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ABSTRACT Mutations conferring resistance to one antibiotic can increase (cross-re-
sistance) or decrease (collateral sensitivity) resistance to others. Antibiotic combina-
tions displaying collateral sensitivity could be used in treatments that slow resistance
evolution. However, lab-to-clinic translation requires understanding whether collat-
eral effects are robust across different environmental conditions. Here, we isolated
and characterized resistant mutants of Escherichia coli using five antibiotics, before
measuring collateral effects on resistance to other paired antibiotics. During both
isolation and phenotyping, we varied conditions in ways relevant in nature (pH, tem-
perature, and bile). This revealed that local abiotic conditions modified expression of
resistance against both the antibiotic used during isolation and other antibiotics.
Consequently, local conditions influenced collateral sensitivity in two ways: by favor-
ing different sets of mutants (with different collateral sensitivities) and by modifying
expression of collateral effects for individual mutants. These results place collateral
sensitivity in the context of environmental variation, with important implications for
translation to real-world applications.

IMPORTANCE When bacteria become resistant to an antibiotic, the genetic changes
involved sometimes increase (cross-resistance) or decrease (collateral sensitivity) their
resistance to other antibiotics. Antibiotic combinations showing repeatable collateral
sensitivity could be used in treatment to slow resistance evolution. However, collat-
eral sensitivity interactions may depend on the local environmental conditions that
bacteria experience, potentially reducing repeatability and clinical application. Here,
we show that variation in local conditions (pH, temperature, and bile salts) can influ-
ence collateral sensitivity in two ways: by favoring different sets of mutants during
bacterial resistance evolution (with different collateral sensitivities to other antibiot-
ics) and by modifying expression of collateral effects for individual mutants. This sug-
gests that translation from the lab to the clinic of new approaches exploiting collat-
eral sensitivity will be influenced by local abiotic conditions.
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As a result of antibiotic use, resistance is increasing in bacteria (1), necessitating efforts
to identify new antibiotic types (2). However, the time, money, and risks involved in

getting new therapeutics to the clinic (3) and the targeting of many essential bacterial
pathways by existing antibiotics mean that the rate of development for new antibiotics is
outstripped by rates of resistance development (3). To tackle the threat of antibiotic resist-
ance, we must investigate strategies to slow the spread of resistance to existing treat-
ments and to any new treatments in development (4). One strategy that shows promise
in slowing the evolution of resistance is to exploit collateral sensitivity interactions (5–8).
These have been observed for specific combinations of antibiotics where mutations con-
ferring resistance to one antibiotic sensitize bacteria to a second antibiotic (5–8), thereby
increasing the effectiveness of the second antibiotic and reducing the potential for resist-
ance evolution to it (6, 9). For collateral sensitivity interactions to be exploited
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therapeutically, it is important that their emergence across different populations of bacte-
ria, such as those in different patients or in different communities, be repeatable. That is,
unless collateral sensitivity interactions are predictable, exploiting them in new treatment
strategies will be very challenging (10–13).

Recent work revealed important genetic factors influencing the predictability of col-
lateral sensitivity, but the importance of local abiotic conditions is still unclear. For
example, high-throughput in vitro studies showed that different replicate populations
exposed to the same antibiotic sometimes acquire collateral sensitivity to another anti-
biotic and sometimes do not (10, 11). This can be explained by different mutations,
which vary in their phenotypic effects on resistance, spreading in different replicate
populations (11, 12, 14, 15). However, we know from past work that phenotypic effects
of antibiotic resistance mechanisms also vary strongly depending on local environmen-
tal conditions (16–19). For example, bile can upregulate efflux pumps (20), zinc can
reduce the activity of aminoglycoside-degrading enzymes (21), and high temperature
can modulate the effects of rifampicin resistance mutations on growth in the absence
of antibiotics (22). This raises the possibility that local environmental conditions could
influence the emergence of collateral sensitivity by affecting which of the possible
pathways to resistance are most strongly selected, both in the absence of antibiotics
and during antibiotic exposure. Furthermore, the abiotic environment could affect the
expression of collateral effects, by modifying the phenotypic effects of resistance alleles
when bacteria are exposed to a second antibiotic. To date, research on collateral sensitiv-
ity interactions has focused on testing many combinations of antibiotics (5, 6, 9, 14), mul-
tiple strains (10), or many replicate populations for individual antibiotic combinations
(11). Therefore, the role of local abiotic conditions in the emergence and expression of
collateral sensitivity interactions remains unclear. Answering this question would improve
our understanding of the robustness of collateral sensitivity across different populations
and environments. This would in turn boost our ability to predict pathogen responses to
treatment regimens that exploit collateral sensitivity interactions.

To address these gaps in our knowledge, we tested for collateral effects (cross-re-
sistance or collateral sensitivity) between five pairs of antibiotics, each in four different
experimental environments. Each antibiotic pair consisted of a selection antibiotic
(which we used in mutant isolation) and a paired antibiotic (which we used to test for
collateral effects). We chose pairs of antibiotics indicated by past work to at least some-
times display collateral sensitivity interactions (5, 6). The four experimental environ-
ments were (i) basal, nutrient-rich broth (lysogeny broth [LB] at 37°C and buffered at
pH 7.0), plus three types of abiotic environmental variation which we expect to be rele-
vant to pathogens in vivo; (ii) reduced pH (pH 6.5), as found in certain body compart-
ments, including abscesses and parts of the gastrointestinal (GI) tract (23, 24); (iii)
increased temperature (42°C), as found in companion and livestock animals with
higher core temperatures than humans (25); and (iv) the presence of bile salts (0.5 g/L
bile salts), which bacteria must contend with in the GI tract (26).

In each of four sets of abiotic conditions, we grew multiple independent popula-
tions of Escherichia coli K-12 MG1655 in the absence of antibiotics, before screening for
antibiotic-resistant mutants, on agar with the selection antibiotic (shown schematically
in Fig. S1 in the supplemental material). From these resistant mutants, we randomly
chose single colonies (from independent populations) to isolate and sequence. For
each isolate, we then measured resistance as the 90% inhibitory concentration (IC90)
for the relevant selection antibiotic and paired antibiotic, again across all four sets of
abiotic conditions (Fig. S1). Unlike past work, this manipulation of the experimental
environment, during both isolation and phenotyping, in a fully factorial design allowed
us to quantify the effects of local abiotic conditions on the emergence (which muta-
tions are selected in which treatments?) and expression (in which abiotic environments
do we see collateral effects from particular mutants?) of collateral sensitivity for multi-
ple candidate antibiotic pairs. Our aim was to quantify the effect of environmental con-
ditions on collateral sensitivity interactions for a range of different mutants, rather than
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to focus on individual mutations. Nevertheless, for some of the mutations we identi-
fied, existing information about their physiological effects provides mechanistic insight
into the origins of observed collateral effects, and we place our findings in this context
where relevant.

RESULTS
Different resistance mutations isolated depending on local abiotic conditions.

We used whole-genome sequencing to identify genetic changes relative to the ances-
tral strain for 84 resistant mutants (Fig. 1; Table S1), each isolated after exposure to one
of five antibiotics (selection antibiotic, defined as the antibiotic present in the agar
plate used to select resistant mutants from ancestral cells) in four different abiotic envi-
ronments (selection environment, defined as the local abiotic conditions during over-
night growth prior to plating and in the agar plate). We found that mutants selected

FIG 1 Genes affected by mutations, in mutants selected for resistance to different antibiotics in different selection environments. Each row of cells
represents one mutant; rows are grouped by which antibiotic they were selected against (selection drug; labeled at left) and colored by the abiotic
conditions during selection (selection environment; legend at top with the following abbreviations: basal, basal conditions of pH 7.0 and 37°C; bile, with
added bile salts at 0.5 g/L; pH, with reduced pH of 6.5; temp, increased temperature of 42°C). Each column of cells represents one gene or gene set that
was affected by mutations in our isolated mutants (ordered alphabetically). Each gene set comprises multiple genes involved in the same pathway (see
Materials and Methods); these were acr, hem, pho, rib, and ubi. At the top, the total number of mutants with mutations affecting each gene is shown.
Sixteen of the 84 mutants contained multiple mutations affecting multiple genes, all of which are shown. The rightmost column (Syn) shows synonymous
mutations, found in four mutants (all four mutants also had other, nonsynonymous mutations). For more information, see Table S1.
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with the same selection antibiotic tended to have mutations affecting the same genes
more often than mutants selected with different selection antibiotics (permutational
multivariate analysis of variance [PERMANOVA]: F3,72 = 7.21; P , 0.001). Similarly,
mutants selected in the same selection environment tended to have mutations affect-
ing the same genes more often than mutants selected in different selection environ-
ments (PERMANOVA: F3,75 = 2.44; P , 0.001). Looking at each selection antibiotic sepa-
rately, there was an effect of selection environment for cefuroxime (F3,13 = 7.50;
corrected P , 0.01) and streptomycin (F3,15 = 2.19; corrected P , 0.05) but not trime-
thoprim and gentamicin (corrected P . 0.05). For streptomycin, the major differences
were between the mutations selected in the low-pH environment and those in other
selection environments. For cefuroxime, we found mutations in the penicillin-binding
protein gene ftsI, but only in the presence of bile (Fig. 1). For chloramphenicol, we
obtained genotypic information for only five mutants; these are shown in Fig. 1 and
Fig. S2 but not included in the analyses here or below because of the much smaller
sample size. In summary, the types of resistance mechanisms that were selected during
our mutant screen depended on the local abiotic conditions.

Collateral sensitivity and cross-resistance vary depending on resistancemechanism.
We tested whether different resistant mutants showed variable susceptibility to paired
antibiotics previously implicated in collateral sensitivity. For the selection antibiotics
cefuroxime, gentamicin, streptomycin, and trimethoprim, the paired antibiotics were
gentamicin (6), cefuroxime (6), tetracycline (5), and nitrofurantoin (5), respectively. The
average fold change in IC90 of paired antibiotics was low (mean 6 standard deviation
of log2-transformed relative IC90, 0.01 6 0.71) (Fig. 2 and Fig. S3) compared to changes
in resistance to the selection antibiotics (1.99 6 1.13) (Fig. 2 and Fig. S3; discussed fur-
ther below) and encompassed both positive (cross-resistance) and negative (collateral
sensitivity) changes in resistance (Fig. 2). For individual pairs of antibiotics, average col-
lateral effects varied depending on which gene was mutated for the sets of mutants
selected against gentamicin and then tested against cefuroxime (main effect of geno-
type on cefuroxime IC90: F4,46 = 6.73; corrected P , 0.01), mutants selected against
streptomycin and tested against tetracycline (F5,139 = 3.93; corrected P , 0.01), and
mutants selected against trimethoprim and tested against nitrofurantoin (x 2

2 = 10.8;
corrected P, 0.01) but not for mutants selected against cefuroxime and tested against
gentamicin (F4,19 = 0.189, corrected P . 0.5). We found several genes that were consis-
tently associated with collateral sensitivity to paired antibiotics (shown by negative val-
ues of log2-transformed relative IC90), such as ubi mutants, which were on average
collaterally sensitive to cefuroxime (effect of ubi mutation on log2-transformed relative
IC90: b = 20.98: t38 = 3.51; P , 0.001) (Fig. 2b), and atpG mutants, which were on aver-
age collaterally sensitive to tetracycline (b = 20.452; t148 = 3.27; P , 0.01) (Fig. 2c).
Mutations in ubi genes and in atpG affect ubiquinone synthesis and the ATP synthase,
respectively, disrupting the proton motive force (PMF), which in turn leads to a
reduced membrane potential and hence reduced influx of aminoglycosides (27).
Despite the benefit of aminoglycoside resistance, PMF-driven efflux pumps such as
acrAB are less active in mutants with disrupted PMF (5), increasing susceptibility to
other antibiotics.

For mutants selected against trimethoprim, the variable collateral effects observed
for different mutants/genotypes translated to differences in average resistance to
nitrofurantoin depending on which environment they were selected in (effect of selec-
tion environment on IC90 to nitrofurantoin: x 2

3 = 20.6; corrected P , 0.01). Mutants
selected at high temperature (b = 20.26; t58 = 4.19; P , 0.05) had significant collateral
sensitivity. Mutations in phoPQ, which were associated with relatively high sensitivity
to nitrofurantoin (Fig. 2d), were more common at high temperature than in the other
selection environments (Fig. 1). In summary, mutants selected for resistance to one an-
tibiotic often had altered average resistance to other antibiotics (as expected, as these
antibiotics were chosen based on past evidence of such effects). However, these collat-
eral effects varied among different pathways to resistance (mutated genes), which
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translated in some cases to variation of average collateral effects depending on the
abiotic conditions during selection for resistance to the first antibiotic (selection
environment).

Collateral effects depend on the assay environment. Expression of average col-
lateral effects to paired antibiotics also varied depending on the abiotic conditions dur-
ing exposure to these antibiotics. For mutants selected against cefuroxime and trime-
thoprim, there was a significant effect of assay environment on average resistance to
the paired antibiotics, relative to the ancestor under the same conditions (effect of
assay environment on resistance to paired antibiotic for selection-paired antibiotic:
cefuroxime-gentamicin, x 2

3 = 53.0, corrected P , 0.001; trimethoprim-nitrofurantoin,
x 2

3 = 89.1, corrected P , 0.001) (Fig. 2). Note that this variation of susceptibility rela-
tive to the ancestral strain was not explained by variable susceptibility of the ancestral
strain across assay environments (Fig. S3). Qualitatively similar results emerge (see the
legend to Fig. S3) if we use the absolute IC90 (not relative to the ancestor).

Changing the local abiotic conditions did not affect all mutants the same way: the
mutated gene and assay environment interacted to determine resistance to cefurox-
ime in mutants selected against gentamicin (genotype-by-assay environment interac-
tion effect on cefuroxime resistance: x 2

9 = 38.3; corrected P , 0.001). For some
mutants, this variation led to a switch between cross-resistance and collateral sensitiv-
ity, such as cpxA mutants (Fig. 2b), which were resistant to cefuroxime in the bile (b =

FIG 2 Collateral changes in resistance to a paired antibiotic for resistant mutants selected with each selection
antibiotic, tested across different abiotic conditions (x axis, assay environments). Each panel shows mutants
selected for resistance to a selection antibiotic and then tested for resistance to a paired antibiotic (labeled at
the top of the panel). The IC90 for each mutant of the paired drug is shown relative to the ancestor in the
same environment (scores for the ancestor are given in Fig. S3): mutants with points of .1 are more resistant
and those with points of ,1 are more sensitive than the ancestor. Mutants are grouped and colored according
to the gene or gene set that was mutated; the thick lines show mean IC90 across all mutants with the same
gene/gene set mutated. Where there were multiple mutants with the same gene/gene set mutated, thin lines
show IC90s for the individual mutants. The y axis is log transformed, and the scale varies between panels.

Collateral Sensitivity Depends on Abiotic Conditions

November/December 2021 Volume 6 Issue 6 e01055-21 msystems.asm.org 5

https://msystems.asm.org


0.74; t130 = 2.48; P , 0.05) and pH (b = 0.63; t130 = 2.09; P , 0.05) environments but
were susceptible to cefuroxime at high temperature (b = 20.79; t130 = 2.64; P , 0.01).
cpxA is part of a two-component regulator which responds to misfolded proteins in
the periplasm, activating the Cpx response, which has been shown to confer resistance
to aminoglycosides (28). Mutations in the periplasmic domain of cpxA (as in our
mutants) have the Cpx pathway locked into an activated state (29), with Cpx pheno-
types being more pronounced at high temperature (30, 31). Other work has shown
that, due to its influence on cell wall homeostasis, the Cpx response can influence re-
sistance to b-lactams like cefuroxime but that it must be at an intermediate level for
maximal resistance (32). At temperatures of 37°C, our mutants likely upregulate the
Cpx response into the optimum zone, leading to b-lactam resistance. However, at
42°C, the mutant’s Cpx response is likely further upregulated (30, 31), meaning that
peptidoglycan homeostasis is no longer maintained, resulting in b-lactam sensitivity
(32). This shows that collateral effects for individual resistant strains can change quali-
tatively across different abiotic environments.

Environment-dependent selection for particular genotypes is revealed by
analyzing growth at the selecting antibiotic concentration but not resistance as
IC90. Having found that local abiotic conditions influenced collateral sensitivity by
changing both the expression of resistance phenotypes for individual mutants and
which mutants we isolated upon antibiotic exposure, we sought to explain why differ-
ent mutants were isolated in different selection environments. The first possible expla-
nation we tested was that the identity of the mutations conferring most effective re-
sistance against each selection antibiotic (and therefore most likely to form a colony
and be detected in our mutant screen) may depend on local abiotic conditions
(Fig. S4). We found no statistical support for such an effect when we measured resist-
ance (IC90) of each mutant to its corresponding selection antibiotic in all four abiotic
conditions: assay environment did not significantly alter the observed variation of IC90

among genotypes (genotype-by-assay-environment interaction: corrected P . 0.05 for
all antibiotics). Furthermore, we found no evidence that average IC90 was higher for
mutants tested in sympatric environments (selection environment = assay environ-
ment) than in allopatric environments (selection environment = assay environment),
as would be the case if the mutations we detected conferred bigger increases in resist-
ance in the abiotic conditions they were selected in (33, 34) (difference between sym-
patric and allopatric combinations: corrected P . 0.05 for all selection antibiotics).
Thus, variation across assay environments of the relative changes in resistance (meas-
ured as IC90) conferred by different resistance mutations did not explain why we iso-
lated different mutants in different conditions (Fig. 1).

We next analyzed an alternative measure of resistance, growth of each mutant at
the antibiotic concentration used during selection (GASC). Our rationale here was that
the mutations most beneficial during our screen (and most likely to result in formation
of viable colonies) are not necessarily the mutations that confer the largest increases in
IC90. Therefore, GASC potentially provides additional information about why some
types of mutants were associated with particular selection environments. GASC was
calculated from the same dose-response curves as the IC90 and was positively corre-
lated with IC90 across all mutants (correlation: t = 0.508; P, 0.0001) (Fig. S5). For trime-
thoprim-resistant mutants, GASC was predicted by the interaction between mutated
gene and assay environment (gene-by-assay-environment interaction: x 2

6 = 33.4; cor-
rected P , 0.001) (Fig. 3d), and the best-performing individual mutant (thin lines in
Fig. 3d) varied among different assay conditions. Trimethoprim-resistant mutants also
showed evidence of matching between mutants and their selection environments, in
that GASC was higher in sympatric than allopatric combinations (effect of sympatry:
b = 0.0818; standard error [SE] = 0.0234; x 2

1 = 11.8; corrected P , 0.01). For cefurox-
ime-resistant mutants, GASC varied significantly among sets of mutants selected under
different abiotic conditions, with bile-selected mutants performing best (effect of selec-
tion environment: x 2

3 = 11.3; corrected P , 0.05) (Fig. 3a). Thus, addition of bile biased
our screen toward a relatively narrow set of mutants that grew well at the cefuroxime
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concentration used during selection (in particular, ftsI mutants) (Fig. 1). Consistent with
this, we observed resistant colonies in our mutant screen in fewer replicate popula-
tions exposed to bile plus cefuroxime than other cefuroxime selection environments
(Fig. S6). Despite this, the genotype-by-assay-environment interaction for cefuroxime-
resistant mutants was not significant after accounting for multiple testing (x 2

9 = 15.4;
corrected P . 0.1). Note that ftsI mutants also had relatively high IC90 on average
(Fig. S4), although this did not translate to significant variation of mean IC90 with selec-
tion environment, as it did for GASC. Finally, for the relatively small number of chloram-
phenicol-resistant mutants we tested, we also observed an interaction between
mutated gene and assay environment for GASC (Fig. S2c). In summary, analyzing GASC
revealed evidence that some selection environments favored particular types of resist-
ance mutations.

Antibiotic-free growth depends on resistance mechanism and local abiotic
conditions. Antibiotic resistance is often associated with a fitness cost in terms of
impaired growth in the absence of antibiotics, and variation of this cost is a key driver
of the long-term persistence of resistance (16, 35). In our mutant selection experiment,
bacteria were grown in the absence of antibiotics prior to plating. Because plating was
done at antibiotic concentrations that fully inhibited growth of the ancestral strain, we
expect resistance mutations that we detected to have arisen predominantly during
this first (antibiotic-free) phase (Fig. S1), rather than on the agar plate. Therefore, vari-
able costs of resistance across selection environments could potentially help to explain
why we found different sets of mutants in different selection environments. We

FIG 3 Population growth for resistant mutants selected with each selection drug when grown with that
antibiotic at selection concentration (GASC), measured in four different assay environments. Each panel shows
mutants selected for resistance to the selection antibiotic shown in the panel title and then assayed for growth
at the selection concentration of that drug. Mutants are grouped and colored according to the gene or gene
set that was mutated, with the thick lines showing the mean GASC across all strains with the same genotype.
Where there were multiple mutants with the same genotype, thin lines show the GASC for the individual
mutants. The y axis is square-root transformed and varies between panels.
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investigated this by quantifying the growth of each mutant in the absence of antibiot-
ics, using the data set used to calculate the IC90s (see Materials and Methods). Relative
to the ancestral strain in the absence of antibiotics (mean final optical density 6 stand-
ard deviation, 0.898 6 0.104), most types of resistant mutants showed evidence of
growth costs, with 29 of the 57 mutants showing at least a 20% reduction in mean
growth relative to the ancestor in one or more environment. However, this varied
depending on the selection antibiotic (cefuroxime, 0.876 6 0.194; gentamicin,
0.5996 0.308; streptomycin, 0.4886 0.258; trimethoprim, 0.7906 0.168) (Fig. 4).

For all selection antibiotics, mean antibiotic-free growth varied depending on which
gene was mutated (Fig. 4, effect of mutated gene on antibiotic-free growth: cefurox-
ime-selected mutants, F4,16 = 107, corrected P , 0.001; gentamicin, F5,12 = 23.0, cor-
rected P , 0.001; streptomycin, F6,10 = 15.5, corrected P , 0.001; trimethoprim, F3,18 =
358, P , 0.001). For example, streptomycin-resistant mutants with mutations in atpG
grew relatively poorly (Fig. 4c) (difference from ancestor: b = 20.66, t10 = 5.67,
P , 0.001), as did trimethoprim-resistant mutants with phoPQ mutations (Fig. 4d) (dif-
ference from ancestor: b = 20.20, t15 = 6.84, P , 0.001). For all selection antibiotics,
variation of antibiotic-free growth among different genotypes depended on the local
abiotic conditions (genotype-by-assay-environment interaction: cefuroxime, x 2

9 =
23.8, corrected P , 0.05; gentamicin, x 2

12 = 27.4, corrected P , 0.05; streptomycin,
x 2

15 = 33.4, corrected P , 0.05; and trimethoprim, x2
6 = 52.0, corrected P , 0.001).

Despite this, we did not find any evidence of matching between mutants and their
selection environments in terms of antibiotic-free growth (sympatric versus allopatric

FIG 4 Antibiotic-free growth of resistant mutants selected with each selection antibiotic, measured in four
different assay environments. Each panel shows the antibiotic-free growth for mutants selected for resistance to
one of four selection drugs, as indicated for each panel. Mutants are grouped and colored according to the gene
or gene set that was mutated, with the thick lines showing the mean antibiotic-free growth across all strains with
the same genotype. Where there were multiple mutants with the same genotype, thin lines show the antibiotic-
free growth for the individual mutants. The black horizontal line in each plot gives the mean antibiotic-free
growth of the ancestral strain (across all assay environments). The y axis scale varies between panels.
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contrast: P . 0.05 for all selection antibiotics). In summary, local abiotic conditions
modified the costs of resistance for our genotypes in the absence of antibiotics, but
this did not explain the distribution of genotypes across selection environments in our
mutant screen.

DISCUSSION

Our findings have important implications for research that aims to exploit collateral
sensitivity in novel treatment approaches. For example, among our trimethoprim-re-
sistant mutants, those selected at high temperatures showed the greatest collateral
sensitivity to nitrofurantoin. Thus, trimethoprim treatment of poultry (36), with a higher
body temperature, could potentially select for mutants that are collaterally sensitive to
nitrofurantoin, but this may be less likely in other environments. Studies of collateral
sensitivity will therefore be most relevant when they account for environmental varia-
tion, for example by focusing on resistant mutants that arise under conditions similar
to those during infection, or testing explicitly for variation across abiotic conditions (as
done here). This will ensure that collateral effects of mutations specific to the infection
environment are not overlooked, and that collaterally sensitive mutants specific to the
lab environment are not given undue attention. Note that our study included only
chromosomal mutants derived from a single laboratory strain, allowing us to study the
mutants in a well-characterized genetic background. Nevertheless, some of the resist-
ance mechanisms we identified are known to be important in natural and clinical pop-
ulations, such as mutations in genes for efflux pumps (acr) (37), global regulators
(marR and phoPQ) (38, 40) and specific antibiotic targets (ftsI and rpsL) (41–43), sug-
gesting that our findings are relevant beyond laboratory studies. A key question for
future work is whether collateral effects of resistance encoded on plasmids (44, 45),
which is common in clinics, show sensitivity similar to that under abiotic conditions as
we saw here. We speculate that this is likely, because plasmids can carry accessory
genes with fitness effects that are strongly affected by the abiotic environment (46,
47). In support, a recent study suggested that plasmid carriage can induce collateral
sensitivity in E. coli (48).

Some past studies have looked at collateral sensitivity in clinical isolates (10, 49, 50),
but these studies each measured collateral sensitivity in a single lab environment. Our
results suggest that this may risk overlooking collateral sensitivity interactions that
may be important in the infection environment. For example, if we had tested cpxA
mutants only in a single environment at 37°C, we would have observed only that they
mediate cross-resistance between gentamicin and cefuroxime (51, 52). This would miss
the collateral sensitivity of these mutants at higher temperature (Fig. 2b), a potentially
interesting target for collateral sensitivity in E. coli infecting hosts with higher body
temperatures, such as poultry (25). More generally, variable collateral effects as we
observed here are relevant for understanding the evolution of antibiotic resistance
across different conditions or environmental compartments (53) or in infections that
start in one location, condition, or host before spreading to others (54, 55). The chang-
ing expression of collateral effects with abiotic conditions therefore represents an im-
portant variable which should be considered if we are to design robust treatment regi-
mens around collateral sensitivity. Of course, our experiments were still restricted to
simplified lab conditions. Our aim here was to demonstrate that even relatively minor
(but still relevant to nature) manipulations of the abiotic environment can modify col-
lateral sensitivity interactions. Our finding that such effects are strong suggests other
differences between complex within-host or natural environments and in vitro screen-
ing conditions are likely to modify expression of collateral resistance even further.

It is worth noting that the method we used to generate resistant mutants differs
from some other studies on collateral sensitivity (5, 6), where bacteria were exposed to
sub-MICs or increasing antibiotic concentrations over multiple growth cycles. In our
approach, as in a conventional fluctuation assay screening for antibiotic resistant
mutants (56), we grew the ancestral strain in the absence of antibiotics to generate
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diversity, before treating with inhibitory concentrations of antibiotics to select for re-
sistance to otherwise inhibitory concentrations. Thus, resistance emerges via selection
at a high concentration for preexisting resistant variants (that arose prior to antibiotic
exposure), rather than gradual exposure to increasing antibiotic concentrations that
progressively increase selection for resistance and decrease population growth of the
sensitive ancestral strain (57). We identified many mutations (e.g., in hem genes) that
have been found in previous studies (5, 10). The method we used also parallels the
course of many infections, as an infection is established in the absence of antibiotics
and then a dose of antibiotics designed to fully inhibit the infection is used on the
diverse population, either wiping it out or strongly selecting for any resistant subpopu-
lation that is present (58, 59). Nevertheless, such single-step screens may select for a
subset of all possible pathways to resistance, for example if there are multimutational
pathways that emerge only upon gradual exposure (60).

In summary, we found that local abiotic conditions modified collateral sensitivity
interactions by two principal mechanisms. First, antibiotic treatment can select for dif-
ferent genetic pathways to resistance depending on the local abiotic environment
(Fig. 1). This was the case here for the selection antibiotics cefuroxime and streptomy-
cin, after correcting for multiple testing (under less conservative criteria, this trend is
more pervasive across antibiotic treatments). This can in turn alter the average
strength of collateral sensitivity to other antibiotics (Fig. 2), as we observed with trime-
thoprim-resistant mutants, which were variably collaterally sensitive to nitrofurantoin
depending on the abiotic environment they were selected in. Second, for individual
mutants, expression of collateral sensitivity or cross-resistance can depend strongly on
local abiotic conditions. For example, we found that gentamicin-resistant cpxAmutants
were cross resistant or collaterally sensitive to cefuroxime depending on the assay
environment. This is consistent with a more general trend that the phenotypic effects
of antibiotic resistance mechanisms are highly sensitive to genotype-by-environment
interactions (16–18, 61). Critically, this suggests that for some antibiotic combinations,
the effectiveness of the second antibiotic against bacteria that have evolved resistance
to the first antibiotic, and consequently selection on resistance to both antibiotics, will
depend on the abiotic environment. While collateral sensitivity still holds great prom-
ise to prolong the effectiveness of available treatments, we suggest that doing so will
be most effective if we account for local abiotic conditions.

MATERIALS ANDMETHODS
Organisms and growth conditions.We used Escherichia coli K-12 MG1655 as the ancestral organism,

grown at 37°C in static 100-ml cultures in 96-well microplates unless otherwise stated. The medium used
was based on lysogeny broth (LB; Sigma-Aldrich) with additions to create variations in environmental condi-
tions for basal, pH, and bile media. Basal medium (the base condition) is LB buffered at pH 7.0 with 0.1 M
sodium hydrogen phosphate (Na2HPO4 and NaH2PO4). pH medium (acidic pH) is LB buffered at pH 6.5 with
0.1 M sodium hydrogen phosphate. Bile medium is LB with the addition of 0.5 g/liter of bile salts and buf-
fered at pH 7.0 with 0.1 M sodium hydrogen phosphate. The temperature treatment uses the basal medium
but is incubated at 42°C. When these conditions were on solid media (i.e., to select for resistant colonies),
we instead used LB agar (Sigma-Aldrich), but other temperature and medium additions were the same. For
overnight culture prior to assay, we incubated at 37°C in diluted LB (LB-water, 1:2).

Mutant isolation. We screened for mutants resistant to each selection antibiotic in each selection
environment by first making 460 cultures of the ancestral E. coli strain for each of the 4 selection envi-
ronments (1,840 cultures total, each inoculated with a small number of cells via dilution from a single
frozen stock), incubated for 20 h in the absence of antibiotics. Each entire culture was then transferred
to a well of a 24-well plate containing 1 ml of agar corresponding to the same selection environment as
the prior liquid culture plus one of five antibiotics at selection concentration (cefuroxime [selection con-
centration = 6 mg mL21], chloramphenicol [6 mg mL21], gentamicin [24 mg mL21], streptomycin [72 mg
mL21], and trimethoprim [0.5 mg mL21]). These selection concentrations were approximately equal to
MICs for the ancestor. This meant the ancestral strain was effectively inhibited, but mutants with even
moderately increased resistance could grow. A higher selection concentration was used for the amino-
glycosides (gentamicin, 48 mg mL21; streptomycin, 144 mg mL21) in the pH medium because of the
reduced efficacy against the ancestral strain in this environment (62). The agar with bacterial culture was
incubated for 48 h at 37 or 42°C. This protocol was used to screen 92 independent E. coli populations
(each plated from a separate overnight culture grown in the absence of antibiotics) for each combina-
tion of 4 selection environments and 5 selection antibiotics. After incubation, each agar well was
checked for the appearance of resistant colonies (the number of populations that produced at least one
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colony is shown in Fig. S6). Up to 6 colonies for each antibiotic-by-environment combination were
picked from 6 randomly selected, independent agar wells (populations). These colonies were grown in
LB without antibiotics (so as not to further select for resistance) for 3 h before glycerol was added to
25% of the final volume and mutants were frozen at 280°C. Mutant isolation in the basal, pH, and tem-
perature environments was done in the same temporal block, and the bile environment in a separate
block. These frozen stocks were used to inoculate cultures in LB without antibiotics to extract DNA for
sequencing. For a minority of mutants, we were unable to consistently revive the frozen stock for library
preparation for sequencing and/or for phenotyping. These were excluded from the relevant assays and
analysis (see Table S2 for details).

Genome sequencing and bioinformatics. Genomic DNA from 110 mutants plus the ancestral strain
was extracted with the Genomic-tip 20/G kit (catalog no. 10223; Qiagen) according to the manufac-
turer’s instructions. Libraries were produced using the Illumina Nextera XT kit. Sequencing was per-
formed on the Illumina HiSeq 4000 platform with 150-bp paired-end reads at the Functional Genomic
Center, Zürich, Switzerland (Fig. 1). Reads were trimmed using Trimmomatic (63) and then analyzed
using the breseq pipeline in consensus mode relative to the K-12 MG1655 reference, taking into account
mutations present in our ancestral strain (64, 65). For each mutant, we then identified which genes were
affected by mutations due to single nucleotide polymorphisms (SNPs) or insertions or deletions in the
coding sequence or the promoter region of the gene (identified by breseq or in rare cases by manual
curation) (Table S1) relative to the ancestral sequence. Four synonymous SNPs are shown in Fig. 1 but
were excluded from our analysis. Several strains did not have mutations identified by breseq in consen-
sus mode and were therefore not used for further analysis. Once we had completed these filtering steps,
we gained full genotypic information for 84 strains.

For plotting and analysis, we accounted for differences both among individual mutants, and among
genes or gene sets that were mutated in multiple individual mutants. For example, there were multiple
mutants with mutations in ftsI (Fig. 1). A gene set here is a group of related genes (Table S1), including genes
from the same operon (e.g., phoQP) or having very closely related functions (e.g., all rib genes). In one mu-
tant, we found a large deletion affecting multiple genes, including hemB, which was also altered in some
other mutants; this mutation was designated as affecting hemB. This list of genes and gene sets was used in
PERMANOVA (see “Statistics”). Sixteen mutants had multiple mutations affecting multiple genes (Table S1);
11 of these mutants were included in the phenotypic analysis. In such cases, if one of the mutated genes
was also mutated in other mutants, we categorized the strain according to this gene (e.g., CFR5Basal, catego-
rized as marR because the other mutated gene in this mutant, asmA, was not mutated in any other mutant
and because marR has a known role in resistance); in the other such cases, we categorized each mutant
according to mutated genes known to be involved in resistance to the selection antibiotic (e.g., GEN4pH
categorized as nuoG, because nuoG has been associated with resistance previously [5]). The choice of gene
used for categorization and labeling did not affect the outcome of our analyses in these latter cases.

Measuring resistance to selection antibiotics and other antibiotics. We selected 75 strains with
genotypic information to phenotype (and the ancestor), excluding mutants where very similar genotypes
were already represented. Resistance of all mutants and the ancestral strain was quantified using broth dilu-
tion. For each antibiotic, we assayed each combination of strain, assay environment, and antibiotic concen-
tration in four biological replicates, each in a separate temporal block. In each block of assays, we used a
frozen master plate containing all strains organized in one of three randomized layouts (blocks 1, 2, 3, and
4 used layouts 1, 2, 3, and 1) to inoculate a single preculture plate (LB-water, 1:2). We then incubated the
preculture plate for 3 h before using it to inoculate all the overnight plates (for every assay culture, we grew
a separate overnight culture). Overnight cultures were then used to inoculate the assay plates using a pin
replicator. Each mutant was tested against the relevant selection and paired antibiotics, and the ancestor
was tested against all antibiotics, each at 8 concentrations (including zero) in each assay environment. After
culturing assay plates for 20 h, we agitated the plates to resuspend bacteria and then measured the bio-
mass of bacteria by optical density at 600 nm (OD600) using a spectrophotometer (Infinite 200 Pro; Tecan
Trading AG, Switzerland). Due to the time taken to read 64 plates, incubation and plate reading was stag-
gered and the order was randomized. Some mutants failed to regrow during overnight incubation, result-
ing in some assay wells not being inoculated. To filter out these false negatives, we excluded OD600 scores
from assay plates that were ,0.03, but only if the OD600 in the overnight well (prior to inoculation of the
assay well) was also,0.03 (both after subtracting blanks).

Calculation of summary phenotypes from dose-response data. For each mutant strain, we calcu-
lated four phenotypes: (i) 90% inhibitory concentration (IC90) of the selection antibiotic, (ii) growth at
selection concentration (GASC) for the selection antibiotic, (iii) IC90 of the paired antibiotic, and (iv)
growth in the absence of antibiotics. These phenotypes were calculated from the dose-response rela-
tionship data for the selection and paired antibiotics (for each replicate separately). We fitted a Hill func-
tion using nonlinear least-squares analysis in R (66), using the nlsLM function in the minpack.LM package
(67): OD = (A � kn)/(kn 1 Cn), where OD is the measured optical density and C is the antibiotic concentra-
tion. A is then the asymptote, k is the inflection point of the curve, and n is the Hill parameter controlling
curve steepness. Thus, growth in the absence of antibiotics is equal to A, so for each combination of mu-
tant and assay environment, antibiotic-free growth is the mean of the A parameters across all dose-
response curves for this strain and environment. The IC90 for the selection and paired antibiotics can be
calculated using the following formula, taking the parameters from the relevant fitted curve.

IC90 ¼ e ln kð Þ1lnð9Þ
n½ �
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Finally, GASC is the value of the Hill function when the antibiotic concentration equals the selection
concentration.

For some strain-antibiotic-environment combinations, we could not robustly fit a Hill function to
some or all replicates, for example if there was very little growth inhibition or if the dose response was
strongly stepwise. In these cases, where possible, we calculated phenotypes independently from the
fitting of dose response curves (as is often done in other studies [6]). We estimated growth in the ab-
sence of antibiotics from the OD measured after growth without antibiotics. We took the IC90 as the
lowest tested concentration where growth was below 10% of growth in the absence of antibiotics.
Finally, we took growth at selection concentration as the OD score at the selection concentration of
the antibiotic or the predicted score at the selection concentration, assuming a linear relationship
between growth and antibiotic concentration between the two measured concentrations on either
side of the selection concentration. We used these fit-independent methods for a minority of cases
(4.76% for antibiotic free growth, 2.48% for selection antibiotic IC90, 3.73% for paired-antibiotic IC90,
and 4.76% for GASC). In all cases, there was a strong correlation between the fit-dependent and fit-in-
dependent measures (Fig. S7).

Statistics. We treated the mutants selected for resistance against different antibiotics as independ-
ent data sets, due to the difficulty in comparing resistance across multiple antibiotics. This meant that
we had only 5 independent mutants for chloramphenicol, which limited our ability to draw conclusions
about this antibiotic. Therefore, we do not discuss the chloramphenicol-resistant mutants in the text,
but they are included in the supplemental information for completeness (Fig. S2). In each data set, we
took the four phenotypes of interest (see above) as response variables in separate models. In each
model, the replicate measures for each phenotype came from independent dose response curves (fitted
to data collected in different blocks). Mutants with insufficiently replicated data (,2 replicates in any of
the four assay environments) for a given phenotype were excluded from the analysis for that phenotype,
meaning that we had between 53 and 57 mutants for each of the 4 phenotypes (Table S2). We trans-
formed IC90s by taking log2(IC90) relative to the mean of the ancestral strain (log2 transformed) measured
in the same environment. This controlled for any effects of assay environment on antibiotic inhibition of
the ancestral strain (Fig. S3) and normalized the data. GASC was square root transformed to fit the
assumption of normality but was not relative to the ancestor, as the GASC was not significantly different
from zero in the ancestor (as expected, given that we set selection concentrations close to the ancestral
MIC). Growth in the absence of antibiotics already fitted the assumption of normality and was not ana-
lyzed relative to the ancestor, because ancestral growth did not vary significantly between assay envi-
ronments (x2

3 = 5.11; P. 0.05).
For each of the 4 phenotypes across the 4 antibiotic data sets, we fitted two mixed effects models

(Table S3). The fixed effects of model A were as follows: phenotype ; genotype 1 assay_environment 1
genotype: assay_environment. Those for model B were as follows: phenotype; selection_environment1
assay_environment 1 sympatry. In these models, genotype is based on the gene set mutated (so that
mutants with different mutations in the same gene or gene set have the same genotype) (Table S1), and
sympatry is a binary vector indicating whether selection environment is the same as assay environment.
Model A was used to test whether genotypes varied in their average phenotypes (effect of genotype) and
whether that variation depended on the local abiotic conditions (genotype-by-assay-environment interac-
tion). To test the effect of selection environment, we used a separate model (model B), because genotype
and selection environment were often confounded. Model B was used to test whether each phenotype
varied on average among sets of mutants isolated from different selection environments (effect of selec-
tion environment) and for evidence of matching between mutants and their selection environments
(higher average phenotypic scores in sympatric compared to allopatric combinations, where sympatry
means that selection environment is the same as assay environment, and allopatry means that selection
environment is not the same as assay environment; tested by the main effect of sympatry) (34).

In both models, we included a nested random effect of strain (individual mutant ID) on intercept
[1(1jStrain) in the lmer function] to account for variation between strains (68). We also included a ran-
dom effect of block nested within strain on the intercept [1(1jStrain:Block) in the lmer function], to
account for variation between measures of the same strain in different blocks. To prevent overfitting,
the variance explained by these random effects was tested using a likelihood ratio test (on the maximal
model) and nonsignificant terms were dropped, potentially reducing to a fixed-effects model if both ran-
dom effects were dropped (Table S3). After random effects were tested, we dropped nonsignificant
fixed-effect terms to reach minimal models. For model simplification, both fixed-effect and random-
effect terms were tested at an a value of 0.05.

Significance of terms in models is reported from minimal models by comparing models with or with-
out the term of interest using an F test for fixed-effects models and a likelihood ratio test (x 2 statistic)
for mixed models. When the main effect of genotype is involved in a significant higher-order interaction
(genotype: assay_environment) the main effect cannot be dropped, so significance is instead reported
with an F test (on a type III ANOVA), regardless of whether the model contains random effects. For mixed
models, the approximate degrees of freedom are calculated using lmerTest (69). Although assay envi-
ronment is included in both models, we report the significance of the main effect of assay environment
from model B, where it does not have higher-order interactions and can always be tested using a likeli-
hood ratio test.

To test whether the genes/gene sets that were mutated varied depending on the selection environ-
ment mutants were isolated from, we used a permutational ANOVA on the data for which genes/gene
sets were affected by the mutations (Table S2, full genotype). This was performed using the adonis func-
tion in the vegan package (70).
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For both the genotype and phenotype models, we tested 4 data sets (from four antibiotic combina-
tions) for similar effects in parallel, therefore, when reporting the results of these tests, we give P values
corrected for multiple testing using the Holm-Bonferroni method (sequential Bonferroni). These are
reported in the text as corrected P values, and values below 0.05 are considered significant.

Data availability. All raw data are available on Dryad (https://doi.org/10.5061/dryad.6m905qg16).
Genomic data are relative to the reference genome of Escherichia coli K-12 MG1655 and have been
uploaded as SNP tables relative to this reference in the Dryad data file.
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