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Abstract Cardiovascular disease is the leading cause of
death worldwide, showing a dramatically growing preva-
lence. It is still associated with a poor clinical prognosis,
indicating insufficient long-term treatment success of
currently available therapeutic strategies. Investigations of
the pathomechanisms underlying cardiovascular disorders
uncovered the Ca2+ binding protein S100A1 as a critical
regulator of both cardiac performance and vascular biology.
In cardiomyocytes, S100A1 was found to interact with both
the sarcoplasmic reticulum ATPase (SERCA2a) and the
ryanodine receptor 2 (RyR2), resulting in substantially
improved Ca2+ handling and contractile performance.
Additionally, S100A1 has been described to target the
cardiac sarcomere and mitochondria, leading to reduced

pre-contractile passive tension as well as enhanced oxida-
tive energy generation. In endothelial cells, molecular
analyses revealed a stimulatory effect of S100A1 on
endothelial NO production by increasing endothelial nitric
oxide synthase activity. Emphasizing the pathophysiologi-
cal relevance of S100A1, myocardial infarction in S100A1
knockout mice resulted in accelerated transition towards
heart failure and excessive mortality in comparison with
wild-type controls. Mice lacking S100A1 furthermore
displayed significantly elevated blood pressure values with
abrogated responsiveness to bradykinin. On the other hand,
numerous studies in small and large animal heart failure
models showed that S100A1 overexpression results in
reversed maladaptive myocardial remodeling, long-term
rescue of contractile performance, and superior survival in
response to myocardial infarction, indicating the potential
of S100A1-based therapeutic interventions. In summary,
elaborate basic and translational research established
S100A1 as a multifaceted therapeutic target in cardiovas-
cular disease, providing a promising novel therapeutic
strategy to future cardiologists.
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Introduction

Cardiovascular disease is the leading cause of mortality
worldwide, accounting for approximately 30% of all deaths
per year [1, 2]. In 2006, 81,100,000 people suffered from
one or more forms of cardiovascular disease in the USA
alone [3]. Particularly frightening is evidence for a
dramatically growing prevalence of cardiovascular disease,
predicting a doubling of lethal outcomes by 2030 [1]. Aside
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from its epidemiological significance, cardiovascular dis-
ease represents an increasing socio-economic burden for
health care systems all over the world [2].

Although therapeutical options have considerably
expanded over the last decade, cardiovascular illnesses,
especially heart failure and atherosclerosis, are still
associated with a bad clinical prognosis and very little
hope for the individual patient [4–6]. Therefore, the
decoding of the underlying molecular pathomechanisms
with an identification of novel therapeutic targets appears
to be urgently necessary.

In this review, we discuss the molecular interactions and
regulatory function of the small Ca2+ binding protein
S100A1 in cardiomyocytes and endothelial cells with a
special focus on its pathophysiological relevance. Finally,
we aim to highlight the potential of an S100A1-targeted
therapy in cardiovascular disease.

The S100 Protein Family

S100 proteins represent the largest subgroup within the Ca2+

binding EF-hand protein superfamily [7, 8]. They were first
described by Moore et al. in 1965 and represent small acidic
proteins with a molecular weight of 9 to 13 kDa that are
exclusively found in vertebrates. Due to their unique
solubility in a solution of 100% saturated ammonium sulfate,
they were termed “S100” [9]. To date, 25 individual S100
genes have been identified in humans, and most of them,
including S100A1, are tightly clustered on chromosome
1q21 [8]. According to the current nomenclature, S100 genes
located in this region are designated “S100A” followed by
consecutive Arabic numbers (S100A1, S100A2, S100A3,
etc.), whereas genes on other chromosomes like S100B or
S100P are given other characters as stem symbol [10].

A common and exceptional characteristic of all S100
proteins is the presence of two Ca2+ binding sites of the EF-

hand type (i.e., helix-loop-helix arrangement) [11]. The
C-terminal EF hand contains the classical canonical Ca2+

binding motif, while the other one, located in the N-
terminal half, includes two additional amino acids and is
therefore also called pseudo or S100 EF hand. As a
consequence, Ca2+ binding to the individual EF hands
occurs with different affinities, ranging from a dissociation
constant (Kd) of 10 to 50 μM in case of the C-terminal EF
hand to a Kd between 200 and 500 μM in case of the
N-terminal EF site [12]. Importantly, Ca2+ affinity is
modified by posttranslational mechanisms resulting in
Ca2+ binding and subsequent activation of S100 proteins
at much lower Ca2+ concentrations [13–15].

In S100 proteins, the two EF hands are interconnected by
an intermediate linker region, usually referred to as the hinge
region, and the C-terminal helix-loop-helix arrangement is
followed by a C-terminal extension (Fig. 1). As members of
the S100 protein family differ from one another mostly in
length and sequence of both the hinge region and the
C-terminal extension, these sections are suggested to mediate
the specific biological activity of individual proteins [11].
Interestingly, Ca2+ binding of S100 proteins—excepting
S100A10—leads to a major conformational change charac-
terized by the formation of a hydrophobic pocket containing
residues of the hinge region and the C-terminal extension,
which are thus believed to represent the major interaction
sites with target proteins.

Further characteristics of proteins subsumed in the
multigenic S100 family include their tendency to form
noncovalent homo- or heterodimers as well as a distinctive
expression pattern which follows a cell type, tissue, and
development stage-specific manner and could indicate a
high degree of evolutionary specification [16]. At present,
S100 proteins have been identified as regulators of
fundamental molecular and cellular functions such as
differentiation, proliferation, hypertrophy, apoptosis, and
motility in both physiological and pathophysiological
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Fig. 1 Schematic depiction of the secondary structure of an S100
protein. Each S100 monomer consists of a repetitive Ca2+ binding EF-
hand motif whereas the N-terminal (non-canonical) and C-terminal
(canonical) EF hand are connected by a linker region (hinge region).

The hinge region and C-terminal extension (boxed in red) display the
greatest sequence variability among individual members of the S100
protein family. Reproduced with modifications from Donato et al. [11]
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conditions including psoriasis, rheumatoid arthritis, several
neurological disorders, and a diverse list of cancers
[12, 17–19]. Based on the discovery of discriminative
expression patterns in healthy and diseased hearts and
vasculature, experimental in vitro and in vivo studies
additionally revealed that the integrity of S100 proteins
like S100A1, S100A4, S100A6, and S100B is a basic
requirement for normal cardiovascular development and
function [8, 20–37]. Due to its ability to modulate
numerous key effector proteins in cardiomyocytes and
endothelial cells, S100A1 in particular has been proven to
play a critical role in both cardiac performance and vascular
biology.

S100A1 Molecular Structure

The S100A1 monomer with a molecular weight of
10.4 kDa reflects the molecular architecture typical for all
members of the S100 protein family [11]. In each EF hand,
the Ca2+ binding loop is flanked by α-helices, so that
helices I and II enclose the N-terminal loop and helices III
and IV, the C-terminal loop, respectively. Within cells, the
dominating condition of S100A1 is a homodimer of two
S100A1 molecules whereas the dimeric structure is favored
even at picomolar monomer concentrations [12, 16, 38].
Dimerization of S100A1 occurs independently of Ca2+

binding in a symmetric and antiparallel manner and is
stabilized through hydrophobic bonds between helices I and
I′ of each monomer (Fig. 2).

Upon Ca2+ binding to both EF hands, S100A1—alike
other S100 proteins—undergoes a conformational change

resulting in the exposure of a concave hydrophobic pocket
[39]. Considering the fact that the pocket-forming
domains, including the hinge region and the C-terminal
extension, display the greatest sequence variability among
S100 isoforms, this pocket is considered to be involved in
the Ca2+-dependent interaction with target proteins,
enabling S100A1 to function as an intracellular Ca2+

sensor without apparent intrinsic catalytic activity [12].
Despite the different Ca2+ affinities of both EF hands,
which is a unique feature of S100 proteins, Ca2+ binding
of S100A1 is tightly regulated by posttranslational
modifications [13–15]. NO-dependent S-glutathionyla-
tion of a cysteine residue located in the C-terminal
extension facilitates Ca2+ binding of both EF hands even
at nanomolar-free Ca2+ concentrations. Additionally,
recent findings suggest that S100A1 can only function
as a Ca2+ sensing protein after glutathionylation of its
Cys85 residue. Redox- and NO-dependent posttransla-
tional modifications might therefore empower S100A1 to
sense spatially defined short-term as well as long-term
global Ca2+ oscillations in cardiac and vascular cells,
whereas its Ca2+ sensing function might be regulated by
the particular intracellular NO/redox equilibrium [40].

S100A1 Cardiovascular Expression Pattern

In humans, S100A1 is predominantly found in the
myocardium with the highest protein levels in the left
ventricle and lower concentrations in the right ventricle and
the atria [41–45]. Comparative analyses revealed a similar
S100A1 expression in a wide range of animals including
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Fig. 2 The three-dimensional structure of S100A1 as determined by
NMR spectroscopy. a In the apo-state, S100A1 exists as a homodimer.
Dimerization occurs in an antiparallel manner and is stabilized by
hydrophobic bonds between helix H1 and H1′. b The conformational
change upon Ca2+ binding to both the N- and C-terminal EF hands

results in the exposure of hydrophobic residues that are important for
the interaction with target molecules. S100A1 residues 75–94 are
boxed in red (S100A1ct). Reproduced with modifications from Wright
et al. [16]
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rodents and larger mammals [42, 43, 46]. In mice, cardiac
S100A1 mRNA and protein levels steadily increase during
heart development and reach a plateau in the postnatal state
[47]. Among the cell types habitually present in the
postpartum myocardium, S100A1 predominantly resides
in cardiomyocytes without evidence for an expression in
cardiac fibroblasts (Rohde D, unpublished results). Analy-
sis of the S100A1 promoter in rodents identified a subset of
transcription factor consensus sequences (i.e., Nkx-2.5,
MEF-2, and CEF) that are well known to drive cardiac-
specific expression of genes such as cardiac troponin C or
calsequestrin and potentially convey the cardiac-restricted
expression of S100A1. Theoretical calculations derived
from cell culture experiments using recombinant S100A1
for quantitative protein analysis indicated a concentration of
approximately 50 nM in the cytoplasmic compartment of
adult rat and mouse ventricular cardiomyocytes (Rohde D
and Voelkers M, unpublished results) [48].

Although S100A1 expression has never been detected in
the vasculature of fetal mice, S100A1 mRNA and protein
have recently been described in rodent and human
endothelial cells from different tissues [30, 49–51]. Expres-
sion analyses in rodents revealed an approximately 50-fold
lower S100A1 protein content of adult aortic endothelial
cells in comparison with cardiomyocytes (Most P, unpub-
lished results). Against this background, both a missing
expression and an S100A1 expression below the method-
ical detection limit could hypothetically be the case in
maturing rodent vascular structures, but do not necessarily
reflect expression patterns in humans.

S100A1 in Cardiomyocytes

Subcellular Location and Molecular Targets

In immunohistochemical analyses, S100A1 displayed a
striated-like cytoplasmic pattern in adult cardiomyocytes,
mainly co-localizing with the sarcoplasmic reticulum
ATPase (SERCA2a) and the myocardial ryanodine receptor
2 (RyR2) [27, 52–55]. Further studies also yielded a partial
co-localization with mitochondria in neonatal cardiomyo-
cytes, whereas the mitochondrial F1-ATPase and the
adenine nucleotide translocator (ANT) could be identified
as binding targets of S100A1 [56, 57]. Moreover, the use of
immuno-electron microscopy uncovered several S100A1
binding regions within the sarcomere, including the Z-line,
the periphery of the M-lines, as well as the I- and A-bands,
and subsequent analyses revealed the giant myofilament
protein titin as a binding partner of S100A1 [58–61].

Sarcoplasmic reticulum Several studies reported a co-
localization of S100A1 with the SERCA2a/phospholamban

(PLB) complex in cardiomyocytes and demonstrated a Ca2+-
dependent interaction of S100A1 with both the sarcoplasmic
reticulum (SR) Ca2+ ATPase and its endogenous inhibitory
peptide PLB [27, 52, 53, 55]. Functional analyses in
cardiomyocytes and isolated SR vesicles showed that Ca2+-
dependent S100A1 binding to SERCA2a results in an
increased enzymatic activity and hereby heightened SR Ca2+

uptake and enhanced SR Ca2+ load [48, 54, 62]. Similar
results were obtained using a synthetic peptide composed of
the S100A1 C-terminal amino acid residues 75 to 94,
indicating the crucial role of helix IV and the C-terminal
extension in the context of S100A1 Ca2+-dependent confor-
mational change and the interaction with SERCA2a [27].
Interestingly, S100A1 seems to exert its SERCA2a regula-
tory activity without affecting the PLB to SERCA2a ratio or
PLB phosphorylation at Ser16 or Thr17. The latter suggests
that neither protein kinase A (PKA) nor Ca2+/calmodulin-
dependent protein kinase II (CaMKII) are involved in
S100A1-SERCA2a interference.

As observed in numerous studies, S100A1 protein
modulates RyR2 function under both diastolic and systolic
conditions [27, 52, 63, 64]. Most et al. first demonstrated
that addition of S100A1 to isolated SR vesicles resulted in
diminished 3H-ryanodine binding to RyR2 at free Ca2+

concentrations of about 150 nM, while a significantly
increased 3H-ryanodine-RyR2 binding occurred at Ca2+

concentrations greater than 300 nM [27]. The relevance of
this Ca2+-dependent biphasic influence of S100A1 on
RyR2 could be approved by multiple subsequent analyses
[48, 62–64]. Hypothesizing a reduced RyR2 open proba-
bility at diastolic cytoplasmic Ca2+ levels, Voelkers et al.
showed that S100A1 in fact decreases the frequency and
amplitude of elementary SR Ca2+ events (Ca2+ sparks) and
thereby reduces the SR Ca2+ leak in quiescent cardiomyo-
cytes [63]. Moreover, a recent study confirmed that
S100A1 increases fractional SR Ca2+ release in voltage-
clamped rabbit cardiomyocytes, suggesting that S100A1
enhances the excitation–contraction coupling gain under
systolic conditions [52].

The differential effects of S100A1 on RyR2 activity
could be interpreted as the result of several binding
sites. Indeed, mapping analyses revealed at least three
distinct S100A1 binding domains within the cytoplasmic
portion of the skeletal muscle ryanodine receptor iso-
form (RyR1), including the calmodulin binding domain
of RyR1 [65]. Additionally, current investigations indi-
cate that the S100A1-RyR2 binding reaction is Ca2+

dependent and includes—analogous to SERCA2a—the
S100A1 C-terminal amino acid residues 75 to 94 [64].
However, S100A1’s interaction sites with RyR2 remain to
be characterized in detail.

Taken together, several studies investigated the impact of
S100A1 on SR Ca2+ homeostasis and consistently found
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that S100A1 augments both the systolic Ca2+ induced Ca2+

release and the diastolic SR Ca2+ uptake by modulating
SERCA2a and RyR2 activity. In doing so, S100A1—
together with other regulative proteins—might essentially
contribute to an intact SR function and a physiological Ca2+

cycling in cardiomyocytes.

Mitochondria The combined use of confocal and immuno-
electron microscopy leads to the detection of S100A1 located
in the mitochondria of cardiomyocytes [56, 57]. Boerries et
al. first described a Ca2+-dependent interaction of S100A1
with the mitochondrial F1-ATPase, which is of crucial
importance for ATP synthesis and energy supply by
oxidative phosphorylation in animal and human cells [56,
66]. The same study provided further evidence for a direct
stimulation of ATP synthase activity by S100A1, suggesting
a fundamental role of S100A1 in the regulation of cardiac
energy homeostasis. Accordingly, a significant lower mito-
chondrial ATPase activity and decreased ATP levels were
found in S100A1 deficient cardiomyocytes, whereas a
normalization of S100A1 abundance in failing cardiomyo-
cytes restored ATP levels to normal values [27]. In addition
to the F1-ATPase, the ANT could be identified as another
binding target of S100A1 in mitochondria, indicating a
possible involvement of S100A1 in the ADP/ATP exchange
between the mitochondrial matrix and the cytoplasm [56]. As
recent analyses brought to light that S100A1 apparently
increases mitochondrial Ca2+ uptake (Boerries M, unpub-
lished results), it is tempting to speculate that S100A1
interaction with mitochondrial targets is not only an integral
part of cardiac muscle energy metabolism but also a
regulator of cardiomyocyte apoptosis [67]. However, addi-
tional studies are needed to elucidate the impact of S100A1
on mitochondrial metabolism and the interplay between the
SR and mitochondria in cardiomyocytes.

Sarcomere Besides SR and mitochondria, S100A1 has also
been detected at several sites within the sarcomere [42, 43,
60, 61]. Yamasaki et al. first provided comprehensive
evidence for S100A1 as a binding partner of the giant
myofilament protein titin and identified three distinctive
S100A1 interaction sites within its force-generating region
[61]. In this context, Ca2+-dependent S100A1 interaction
with the PEVK subdomain of titin was reported to result in
improved sarcomeric compliance by reducing the force that
arises as F-actin slides relative to the PEVK domain. Based
on their results, Granzier and colleagues hypothesized that
S100A1–titin interaction represents a regulatory mechanism
which leads to diminished pre-contractile passive tension in
cardiomyocytes [61, 68]. Interestingly, it has previously
been shown that S100A1 reduces myofilament Ca2+

sensitivity and cooperativity without affecting troponin I
phosphorylation or maximal force development [54]. Taken

together, Ca2+-dependent S100A1 interplay with compo-
nents of the sarcomere might facilitate diastolic cardiomyo-
cyte function by SR-independent mechanisms, whereby the
precise molecular and functional relationships remain to be
characterized.

Impact on Ca2+ Handling and Contractile Performance

Numerous studies have shown that overexpression of
S100A1 results in increased Ca2+ transients and enhanced
contractile performance of field-stimulated mice, rat, and
rabbit ventricular cardiomyocytes [27, 54, 62, 69].
Enhancing intracellular S100A1 levels by application of
recombinant S100A1 protein via patch pipette similarly
augmented systolic SR Ca2+ release and amplified the
excitation–contraction coupling gain in voltage-clamped
rabbit cardiomyocytes [52]. These observations most
likely reflect the regulatory effects of S100A1 interaction
with target proteins directly involved in cardiomyocyte
Ca2+ handling and contractile properties. Strikingly,
increased S100A1 protein levels have a combined impact
on both diastolic and systolic cardiomyocyte performance
(Fig. 3).

In diastole, S100A1-mediated enhancement of SER-
CA2a activity and a diminished frequency and amplitude
of SR Ca2+ sparks account for a heightened SR Ca2+ load
and an accelerated cardiomyocyte relaxation [52, 53, 55,
63]. Additionally, eased myofilament Ca2+ dissociation and
a reduced titin-based pre-contractile passive tension further
contribute to an improved cardiomyocyte diastolic function
[61, 68]. In systole, on the other hand, an S100A1-mediated
increase in SR Ca2+ load in concert with augmented RyR2
opening and fractional SR Ca2+ release represents a
powerful mechanism to boost Ca2+ transients and support
systolic mechanical force development [48, 52, 54, 62].
However, the underlying molecular mechanism by which
S100A1 might alter systolic SR Ca2+ release, i.e., by altered
RyR2 gating remains to be determined. Finally, enhanced
ATP availability caused by an S100A1-mediated increase in
mitochondrial ATPase activity might enable cardiomyo-
cytes to better match Ca2+-dependent energetic demands
[56, 57].

Expression analyses yielded that S100A1-mediated
effects on Ca2+ cycling and contractile performance do
not result from an altered abundance of SR proteins [54].
Furthermore, it has been shown that S100A1 influences
neither the L-type Ca2+ current nor the Na+–Ca2+ exchanger
(NCX) in adult cardiomyocytes [52, 63]. Moreover,
S100A1-overexpressing cardiomyocytes displayed their
hypercontractile phenotype on top of and independent from
β-adrenergic receptor (βAR) stimulation with unchanged
βAR downstream signaling and related protein expression
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Fig. 3 Proposed model for
S100A1 molecular interactions
in cardiomyocytes. a During
excitation–contraction coupling,
voltage-dependent opening of
the L-type Ca2+ channel (LTCC)
leads to a transsarcolemmal
Ca2+ entry that triggers
sarcoplasmic reticulum (SR)
Ca2+ release via ryanodine
receptor 2 (RyR2). Increased
sarcoplasmic Ca2+ levels
eventually result in myofilament
cross-bridge cycling and
mechanical force development.
During diastole, resequestration
of sarcoplasmic Ca2+ into the
SR is operated by the SR Ca2+

ATPase (SERCA). To keep
steady-state conditions, the
NCX excerts transsarcolemmal
Ca2+ extrusion in balance with
LTCC-conducted Ca2+ entry. b
S100A1 interacts with both
RyR2 and SERCA and is
present at mitochondria and
myofilaments. Increased
S100A1 protein levels enhance
systolic SR Ca2+ release via
RyR2 without influencing
LTCC-conveyed Ca2+ entry.
Augmented systolic SR Ca2+

release is compensated by
elevated SERCA activity and
diminished SR Ca2+ leakage
during diastole, altogether
improving SR Ca2+ cycling and
mechanical force generation.
Additionally, S100A1 interac-
tion with mitochondrial
F1-ATPase leads to increased
ATP synthesis and enhanced
energy supply. Finally,
myofilament pre-contractile
passive tension is reduced by
S100A1 interference with
titin–actin interplay in the
sarcomere
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[27, 54, 69–71]. This is of particular interest for cardiovas-
cular physiology as chronic stimulation of βAR signaling
and its downstream effectors such as PKA eventually leads
to cardiac hypertrophy and heart failure [72, 73].

In summary, S100A1 specifically targets cardiomyocyte
Ca2+ handling by improving SR Ca2+ uptake as well as SR
Ca2+ leakage during diastole and Ca2+ release during
systole. In concert with reduced myofilament Ca2+ cooper-
ativity and pre-contractile passive tension, these molecular
mechanisms synergistically facilitate an optimized diastolic
and systolic contractile performance of cardiomyocytes.
Additionally, S100A1 mitochondrial actions might reflect a
mechanism to attune Ca2+-dependent energetic demands to
oxidative energy production. Although our understanding
of how S100A1 modulates cardiomyocyte metabolism is
still incomplete and warrants further investigation, S100A1
could represent a promising therapeutic target in acute and
chronic heart failure.

S100A1 in Endothelial Cells: Molecular Targets
and Regulatory Function

Lefranc et al. first described S100A1 expression in
endothelial cells (ECs) [51]. The following analyses
revealed S100A1 expression in rodent and human capillary,
aortic, femoral, pulmonary, and coronary artery endothelial
cells [30, 49–51]. In cultured aortic endothelial cells,
S100A1 is mainly dispersed in a granular pattern through-
out the cytoplasm with perinuclear enrichment [30]. The
use of immunohistochemistry and confocal microscopy
disclosed the presence of S100A1 at the endoplasmic
reticulum (ER) co-localizing with both endothelial
SERCA2 and the inositol-1,4,5-triphosphate receptor
(IP3R). Most recently, co-immunoprecipitation of endothe-
lial nitric oxide synthase (eNOS) and S100A1 from EC
lysates indicated a direct Ca2+-dependent binding of
S100A1 to eNOS (Most P, unpublished results).

Just like its interaction with SERCA2a and RyR2 in
cardiomyocytes, S100A1 seems to target SERCA2 and
IP3R as key effectors of ER Ca2+ uptake and release in
endothelial cells [74]. Indeed, Pleger et al. demonstrated an
abnormal agonist-induced intracellular Ca2+ rise in ECs
with no or depleted levels of S100A1 [30]. Thus, ECs
isolated from S100A1 knockout mice (SKO−/−) exhibited
reduced Ca2+ transients in response to acetylcholine
stimulation. Consistently, siRNA-mediated S100A1 down-
regulation resulted in a significantly decreased bradykinin-
induced cytoplasmic Ca2+ peak formation. Supporting a
critical role for S100A1 in IP3-mediated Ca2+ signaling in
ECs, adenoviral S100A1 expression in SKO−/− cells led to
a normalization of Ca2+ transients in response to acetyl-
choline and bradykinin.

Against this backdrop, it was tempting to hypothesize an
effect of S100A1 on NO homeostasis in ECs as NO
production is regulated by the Ca2+-dependent binding of
calmodulin to eNOS. Pleger et al. as well as Desjardins et
al. showed that ECs isolated from SKO−/− mice exhibit an
impaired baseline NO production with an attenuated
responsiveness to acetylcholine, bradykinin, and thrombin
in comparison with wild-type (WT) controls [29, 49].
Similar results were obtained from S100A1 siRNA-treated
ECs with significantly decreased S100A1 protein levels.
Interestingly, differences in NO generation occurred at
comparable expression levels of eNOS in ECs from SKO−/−

and WT animals. In line with these observations, S100A1
overexpression in human coronary artery endothelial cells
resulted in an increased NO release upon stimulation with
acetylcholine, whereas this effect was abrogated in the
presence of 2-amino-4-phosphonobutyrate, an inhibitor of
the IP3R-mediated ER Ca2+ release [29].

Summing up, these results provide evidence for a
regulatory role of S100A1 in EC NO homeostasis
(Fig. 4). S100A1 deficiency presumably interrupts normal
muscarinergic and kininergic receptor-mediated eNOS
activation at the level of IP3-triggered ER Ca2+ release,
which potentially leads to diminished Ca2+-dependent
binding of calmodulin to eNOS. Recent observations from
Most et al. additionally indicate a direct molecular
interaction of S100A1 with eNOS, which could contribute
to the modulatory effect of S100A1 on NO generation [50]
(Most P, unpublished results). However, it remains to be
established whether S100A1 exclusively targets ER Ca2+

handling and eNOS regulation or affects alternative
regulatory pathways in ECs.

S100A1 in Cardiac Disease

Pathophysiological Implications

The first clinical interest in S100A1 has been sparked due
to its altered expression in diseased myocardium. Remppis
et al. first demonstrated that chronically dysfunctional
human myocardium is characterized by progressively
diminished S100A1 protein levels that correlate inversely
with the clinical severity of congestive heart failure [44].
Subsequent analyses in a variety of animal heart failure
models, including rodents, rabbit, and pig, provided further
evidence for decreased cardiac S100A1 protein levels as a
molecular signature of failing myocardium in vivo [27, 48,
70, 71, 75, 76]. Most et al. were able to recapitulate this
notion in vitro by incubating cardiomyocytes with various
hypertrophic stimuli [48]. Indeed, chronic stimulation of
neonatal rat cardiomyocytes with endothelin 1, phenyleph-
rine ,and transforming growth factor β resulted in a dose-

J. of Cardiovasc. Trans. Res. (2010) 3:525–537 531



and time-dependent progressive decrease in S100A1
mRNA and protein. As Kiewitz et al. identified an activator
protein 1 (AP-1) binding site within the murine S100A1
promoter sequence, Gq-protein coupled receptor down-
stream signaling, which is known to include AP-1, might
directly operate the transcriptional inhibition of S100A1
[47]. In light of its low abundance in developing fetal
hearts, S100A1 downregulation could furthermore be
considered as a part of fetal gene reprogramming in
maladaptive cardiomyocyte hypertrophy.

The discovery of reduced S100A1 protein levels in
failing myocardium raised the question whether S100A1 is

directly involved in the pathophysiological molecular
mechanisms underlying the clinical development of heart
failure. Interestingly, homozygous S100A1 knockout mice
(SKO−/−) showed unaltered heart rate and cardiac function
under baseline conditions, but exhibited enhanced suscep-
tibility and accelerated functional deterioration in response
to βAR stimulation, pressure overload, and ischemic injury
[48, 49, 77]. SKO−/− mice subjected to transaortic constric-
tion (TAC) for instance displayed significant contractile
impairment and transition towards heart failure 3 weeks
after surgery, while WT animals developed a functionally
compensated state [77]. Surprisingly, heterozygous S100A1
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knockout mice (SKO−/+), with approximately half the
cardiac S100A1 protein abundance of WT animals, initially
also presented an impaired response to βAR stimulation but
maintained normal contractility in response to chronic
pressure overload. Expression analyses revealed that
SKO−/+ mice subjected to TAC show an adaptive left
ventricular upregulation of S100A1 to protein levels found
in WT animals, potentially enabling them to establish a
compensated state in the long term [77]. In line with these
results, myocardial infarction (MI) in SKO−/− mice resulted
in accelerated transition to heart failure, enhanced cardiac
remodeling, increased cardiomyocyte apoptosis, and exces-
sive mortality in comparison with WT controls [48, 49].
Additionally, hearts from infarcted SKO−/− animals dis-
played βAR signaling defects and impaired SR Ca2+

handling significantly earlier than organs from WT mice
[48].

Taken together, these data provide evidence that S100A1
represents an essential prerequisite for cardiac adaption to
chronic hemodynamic stress and ischemic damage. Con-
sidering the hypercontractile phenotype of S100A1-
overexpressing cardiomyocytes, different in vivo strategies,
including transgenic mice and S100A1 gene delivery, have
been used to support this concept [27, 48, 62, 71].
Compared with WT controls, transgenic mice with a
cardiac-restricted overexpression of S100A1 (STG) pre-
sented a markedly augmented cardiac function that
remained elevated in response to βAR stimulation [48,
62]. Concomitantly, both SR Ca2+ content and Ca2+

induced SR Ca2+ release were significantly increased in
ventricular cardiomyocytes isolated from STG animals.
Remarkably, STG mice, compared with SKO−/− and WT
animals, maintained almost normal left ventricular function
and exhibited clearly reduced cardiac remodeling and
cardiomyocyte apoptosis as well as an improved survival
in response to myocardial infarction [48]. Similar results
were obtained from rats with an adenoviral transgene-
mediated cardiac overexpression of S100A1, indicating the
feasibility of a cardiac S100A1 gene transfer in vivo [71].

All in all, the acute and chronic heart failure animal
models investigated clearly mirror the impact of S100A1 on
cardiomyocyte Ca2+ handling and contractile performance
studied in vitro. Whether the improved functional outcome
and superior survival of S100A1-overexpressing animals in
response to pressure overload and myocardial infarction is
solely caused by the known molecular interactions of
S100A1 in cardiomyocytes, however, seems to be ques-
tionable. Given that S100A1, like other S100 proteins, also
exhibits extracellular functions [78–82], the formerly
reported myocardial damage-associated release of S100A1
could be of special importance in this context [36, 83].
Besides its anti-apoptotic effect on neonatal cardiomyocytes
[82], Rohde et al. most recently demonstrated a paracrine

influence of extracellular S100A1 on adult rat cardiac
fibroblasts, potentially providing an additional molecular
mechanism underlying the improved post-MI prognosis of
S100A1-overexpressing mice [84]. Nevertheless, the path-
ophysiological significance of S100A1 released from
injured cardiomyocytes still needs to be investigated.

S100A1 Therapy of Diseased Myocardium

The results obtained from genetically altered mice compre-
hensively point out the critical role of S100A1 in the field
of cardiac functional performance and the development of
heart failure in response to pressure overload and ischemic
injury. Together with an altered expression in human failing
myocardium and the identified molecular interactions in
cardiomyocytes, these data provide a strong rationale to
propose S100A1 as a novel therapeutic target for acute and
chronic cardiac dysfunction.

Adenoviral-based S100A1 gene delivery in failing rat
ventricular cardiomyocytes normalized S100A1 protein
abundance and restored physiological contractile perfor-
mance yielding first proof-of-concept for the therapeutic
potential of S100A1 gene therapy [27, 70, 71]. Detailed
analyses of SR Ca2+ handling in failing cardiomyocytes
displayed re-established Ca2+ transients, normalized SR
Ca2+ load, and decreased diastolic SR Ca2+ leakage in
response to S100A1 treatment [27]. Additionally, Voelkers
et al. most recently demonstrated that S100A1 gene
delivery can actually prevent βAR stimulation-triggered
diastolic SR Ca2+ leakage in adult cardiomyocytes [85].
This finding is of particular clinical interest as a reduction
of spontaneous SR Ca2+ release during diastole might
reduce both incidence and severity of cardiomyocyte after
depolarization-induced cardiac arrhythmias. In this way,
S100A1 overexpression could contribute to the previously
reported improved post-MI survival of STG mice.

Building on these experiments, in vivo approaches of
S100A1 gene therapy were pursued in rodents and pigs [27,
70, 71, 76]. Both adenoviral- and adeno-associated virus
(AAV)-based intracoronary S100A1 gene delivery to failing
rat hearts resulted in reversed maladaptive myocardial
remodeling and a rescue of contractile performance [27,
71]. Moreover, another study most recently provided proof
of therapeutic effectiveness for S100A1 gene therapy in an
experimental pig heart failure model [76]. Here, domestic
pigs were subjected to myocardial infarction and were
undergone a retroinfusion-facilitated delivery of AAV9-
S100A1 to the anterior coronary vein 2 weeks later. In post-
MI pigs, AAV9-S100A1 application led to protection from
progressive hemodynamic deterioration and significant
improvement of cardiac function, indicating a long-term
rescue of heart failure. Interestingly, S100A1-treated ani-
mals, in contrast to untreated controls, developed heart rate
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normalization in response to therapeutic intervention,
reflecting an abrogation of the sympathetic overdrive post-
MI [76].

However, S100A1-based therapeutic interventions in
cardiac disease are not limited to myocardial gene delivery
and could potentially also be employed in the emerging
fields of tissue engineering and cell therapy. Indeed,
engineered heart tissue (EHT) constructed from neonatal
rat cardiomyocytes displayed enhanced contractile perfor-
mance under baseline conditions and in response to βAR
stimulation after adenoviral overexpression of S100A1
[86]. S100A1 gene delivery might therefore represent a
promising strategy to strengthen EHT and to heighten its
therapeutic effectiveness, which could open new ways of
engineered tissue-based treatment options. Moreover, it is
tempting to speculate that progenitor cells with the ability
to regenerate cardiomyocytes could benefit from increased
S100A1 protein levels in the sense of superior contractile
properties and enhanced resistance against pathological
myocardial remodeling.

S100A1 in Vascular Disease: Impact on Vascular Tone
and Therapeutic Potential

Given the modulatory function of S100A1 in EC NO
homeostasis, the first evidence for the crucial pathophys-
iological significance of this finding emerged from
experiments on arterial vessels isolated from SKO−/−

mice. Pleger et al. and Desjardins et al. comprehensively
demonstrated that S100A1 deficiency is associated with a
significantly diminished relaxation in response to acetyl-
choline in thoracic aorta and mesenteric artery segments
[30, 49, 50]. Interestingly, no differences in vasodilatation
were observed between vessels from SKO−/− and WT
animals upon incubation with the NO donor sodium
nitroprusside and the βAR agonist isoproterenol [30].
Although a previous study described an interaction of
S100 proteins with the calmodulin binding protein
caldesmon in smooth muscle cells [87], these data clearly
point out that a decreased muscarinergic receptor-
stimulated relaxation of vessels lacking S100A1 can be
attributed to a diminished EC NO production. Further
supporting this notion, distinctions measured in response
to acetylcholine between mesenteric artery segments from
SKO−/− and WT mice were abolished in the presence of
the eNOS inhibitor L-NG-nitroarginine methyl ester [49].

Considering these pathophysiological relationships, the
hemodynamic characterization of S100A1-deficient mice
appeared to be of particular interest. Indeed, Pleger et al.
described significantly elevated systolic and diastolic blood
pressure values in conscious SKO−/− animals in comparison
with WT littermates, whereas heart rate levels were similar

in both groups [30]. In line with the in vitro results, SKO−/−

mice in contrast to WT animals showed no hypotensive
response to systemic bradykinin application [30]. More-
over, Desjardins et al. most recently reported that lack of
S100A1 in mice confers a gender-dependent hypertensive
phenotype [49]. Surprisingly, analyses revealed significant-
ly higher mean arterial blood pressure values in male than
in female SKO−/− mice, potentially indicating hormonal
differences as a confounding factor. Following myocardial
infarction, male SKO−/− animals also displayed a reduced
survival in comparison with female S100A1-deficient mice,
suggesting prognostic relevance for the gender-specific
extent of arterial hypertension in SKO−/− mice [49]. Thus,
chronically increased cardiac afterload could contribute to
the excessive post-MI mortality of SKO−/− mice.

Taken together, these data apparently indicate that
S100A1 represents a basic prerequisite for EC NO
generation and intact vascular biology. However, further
studies are necessary to allow a sound understanding of
S100A1’s interactions in the vasculature. Thus, the rele-
vance of S100A1 expressed in smooth muscle cells remains
to be elucidated [51, 88, 89]. Nevertheless, the detection of
diminished S100A1 protein levels in ECs isolated from
failing rat hearts points out the close relationship and
common endpoints of cardiac and vascular disease [30].
Considering the growing evidence that a dysbalanced NO/
redox equilibrium substantially accounts for the abnormal
cardiac and vascular phenotypes found in the failing
cardiovascular system [40], targeting endothelial S100A1
could provide a novel therapeutic strategy for vascular
disorders.

Conclusions and Clinical Perspective

To improve human health, the scientific unmasking of
novel molecular mechanisms has to be translated into
clinical practice. In the case of S100A1, the clinical
discovery of diminished protein abundance in failing
human myocardium initiated a challenging investigation
of its molecular interactions and pathophysiological rele-
vance (previously reviewed in [26, 28, 50, 64, 74, 90]). At
present, more than a decade later, multiple molecular
interactions, regulatory functions, and pathophysiological
implications of S100A1 have been identified in cardiomyo-
cytes and ECs, making S100A1 a promising multifaceted
therapeutic target in cardiovascular disease.

In the field of heart failure, several translational studies
already provide evidence for the beneficial long-term
effects of S100A1 gene therapy in small and large animal
models [27, 48, 62, 70, 71, 76]. Due to their striking
anatomic and physiological comparability with humans, a
recent study in post-MI pigs, demonstrating reversed
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myocardial remodeling and functional rescue of cardiac
performance by means of S100A1 gene delivery to
cardiomyocytes, might help to further progress towards
first clinical safety trials in humans [76]. Additionally,
manipulating S100A1 expression in ECs could potentially
extend the spectrum of clinical indications for S100A1-
based therapeutical interventions to vascular disorders like
hypertension and peripheral and coronary artery disease.

However, before a human application of S100A1 gene
therapy appears to be reasonable, a careful evaluation of its
safety profile, including its effects on cardiac energetics and
arrhythmias as well as its compatibility with established
pharmacological and device-based therapies, needs to be
investigated in large-animal models. Thus, although there is
still a long way to go, S100A1-targeted therapies might
give hope to chronically ill patients and help to fight the
growing burden of cardiovascular disease in the future.
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