

(2) A semi-supervised learning approach is proposed to
overcome the lack of annotated data.We employ a pixel-level
semi-supervised loss that leverages the unannotated data to
assist the annotated data for segmentation.

(3) U-shaped GAN is extended to UDA with minimal
modification to transfer knowledge among different domains
without additional annotated data on the target domain.

(4) In our framework, the semi-supervised learning approach
and UDA approach are merged into a single model to
handle datasets from multiple medical centers conveniently
and efficiently.

2. METHODS

2.1. Background
In recent years, GAN has garnered considerable attention
because of its superior performance in terms of generating
images (2). GAN consists of a generator network G and
discriminator net D. G generates fake images close to real data
from a noise distribution deceiving the discriminator, while D
distinguishes the real images from fake ones. G and D can be
considered as two competitors in a min-max game with the
following formulation:

minGmaxD V(D,G) = Ex∼pdata(x)[log(D(x)real)]

+Ez∼pnoise(z)[log(1− D(G(z))real)],
(1)

where E is the expectation of a random variable, pdata(x) is the
real data distribution, and pnoise(z) is a noise distribution.D(∗)real
stands for the possibility that the sample is from the real data. G
transforms the noise variable z from the distribution pnoise(z) into
G(z). Themin-max game provides a useful feature representation
for auxiliary supervised discrimination tasks (22).
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2.2. Proposed Model
The goal of this study is to develop a unified framework for semi-
supervised learning and UDA. Analyzing the influence factors
in semi-supervised learning and UDA on chest radiographs,
we propose a similar solution for the semi-supervised learning
approach and UDA approach. A pixel-level semi-supervised
loss is proposed to leverage the unannotated data to assist the
annotated data for segmentation.

2.2.1. Semi-Supervised Learning
We propose a U-shaped GAN for semi-supervised lung
segmentation from chest radiograph datasets. U-shaped GAN
is based on the following hypothesis: the features in an ideal
representation correspond to the underlying causes of the data.
If label y is among the salient causes of data x, a suitable
representation for the probability distribution p(x) may also
be a suitable representation for computing the distribution of
conditional probability p(y|x) (23). The marginal probability
p(x) is related to the conditional probability p(y|x) through the
Bayes rule:

p(y|x) =
p(x|y)p(y)

p(x)
(2)

Under this hypothesis, we use the unannotated and annotated
data to find a representation for the radiographs. A particular
semi-supervised loss, which can be divided into a supervised
loss and an unsupervised loss, is proposed. The supervised
loss using the annotated data is employed for segmentation
prediction, and the unsupervised loss using the unannotated
data is utilized for a better representation of the whole dataset,
as shown in Figure 1A. The unannotated data generalize the
model as a regularizer. In U-shaped GAN, we employ a generator
to generate realistic data segmented by a multiclass classifier
(our discriminator) from the noise input, which in addition to
classifying the pixels into lungs, determines whether a given pixel
belongs to the real or generated data. The generator converges
the realistic data to the real distribution p(x) of the partly
annotated real data. This enables the discriminator to learn better
features to represent the radiographs and to filter irrelevant
individual features. Moreover, we employ the annotated data to
find the relations among those features and the segmentation
task. We modify a GAN by replacing the original discriminator
with a U-shaped net (24) for assigning a label to each pixel.
Training convolutional neural networks (CNNs) with a high
resolution is effective for lung segmentation (20, 21). U-shaped
GAN is designed for high-resolution chest radiographs. Unlike
the segmentation GAN (1), we use the semantic classes and
the background as an additional class for segmentation as the
background contains several unannotated organs that reflect the
imaging condition.

We improve GAN by replacing the traditional discriminator
with a U-shaped net, which, instead of predicting each image a
label, assigns to each pixel a label. The proposed end-to-end deep
learning model is illustrated in Figure 2. The discriminator acts
as a segmentation network to assign one of the following labels to
each pixel: lung class, background, or fake data. The annotated

data is used to train the discriminator D to minimize the loss
function Ll:

Ll = −Ex∼pdatal
(x,y)[log(D(y|x))], (3)

where pdatal (x, y) is the joint distribution of the pixel-level labels
y and pixel values x of the annotated data; the discriminator D
predicts the possibility D(y|x) of pixel x belonging to label y.

In semi-supervised learning, where the labels are partly
available among the training images, it is convenient to leverage
the unannotated data for estimating a representation with useful
features for segmentation. The true labels y of the pixels of the
unannotated data are set as real data. The loss function for
training the discriminatorDwith the unannotated data is defined
as follows:

Lu = −Ex∼pdatau (x)
[log(D(y|x))]

= −Ex∼pdatau (x)
[log(1− D(x)fake)],

(4)

where pdatau (x) is the distribution of pixels of chest radiographs
without annotation; D(x)fake is the possibility of the pixel
belonging to the fake data. In U-shaped GAN, there is no
output designed with the label “real data.” We used the 1 −

D(x)fake instead.
The generator Gmaps a random noise z to a sample G(z) that

is close to chest radiographs, while the discriminator D is trained
to label the generated sample G(z) as fake. The true labels y of the
pixels of the generated data are set as fake data. The loss function
for the discriminator D with the generated data is given as

Lg = −Ez∼pnoise(z)[log(D(G(z))fake)], (5)

where D(G(z))fake is the possibility of the generated pixel
belonging to the fake data.

We minimize the pixel-level discriminator loss LD with
respect to three types of input data, as follows:

LD = −Ex∼pdatau (x)
[log(1− D(x)fake)]

−Ez∼pnoise(z)[log(D(G(z))fake)]

−Ex∼pdatal
(x,y)[log(D(y|x))].

(6)

The first and second terms of LD are devised for unannotated data
as an unsupervised loss to increase the ability of the discriminator
to identify the real radiographs from fake ones and to find salient
features in the chest radiograph. The third term is devised for
annotated data as a supervised loss training D to find correct
relations among these features and the segmentation task.We use
a soft maximum over the outputs.D(y|x) for the annotated data is
a component of the 1−D(x)fake. Increasing the probabilityD(y|x)
will decrease the probability of D(x)fake. The third term has the
same effect as the first term and acts as an unsupervised loss
to increase the ability of the discriminating and salient features
finding. Weminimize the generator loss LG to train the generator
G as follows:

LG = Ez∼pnoise(z)[log(D(G(z))fake)]. (7)

Because all of the annotated and unannotated data contribute
to the discriminating ability of U-shaped GAN, G generates
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FIGURE 1 | (A) Overview of the proposed semi-supervised segmentation approach. We utilize an unsupervised loss to obtain a better representation for the

radiographs and a supervised loss to relate those features to the segmentation task. (B) Overview of the proposed unsupervised domain adaptation (UDA)

segmentation approach. We leverage U-shaped GAN to find a better representation with basic features supporting radiograph imaging with an unsupervised loss. The

distributions of the source and target data are aligned in this representation.

FIGURE 2 | Schematic description of U-shaped GAN. The generator transforms noise into fake images. The fake and real data are used to train the discriminator for

pixel-level predictions as lungs Clung, background Cback , and fake Cfake.

a distribution pg(G(z)) converging to the real distribution
p(x) of the whole dataset consisting of annotated and
unannotated radiographs.

2.2.2. UDA Approach
The chest radiographs from various sources acquired by the same
imaging modality differ in three aspects: image quality, image
appearance, and spatial configuration (8). The features relevant

to the basic imaging causes among the radiographs are similar.
Based on this property, we aim to develop a UDA approach to
find these similar features, filter features of individual domains,
and align the source and target domains in a representation,
which is similar to our semi-supervised learning approach. U-
shaped GAN is extended to UDA with minimal modification
and uses nearly the same training process in the semi-supervised
learning and UDA approaches. We use a U-shaped GAN to
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search for the aforementioned features with the annotated source
domain and unannotated target domain, as shown in Figure 1B.
The target data serves as the unannotated data in the semi-
supervised learning approach to generalize the model trained on
the source dataset. The source data serves as the annotated data
to ensure the accuracy of the segmentation task.

U-shaped GAN is extended to UDA, where only the source
data are annotated, and the labels of target data are not available.
The source and target domain data are used as the annotated and
unannotated data in LD, respectively, to train the discriminator.
The generator loss function is the same as LG in the semi-
supervised approach. The generator G produces the fake data
matching the aligned representation of the source and target data
in the min-max game of G and D. The fake data are close to the
real radiographs in both domains, and the discriminator learns
better features related to the basic imaging causes of radiographs.
U-shaped GAN then finds a suitable representation for the
radiographs of the target and source data. The distributions of
source and target data are aligned in this representation. LD and
LG encourage domain-invariant detectors to emerge in U-shaped
GAN. The annotated source data also guarantees the correct
segmentation prediction.

2.3. Network Architecture
U-shaped GAN is proposed to label each input image pixel
y as a lung, background, or fake pixel. The U-shaped net
is incorporated into the structure of GAN, serving as the
discriminator, to label each pixel. A schematic description of
U-shaped GAN is shown in Figure 2. Training CNNs at a
high resolution is effective for lung segmentation predictions;
however, it increases the computational burden (20, 21).
Therefore, we use a pointwise convolution layer followed by
two 4 × 4 fractionally strided convolution layers to form a new
generator block (Figure 3), instead of the fractionally strided
convolution layers used in deep convolutional GANs (25), to
achieve a high resolution of 1, 024 × 1, 024. The pointwise
convolution layer reduces feature dimensions while retaining
the salient features and leaves the 4 × 4 layers with
fewer parameters. This approach significantly reduces the
computational complexity. The model parameters decrease from
1.34 × 108 to 1.35 × 107 and the floating-point operations
(FLOPs) decrease from 5.84 × 108 to 1.53 × 108. In addition,
we improve U-shaped GAN with a modified U-shaped network
as the discriminator, as shown in Figure 4. The U-shaped net
consists of a feature encoder and decoder modules (24). We
replace the encoder with a pretrained ResNet-50 (26), which
further reduces the computational burden of training from
scratch. Moreover, ResNet-50 solves the degradation problem by
adding identity connections to the convolution network (26). The
feature decoder module restores the high-level semantic features
extracted from the feature encoder module. The modified
decoder module comprises four building blocks, as shown in
Figure 4. The fundamental building block mainly comprises a
3 × 3 convolution layer followed by a 4 × 4 fractionally strided
convolution layer. A pointwise convolution layer is used to
connect them to reduce relevant parameters. Skip connections
take information directly from the encoder to the decoder

FIGURE 3 | The overall structure of the proposed generator. The generator

block consists of a pointwise convolution layer and two 4× 4 fractionally

strided convolution layers. Conv3×3 denotes the 3× 3 convolution layer.

Conv1×1 represents the 1× 1 convolution layer.

layers and recover the information loss due to consecutive
pooling and striding convolutional operations (24). We use
instance normalization (27) followed by LeakyReLU activation
functions (28) between each layer.

3. EXPERIMENTS

3.1. Datasets
In our experiments, we utilize the Japanese Society of
Radiological Technology (JSRT) (29) and Montgomery County
(MC) datasets (30, 31). The JSRT dataset contains 247 posterior-
anterior (PA) chest radiographs, of which 154 contain lung
nodules and 93 have no nodules (29). The ground truth lung
masks can be obtained in the Segmentation in Chest Radiographs
dataset (32). The MC dataset contains PA chest radiographs
collected from the National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA. It consists of 80 normal
and 58 abnormal cases with manifestations of tuberculosis (30,
31). The ground truth lung masks are also contained in the
MC dataset.

3.2. Metrics
Several algorithms with different evaluation metrics are available
in the literature. We used two commonly used methods, the
Jaccard index and Dice score metrics, to compare U-shaped GAN
with the state-of-the-art models.

(1) The Jaccard index statistic is used for gauging the similarity
and diversity of sample sets. It shows the agreement between the
ground truth B and the predicted set of pixels A and is given as:

J(A,B) =
|A ∩ B|

|A ∪ B|
. (8)

(2) The Dice score measures the overlap between the ground
truth B and the predicted set of pixels A as follows:

D(A,B) =
2× |A ∩ B|

|A| + |B|
. (9)
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FIGURE 4 | The overall structure of the discriminator. ResNet block stands for the block used in ResNet-50. Conv3×3 indicates the 3× 3 convolution layer. Conv1×1

indicates the 1× 1 convolution layer. Decoder block mainly comprises a 3× 3 convolution layer and 4× 4 fractionally strided convolution layer. A pointwise

convolution layer is used to connect them.

3.3. Implementation Details
U-shaped GAN is implemented in Python using the PyTorch
framework. The gray chest radiographs are resized to 1, 024 ×

1, 024 and converted to RGB images compatible with the
pre-trained ResNet-50 before placement in the network. The
weights of ResNet-50 in our discriminator are pre-trained on
the ImageNet dataset (33). The default 5-fold cross-validation
is considered to train the semi-supervised model. In the semi-
supervised approach, U-shaped GAN is trained with the JSRT
or MC dataset with a portion of pixel-wise annotated data and
the remainder without pixel-level annotations with 500 epochs.
The Adam optimizer (34) is used to train 500 epochs of the
generator and discriminator with initial learning rates of 0.001
and 0.0001, respectively, and multiplied by 0.1 after 200 epochs.
For semi-supervised learning, we randomly select 12.5, 25, and
50% of the radiographs from the training set as the annotated
set, with the remainder forming the unannotated set. Moreover,
we train our model with 100% of the training dataset in the
supervised approach. An ablation study is performed to discover
the performance contribution from the modified architecture of
U-shaped GAN and the proposed pixel-level semi-supervised
loss. As in Li et al. (35), we train U-shaped GAN via the
semi-supervised approach and supervised approach with 35
annotated radiographs on the JSRT dataset andwith 24 annotated
radiographs on the MC dataset. The supervised approach is
conducted solely with the same annotated set and segmentation
network. Moreover, we explore the effect of U-shaped GAN
with the original GAN loss, called the original approach, by
adding classification layers to U-shaped GAN paralleling with
the decoder of our discriminator. The classification layers are
identical to those in ResNet-50. In the original approach, the
classification layers discriminate the real radiographs from the
fake ones, and our discriminator just works as a segmentation
network to predict the probability of belonging to the lungs of
each pixel in the original approach. For UDA, we first employ
the MC and JSRT datasets as the source and target domains,

TABLE 1 | Comparison of U-shaped generative adversarial network (GAN) with

the state-of-the-art semi-supervised model.

Dataset Model Main method Dice IoU

JSRT Li (35) Semi-supervised CNN(35) 0.967 -

U-shaped GAN Semi-supervised GAN(35) 0.971 0.944

The numbers after the main method are the numbers of the annotated radiographs

used in the semi-supervised approach. Numbers in bold indicate the best result among

the models.

respectively, and then swap their roles. We randomly split each
dataset into 7:1:2 for training, validation, and test sets. We train
U-shaped GAN similarly to the semi-supervised approach using
the source and target data as the annotated and unannotated
data, respectively.

4. RESULTS

4.1. Semi-Supervised Segmentation
U-shaped GAN is trained on the MC and JSRT datasets
independently. The comparison with the state-of-the-art semi-
supervised CNN (35) is shown in Table 1. As few semi-
supervised models on chest radiographs are available, we also
compare U-shaped GAN with 1) human observation (32); 2)
traditional methods (30, 36); and 3) supervised CNNs (21, 35, 37,
38). The comparison is shown in Table 2.

U-shaped GAN trained with 100% annotated data achieves
a performance increase of 0.4–10.8% over the state-of-the-art
traditional models and supervised CNNs on both the JSRT and
MC datasets. The results validate the effectiveness of the design
of the segmentation network.

Our semi-supervised model (Dice = 0.975, IoU = 0.951)
trained with 25% annotated data outperforms the state-of-the-art
supervised models and human observation on the JSRT dataset.
Our semi-supervised model (Dice = 0.968, IoU = 0.940) trained
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TABLE 2 | Comparison of U-shaped GAN with other lung segmentation methods for chest radiograph datasets.

Dataset Model Main method Dice IoU

JSRT Human (32) Human observation - 0.946 ± 0.018

Candemir (30) Traditional method 0.967 ± 0.008 0.954 ± 0.015

U-net (35) Supervised CNN 0.946 -

InvertedNet (21) Supervised CNN 0.974 0.950

Li (35) Supervised CNN 0.967 -

U-shaped GAN Supervised GAN 0.979 ± 0.001 0.958 ± 0.003

U-shaped GAN Semi-supervised GAN(25%) 0.975 ± 0.001 0.951 ± 0.002

MC Bosdelekidis (36) Traditional method 0.923 0.862

Candemir (30) Traditional method 0.960 ± 0.018 0.941 ± 0.034

U-net (37) Supervised CNN - 0.942 ± 0.046

Souza (38) Supervised CNN 0.936 0.881

U-shaped GAN Supervised GAN 0.976 ± 0.006 0.955 ± 0.010

U-shaped GAN Semi-supervised GAN(25%) 0.968 ± 0.011 0.940 ± 0.019

The number after the main method is the proportion of annotated radiographs from the training set in the semi-supervised approach. Numbers in bold indicate the best result among

the models.

with 25% annotated data outperforms the most state-of-the-art
supervised models but performs slightly worse than the U-net
model (IoU = 0.942) on the MC dataset. Our proposed semi-
supervisedmodel achieves outstanding performance with limited
annotated datasets. Moreover, U-shaped GAN outperforms the
state-of-the-art semi-supervised model (35) in both supervised
and semi-supervised settings by 1.2 and 0.8%, respectively.
Figure 5 shows a few examples of semi-supervised results with
U-shaped GAN. The ground truth contour of the lungs is shown
in green, and the segmentation result of the algorithm is in red.

We evaluate our approach with 12.5, 25, 50, and 100%
annotated radiographs (remaining portions consist of
unannotated radiographs). The annotated radiographs in
the data splits are randomly sampled from the whole dataset.
Notably, the approach works well even with 12.5% annotated
data, as shown in Table 3. For the details, readers are referred to
Supplementary Figures 1, 2.

We apply U-shaped GAN on a pneumothorax segmentation
dataset (39) with a semi-supervised approach. This dataset
contains 2,669 radiographs with annotated pneumothorax lesion
areas. U-shaped GAN shows promising performance on the
pneumothorax segmentation in the semi-supervised approach.
Most of the results predict rough areas of the pneumothorax
lesion correctly, which provides credible help to the radiologist
to find the lesion rapidly. For the details, readers are referred to
Supplementary Figure 3.

4.2. Unsupervised Domain Adaptation
We use the MC and JSRT datasets as the source and target
domains, respectively, and then swap their roles for UDA. The
performances of our UDA model on the target domains are
compared under various settings: 1) the model being trained on
source data and tested on the target domain with no DA (T-
noDA); 2) UDA model testing on the source domain (S-test); 3)
human observation (32); 4) UDA models with CNNs (15, 37).

As shown in Table 4, when directly applying the learned
source domain model to target data, the model performance
significantly degrades, indicating that domain shift would
severely impede the generalization performance of CNNs.
However, remarkable improvements are achieved by applying
the unsupervised loss on the target images. Compared to the
T-noDA results, the segmentation predictions increase by 3.3%
and 5.3% on the JSRT and MC datasets, respectively, with our
UDA approach.

Experimental results demonstrate a significant enhancement
in performance compared to other models. Compared with
other UDA models based on CNNs (15, 37), U-shaped GAN
achieves a significant improvement overMUNIT (5.7%), CyUDA
(4.0%), and SeUDA (2.1%). Moreover, U-shaped GAN is even
comparable to human observation. Figure 6 shows a few
examples of UDA results with U-shaped GAN. The ground truth
contour of the lungs is shown in green, and the segmentation
result of the algorithm is in red.

Compared to models trained with 100% annotated data on
source domains, the UDA models obtain similar accuracy on
the source domains (S-test). Therefore, U-shaped GAN is able
to improve results on the target domains while maintaining
segmentation performance on the source domains. For the
details, readers are referred to Supplementary Figures 4, 5.

4.3. Ablation Study
For the ablation study, we study the effectiveness of our modified
segmentation network, the architecture of U-shaped GAN, and
the proposed pixel-level semi-supervised loss. To demonstrate
the advantage of U-shaped GAN, we report the scores of U-net
(the original U-shaped net), U-shaped GAN trained with the
supervised approach, U-shaped GAN trained with the original
approach, and U-shaped GAN trained with our pixel-level loss.

First, the results of the comparison of our modified
segmentation network and the original U-shaped net are shown
in Table 5. The segmentation network of U-shaped GAN is
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FIGURE 5 | Semi-supervised results (25% annotated data) with U-shaped GAN. The radiographs from the Japanese Society of Radiological Technology (JSRT)

dataset and Montgomery County (MC) dataset appear at the top and bottom, respectively. Green and red contours indicate the true ground and automatic

segmentation results, respectively.

TABLE 3 | Comparison of the results of U-shaped GAN trained with different

proportions of annotated data.

Dataset Annotated data (%) Dice IoU

JSRT 100 0.979 ± 0.001 0.958 ± 0.003

50 0.977 ± 0.002 0.956 ± 0.003

25 0.975 ± 0.001 0.951 ± 0.002

12.5 0.964 ± 0.007 0.934 ± 0.008

MC 100 0.976 ± 0.006 0.955 ± 0.010

50 0.973 ± 0.007 0.949 ± 0.013

25 0.968 ± 0.011 0.940 ± 0.019

12.5 0.958 ± 0.021 0.922 ± 0.034

designed with high resolution radiographs following the main
idea of the U-shaped net (24). It is shown that our modified
segmentation network improves the prediction by 3.28% on the
JSRT dataset and 2.02% on the MC dataset when trained with the
whole annotated datasets.

Second, the effectiveness of the architecture of U-shaped
GAN is investigated. The U-shaped net is incorporated into
the structure of GAN leveraging unannotated data to assist
the segmentation task. By adding an original GAN loss to the
supervised approach, the Dice scores increase from 0.968 to 0.970
on the JSRT dataset and from 0.966 to 0.971 on the MC dataset.
The architecture of U-shaped GAN is successful in leveraging
unannotated data to find a representation for the whole dataset,
shown in Table 6.

Third, we show the comparison between results gained by
the GAN original loss and our pixel-level GAN loss with semi-
supervised training. The pixel-level GAN loss increases the
capacity of U-shaped GAN in finding the representation of the

TABLE 4 | Comparison of segmentation results among different unsupervised

domain adaptation (UDA) methods.

Dataset Model Main method Dice IoU

MC → JSRT Human

observation (32)

Human observation - 0.946

T-noDAg - 0.934 0.895

S-test - 0.981 0.963

MUNIT (37) UDA with MUNIT - 0.882

CyUDA (15) UDA with CycleGAN 0.928 -

SeUDA (15) UDA with CycleGAN 0.945 -

Our method UDA with GAN 0.965 0.932

JSRT → MC T-noDAg - 0.918 0.880

S-test - 0.980 0.961

Our method UDA with GAN 0.967 0.936

Numbers in bold indicate the best result among the models.

whole dataset. The segmentation results improve from Dice =

0.970, IoU = 0.941 to Dice = 0.971, IoU = 0.944 on the JSRT
dataset and Dice = 0.971, IoU = 0.945 to Dice = 0.973, IoU =

0.948 on the MC dataset, shown in Table 6.
Some results of U-shaped GAN with different training

approaches on confusing samples are shown in Figure 7. U-
shaped GAN seems to be resistant to interference by irrelevant
features, such as other organs and lesion areas, by using the
GAN architecture and to increase the resistant capability by the
pixel-level loss.

5. DISCUSSION

In this study, we propose U-shaped GAN to address the
scarcity of annotated data and domain shift. U-shaped GAN
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FIGURE 6 | UDA results with U-shaped GAN. The radiographs from the JSRT dataset with MC → JSRT UDA results are on the top; the radiographs from the MC

dataset with JSRT → MC UDA results are on the bottom. Green and red contours indicate the ground truth and automatic segmentation results, respectively.

TABLE 5 | Comparison of U-shaped GAN and U-net trained with the whole

dataset.

Dataset Model Main method Dice IoU

JSRT U-net (35) Supervised approach 0.946 -

U-shaped GAN Supervised approach 0.977 0.955

MC U-net (37) Supervised approach - 0.942

U-shaped GAN Supervised approach 0.980 0.961

Numbers in bold indicate the best result among the models.

for radiographs shows strong performance in semi-supervised
learning and UDA approaches. To handle datasets from multiple
medical centers conveniently and efficiently, we combine semi-
supervised learning and UDA in radiograph segmentation into
a single method. U-shaped GAN functions similarly with the
annotated and unannotated data in the semi-supervised and
UDA approaches. The effectiveness of the model is demonstrated
through extensive experiments.

Training models with high image resolution is effective;
however, it would increase the computational burden (20, 21).
The previous models concentrated on the 256 × 256 or 512 ×

512 image resolutions (15, 21, 35, 37, 38). We propose U-
shaped GAN for high resolution radiographs (1, 024 × 1, 024).
We use pointwise convolution for dimensionality reduction,
decreasing the number of feature maps while retaining their
salient features. Moreover, we design the U-shaped net with
a pretrained ResNet-50 as encoder, which further reduces
the computational burden of the training encoder from
scratch. U-shaped GAN trained with the whole annotated data
achieves a more accurate performance than the state-of-the-
art supervised models as well as the original U-shaped net.
This prediction result shows that U-shaped GAN is effective for
segmentation prediction.

TABLE 6 | Comparison of U-shaped GAN with different training approaches.

Dataset Model Main method Dice IoU

JSRT U-shaped GAN Supervised approach(35) 0.968 0.939

U-shaped GAN Original approach(35) 0.970 0.941

U-shaped GAN Semi-supervised approach(35) 0.971 0.944

MC U-shaped GAN Supervised approach(24) 0.966 0.936

U-shaped GAN Original approach(24) 0.971 0.945

U-shaped GAN Semi-supervised approach(24) 0.973 0.948

The number after the main method is the number of the annotated radiographs used

in training. Numbers in bold indicate the best result among the models.

The previous studies often analyzed semi-supervised
learning and UDA problems separately (3, 11, 12, 14–16). In
semi-supervised learning, the previous GANs were usually
proposed to distinguish between segmentation probability maps
and the ground truth (3, 11, 12). The generators produced
the segmentation probability maps as the segmentation
networks (3, 11, 12). In UDA, the previous GANs were
usually proposed to distinguish between source data and target
data (14–16). The generators transferred the target domain
to the source domain and extra networks were designed for
the segmentation (14–16). The annotated and unannotated
data may come from either the same or different domains
in the dataset collected from multiple centers. Dealing with
the two problems separately increases the model complexity.
Moreover, separating the dataset to train two segmentation
networks decreases the utilization efficiency of collected
data. Therefore, we propose a single model to deal with the
semi-supervised learning and UDA approaches at the same
time. We attribute the model’s remarkable generalization
capabilities to the effective use of the unannotated data. We
use adversarial learning to achieve a representation for lung
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FIGURE 7 | Comparison of the results of U-shaped GAN with different training approaches on confusing samples. The radiographs in the first row are results of the

supervised approach. The second row is the results of the original approach. The third row is the results of the semi-supervised approach. Green and red contours

indicate the ground truth and automatic segmentation results, respectively.

segmentation in chest radiographs. In U-shaped GAN, we
employ a generator to generate realistic data, which, together
with the real data (most of them are unannotated data),
force the discriminator to find the most salient features. Our
discriminator, which in addition to classifying the pixels into
lungs, determines whether a given pixel belongs to the real or
generated data.

U-shaped GAN exploits more widely available unannotated
data to complement small annotated data with a semi-supervised
loss. U-shaped GAN achieves greater performance than the state-
of-the-art semi-supervised model. Moreover, it is comparable to
the supervised models with 25% annotated data. U-shaped GAN
works well even with 12.5% annotated data with Dice scores of
0.964 and 0.958 on JSRT and MC datasets, respectively. Unlike
the previous semi-supervised study using the generators to
produce the segmentation probability maps as the segmentation
networks (3, 11, 12, 25), U-shaped GAN uses the generator to
generate realistic data. The realistic data, together with the real
data, force our discriminator to learn a better representation
for the radiographs. Compared with the result achieved by
trained in the supervised approach, U-shaped GAN achieves
increased performance in the semi-supervised learning approach
with adversarial learning. Instead of discriminating real or

fake labels on image-level (3, 11, 12, 25), a pixel-level loss is
proposed to extract more information from the radiographs. The
segmentation accuracy is improved when using the proposed
loss. For the data from one domain, U-shaped GAN effectively
leverages the unannotated data to achieve high segmentation
accuracy and reduces the cost of medical image annotation.

U-shaped GAN is extended to UDA to reduce domain
shift without the extra expense of annotation on the target
domain. Instead of transferring the target domain to the
source domain (14–16, 37), our generator generates realistic
data. Discriminating the realistic data from the real ones, our
discriminator learns a better representation. U-shaped GAN is
better than the state-of-the-art UDA models and comparable
to human observation. It achieves high accuracy on the target
domain while maintaining the accuracy on the source domain
(S-test). Thus, the model can be trained with data collected from
multiple medical centers. Regardless of whether the unannotated
data come from single or multiple domains, the prediction
accuracies on their corresponding domains are increased, and
the accuracies on other domains are maintained. Because the
same networks are used in the two approaches, the datasets
are sufficient to train U-shaped GAN and generalize the
model among various domains, making it suitable for clinical
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applications in a multiple center system. In addition, using
the same architecture at multiple medical centers reduces the
model complexity.

Results of our evaluation are promising, but U-shaped GAN
has only been fully tested with lung segmentation. In the future,
we will extend the model to detect a wider range of lung diseases
by collecting additional chest radiographs of different diseases
from multiple medical centers.

6. CONCLUSION

In this study, we propose U-shaped GAN to overcome the
crucial problems caused by scarce labeled data and inevitable
domain shift. The GAN-based model is designed at a high
resolution (1, 024× 1, 024) for effective segmentation. The semi-
supervised learning approach and UDA approach are modeled
into a unified framework for effective radiograph segmentation.
We leverage unannotated and annotated data with a pixel-
level semi-supervised loss. U-shaped GAN is compatible with
varying data distributions of multiple medical centers, with
efficient training and optimizing performance. Our experiment
results demonstrate that U-shaped GAN achieved more accurate
lung segmentation performance as compared with the state-
of-the-art models. U-shaped GAN is more appealing to the
model development and clinical application by eliminating
the need to use two different models to deal with the
aforementioned problems.
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