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Predicting sensitivity of recently 
harvested tomatoes and tomato 
sepals to future fungal infections
Sanja Brdar1*, Marko Panić1, Esther Hogeveen‑van Echtelt2, Manon Mensink2, 
Željana Grbović1, Ernst Woltering2 & Aneesh Chauhan2*

Tomato is an important commercial product which is perishable by nature and highly susceptible to 
fungal incidence once it is harvested. Not all tomatoes are equally vulnerable to pathogenic fungi, and 
an early detection of the vulnerable ones can help in taking timely preventive actions, ranging from 
isolating tomato batches to adjusting storage conditions, but also in making right business decisions 
like dynamic pricing based on quality or better shelf life estimate. More importantly, early detection 
of vulnerable produce can help in taking timely actions to minimize potential post-harvest losses. 
This paper investigates Near-infrared (NIR) hyperspectral imaging (1000–1700 nm) and machine 
learning to build models to automatically predict the susceptibility of sepals of recently harvested 
tomatoes to future fungal infections. Hyperspectral images of newly harvested tomatoes (cultivar 
Brioso) from 5 different growers were acquired before the onset of any visible fungal infection. After 
imaging, the tomatoes were placed under controlled conditions suited for fungal germination and 
growth for a 4-day period, and then imaged using normal color cameras. All sepals in the color images 
were ranked for fungal severity using crowdsourcing, and the final severity of each sepal was fused 
using principal component analysis. A novel hyperspectral data processing pipeline is presented which 
was used to automatically segment the tomato sepals from spectral images with multiple tomatoes 
connected via a truss. The key modelling question addressed in this research is whether there is a 
correlation between the hyperspectral data captured at harvest and the fungal infection observed 
4 days later. Using 10-fold and group k-fold cross-validation, XG-Boost and Random Forest based 
regression models were trained on the features derived from the hyperspectral data corresponding 
to each sepal in the training set and tested on hold out test set. The best model found a Pearson 
correlation of 0.837, showing that there is strong linear correlation between the NIR spectra and 
the future fungal severity of the sepal. The sepal specific predictions were aggregated to predict the 
susceptibility of individual tomatoes, and a correlation of 0.92 was found. Besides modelling, focus 
is also on model interpretation, particularly to understand which spectral features are most relevant 
to model prediction. Two approaches to model interpretation were explored, feature importance and 
SHAP (SHapley Additive exPlanations), resulting in similar conclusions that the NIR range between 
1390–1420 nm contributes most to the model’s final decision.

Tomato is a popular and commercially important horticultural produce worldwide1. Quality of tomato depends 
on growing conditions and chain conditions like humidity and temperature, as well as crop handling during 
harvest and post-harvest processes (transport, packaging, storage, processing etc.)2. Like many other perishable 
fruits and vegetables, it is highly prone to post-harvest losses, reaching up to 30% in some developing countries3. 
Early detection of disease has the potential to prevent losses because early actions can be taken to limit bigger 
damages (see e.g.4).

Tomato is known to be highly susceptible to pathogenic fungi, such as Penicillium, Aspergillus and Mucor, 
which tend to attack crops with high moisture and nutrient content5–8. The weakening and damage to tomato 
tissue can be caused by specific environmental conditions (humidity and temperature) as well as due to poor 
product handling. This creates a potential entrance for fungal spores which, given appropriate germination 
conditions, may infect the stem, calyx, sepals, or tomato skin.
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Often the tomato calyx (a collection of sepals) is the first part of the tomato where an infection becomes 
visible9. In European supermarkets fresh tomatoes are nowadays sold with the calyx attached. The presence 
of fungus on the green parts (the crown) of the tomatoes is seen as undesirable, even though the tomato fruit 
itself is not infected. At the tomato collection and packing centers, quality inspectors are capable of observing 
necrosis on the calyces and know that these have a higher risk for developing fungal infections. However, calyces 
which look healthy after harvest and pass the quality inspection can still develop fungal infections. It is therefore 
hypothesized that there is a correlation between the physiology of the calyx (prior to fungal infection) and their 
susceptibility to eventual fungal infection (Janse and Boerrigter10 and this study). The physiology of the calyx 
is likely to be influenced by various growing conditions like radiation during fruit set and fruit growth, relative 
humidity during cultivation, crop management, plant load (fruits/m2), and nutritional level of the crop10. Fur-
thermore, post-harvest conditions also influence the physiology of the calyx. Development of a non-destructive 
method to assess the physiology of the calyx in relation to the susceptibility to fungal infection would provide 
additional support to quality inspectors. This work focuses on predicting susceptibility of individual tomato 
sepals to fungal incidence.

Various studies have applied machine learning and computer vision methods for detection and classification 
of diseases in tomatoes11. These methods have mainly been investigated to detect and identify several types of 
visible symptoms, such as Bacterial Spot12 or visible damage (caused by early or late blight, septoria leaf spot)11, 
usually based on color images4,13–15. Prince et al.16 combine depth, temperature and color information to train 
a Support Vector Machine (SVM) classifier to detect powdery mildew in tomato leaves. Mokhtar et al.14 also 
used SVM to classify tomato yellow leaf curl virus. Zhao et al.17 utilize Adaboost classifier with Haar features to 
identify tomatoes in unstructured plant growth environment. Yamamoto et al.18 explore regression trees, based 
on simple color features, to detect tomatoes of different maturity level during plant growth. Singh et al.19 provide 
a taxonomy of classical machine learning methods suitable for detecting biotic and abiotic stress traits for plant 
phenotyping. The techniques applied in these studies primarily follow traditional image processing pipeline which 
constitutes manual feature extraction/engineering and training classifiers on these features.

Recent research tends to focus on applied deep learning20, and in particular deep convolutional neural net-
works (CNNs). A key advantage of CNNs is that the features are no longer hand-crafted but learned directly 
from data. CNNs have been shown to outperform conventional classification methods in several studies. Atabay21 
trained a CNN using deep residual learning approach on a subset of PlantVillage dataset22, achieving state of the 
art performance in classifying tomato plant leaf images based on the visible effects of diseases. Already mentioned 
work of Brahimi et al.11 used an image-dataset of 14828 tomato leaves to train a CNN to identify nine diseases, 
and reported an accuracy of 99.18%. Belal et al.23 achieved similar performance using a CNN on a public dataset 
of 9000 images to identify 5 types of diseases on tomato leaves.

The approaches discussed above focus on color images. However, color images are not always the most suitable 
data, limiting the discriminatory capability of a classification method. It has been demonstrated previously that 
Hyperspectral Imaging (HSI) can be used for non-destructive and non-invasive monitoring and measurement 
of stress, infections and diseases in several types of crops and food products—e.g. for monitoring Fusarium 
infection and mycotoxin presence in wheat kernels and flour24, detection of insect-damaged wheat kernels25, 
for measuring fungal infection severity in maize kernels26, wheat ears27, sugar beet28,29, potato virus Y damage 
in30, draught stress in maize31 and fruit quality inspection32 and other food applications33. Mahlein et al.29 study 
spectral reflectance and SAM (Spectral Angle Mapping) method for classifying different (symptoms of) sugar-
beet diseases. Xie et al.34 demonstrate that spectral reflectance and texture features can be used for the detection of 
fungal diseases that harm tomato leaves. Zhang et al.35 observed 4 stages of severity of fungal disease on tomatoes, 
and reported that spectral images in Near-infrared (NIR) spectra (700–1300 nm) are better for disease detection 
than visible images (350–700 nm). A more challenging task of presymptomatic detection was tackled in recent 
studies on tobacco36 and tomato37 plant disease. Also see38 for a review of recent works exploring close-range 
HSI for plant disease detection.

Conditions causing stress to the calyx, lowering defense responses in the cells, or causing cell death are likely 
the reason for increased susceptibility to fungus. HSI, especially in the Near Infra-Red (NIR) range, has been 
shown to be sensitive to certain types of cell damage, such as bruises39,40, but has not yet been demonstrated 
for cell damage on sepal tips and for early detection of weak sepals. This is the focus of current work. HSI is 
investigated for predicting the susceptibility to fungal infection of a sepal right after the tomato is harvested, but 
prior to the visible onset of the infection.

For this purpose, an experimental procedure was designed wherein hyperspectral images were acquired 
from several batches of tomatoes prior to any visible evidence of fungal infection, potentially capturing any 
symptoms of sepal weakening/cell damage or early infection. The tomatoes were then introduced to conditions 
stimulating fungal germination and growth for multiple days. On the final day of the experiment, tomatoes are 
imaged (color images) for gathering visual evidence of fungal severity. The purpose behind this procedure is to 
identify if there is a correlation between hyperspectral data (captured before any observable infection) with the 
observable infection on the final day of the experiment.

In this study two machine learning approaches (Random Forest and XGBoost regression) were used to find a 
correlation between the spectral information from the first day of the experiment and the fungal severity on the 
last day. Reported results demonstrate that the predicted fungal severity correlates well with the ground truth 
estimates and a high proportion of the variance is explained. Instead of looking at these models as blackboxes, the 
focus was also on model interpretation. In this work, model interpretation is used to identify the most relevant 
spectral wavelengths contributing to fungal severity prediction.

The rest of the paper is organized as follows: next section describes the materials and methods, with a focus on 
data collection, experimental setup, and creation of the hyperspectral and color image datasets; this is followed by 
the section on the novel hyperspectral data processing pipeline for automatically extracting data corresponding 
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to individual sepals; results of machine learning based models are reported in “Results” section, along with the 
model explanations; “Discussion” section discusses the results from chemometric and physiological perspective; 
and “Conclusion” section concludes the article and proposes ideas for future research.

Materials and methods
Tomatoes.  For the purposes of this research, 6 batches of cocktail tomatoes, cultivar Brioso RZ, were 
obtained from 5 commercial growers based in The Netherlands and Belgium. The tomatoes were provided and 
delivered by the growers to Wageningen Food and Biobased Research (WFBR) institute at Wageningen Univer-
sity and Research. The representative of the growers and WFBR form part of the consortia of the Public Private 
Partnership project Humistatus, funded through Foundation TKI, Dutch Horticulture and Starting Materials. 
The tomatoes were provided by the growers for the research reported in this article, which was agreed upon 
beforehand with the representative of the growers and the rest of the Humistatus consortia. Furthermore, the 
harvest was conducted by the growers themselves, which complies with the relevant institutional, national, and 
international guidelines and legislation.

All tomatoes were harvested on 12-Dec-2017, collected and transported by the growers at room temperature 
on 13-Dec-2017 to Wageningen and stored overnight a 15°C until the next day. Capital letters from A to F are 
used as markers for the batches to distinguish growers or growing conditions. Batches A-E came from different 
growers, all grown in greenhouses (without supplementary lighting) where some of the last tomatoes were har-
vested (the crops were already at the end of their lives). Batches E and F came from the same grower, but different 
greenhouses. Batch F came from a crop which had just started producing (using supplementary lighting). The 
next day, tomatoes from each batch containing 5 or 6 tomatoes are pruned into six smaller trusses where each 
truss contains between three and four tomatoes. Table 1 summarizes this data.

Hyperspectral dataset.  The first part of the experiment involved hyperspectral data acquisition prior to 
any visible evidence of fungus on the tomatoes. Therefore, hyperspectral images were captured on the first day 
of the experiment (14-Dec-2017). Imaging was done using SPECIM FX17 camera, Specim, Finland. This instru-
ment captures spectral responses in a range from 900–1700 nm with a resolution step of 3.46 nm, resulting in 
224 bands/image. For the illumination source, two halogen lamps were used. Each truss was placed under the 
camera where the tip of the truss is facing towards the bottom and is marked using a blue tape (see Fig. 1 for an 
example).

Treatment conditions and the color image dataset.  In the second part of the experiment, right after 
hyperspectral data capture, tomatoes were placed in a controlled environment with a relative humidity of 100% 
(see Fig. 2). These conditions are ideal for fungal germination. The tomatoes were taken out of the controlled 

Table 1.   A summary of the 6 batches of tomatoes used in the experiments.

Batch labels Tomatoes/sepals Crop description

A 23/109 No supplemental light, end of crop harvest

B 24/119 No supplemental light, end of crop harvest

C 24/115 No supplemental light, end of crop harvest

D 24/118 No supplemental light, end of crop harvest

E 24/116 No supplemental light, end of crop harvest

F 24/111 Supplemental light, new crop (first) harvest

Figure 1.   (a) The orientation of tomatoes during the hyperspectral imaging. (b) A pseudo color image of one 
truss obtained by combining three spectral bands.
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settings on 18-Dec-2017, and it was observed that almost all sepals had been infected to some degree (except 
Batch F).

To objectively capture the degree of infection, a reference data set was created with the RGB images of the 
trusses. This was done using the Smart Color Inspector41, SCI, which is a controlled and closed environment 
with calibrated light and camera settings to record true color of objects placed inside it. SCI is designed by WFBR 
and built by IPSS Engineering (both based in Wageningen, The Netherlands). It is mounted with LED arrays 
(4038 K) on five sides and is equipped with an RGB camera (MAKO G-192C POE, Allied Vision Technologies 
GmbH, Stadtroda, D) that takes images from above. For each measurement series, the system is calibrated with 
a white background (Forex� PVC Plate White 6 mm) and a 24-plane color chart (Color checker classic, X-rite 
Europe GmbH, Regensdorf, S).

The color images were used as ground truth for the assessment of the degree of fungal infection. Figure 3 
shows a color image of trusses for Batch C and the encoding rules which were adopted to relate the assessed 

Figure 2.   A controlled environment which is ideal for fungal germination.

Figure 3.   (a) Color cabinet RGB image of Batch C with marks used for enumeration. For enumeration of color 
cabinet image, an alphabet label was used for denoting the batch i.e. letter from A to F, while tomato trusses 
were enumerated from 1 to 6. Tomatoes within trusses were numbered from 1 to either 4 or 5, depending on the 
number of tomatoes in a truss. Sepals are denoted with numbers from 1 up to either 4 or 5, depending on the 
total number of sepals that are visible in the image. The sepals numbering was made according to the orientation 
rules presented in Fig. 1. (b) Cropped region in color cabinet image on the left related to the truss 5.
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fungi infection level of sepals with their hyperspectral responses. According to the encoding rules, each sepal was 
assigned an identifier that is a 4-digit number where digits correspond to batch label, number of truss, tomato 
and sepal, respectively.

In summary, two datasets were created in this experiment: one of hyperspectral data before any visible evi-
dence of fungus, and another one of the RGB images after the fungal infection has materialized.

Ground truth collection.  Assessment of fungi infection severity levels was conducted by a panel of 
researchers. Obtaining the diagnosis on the levels of sepals’ infection was a joint work of 11 researchers with 
diverse expertise including remote sensing, image processing, data science and agriculture. Diagnosis was 
expressed as a range between 0 and 5, where 0 denoted no infection and 5 a severe infection which has spread 
across the complete sepal. Visual grading was performed in a single day by presenting RGB images of tomatoes 
from the last day of the experiment to the panel. Each sepal on RGB images was magnified and experts inde-
pendently graded the infection level. Fusion of diagnoses was performed using principal component analysis 
(PCA) where the first PCA component explained 98% of the variability in the infection grading. The final infec-
tion severity of each sepal is then computed by projecting the infection grades from 11 researchers onto the first 
component. Summary statistic of sepals’ diagnoses across batches is provided in Table 2. All batches contain 
similar numbers of sepals: 105, 116, 108, 117, 114, 110. Table includes corresponding mean, standard deviation, 
coefficient of variation, as well as percentages of sepals with low, moderate and high infection, where low denotes 
sepals with diagnosis less than 1, and high more than 4. Derived statistics show that sepals from batch F have 
low infection level, but highest relative level of dispersion around the mean. Sepals from batch E have also lower 
infection levels compared to batches A, B, C and D.

Identification of fungal strain.  Three samples from sepals from a randomly selected truss were collected 
and analyzed for identification of the fungal strain. A microbiologist at WFBR incubated the samples on Malt 
Extract Agar plates for 5 days at 22 °C, to visually classify the strains (see Fig. 4). The visual observation indi-
cated that the three samples likely belonged to one strain, which could either be Penicillium sp. or Cladosporium 
sp. Further identification was not carried out due to an unforeseen high temperature in the incubator, which 
destroyed the samples before further identification.

Software.  The preproceesing pipeline is implemented in Python v3.6 using the following open-source 
libraries: Spectral Python (SPy)42 for reading hyperspectral data, Scikit-Image (skimage)43 for noise removal 
within spectral responses and OpenCV44 for image manipulation during calyx and stem segmentation. Machine 
learning and statistics pipelines also also implemented in Python using the Scikit-learn (sklearn)45, XGBoost46 
and SHAP47 libraries.

Table 2.   A summary statistics of diagnosis of sepals across the 6 batches of tomatoes used in the experiments.

Batch Mean Standard deviation Coeff. of variation Low infection Moderate infection High infection

A 2.26 1.23 0.54 20.00% 71.43% 8.57%

B 2.77 1.60 0.58 21.56% 49.13% 29.31%

C 2.68 1.65 0.61 24.07% 48.15% 27.78%

D 2.44 1.69 0.69 33.33% 42.74% 23.93%

E 1.14 1.02 0.89 50.87% 44.74% 4.39%

F 0.10 0.26 2.54 99.09% 0.91% 0.00%

Figure 4.   Fungal growth of spores collected from a random tomato calyx on Malt Extract Agar plates.
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Hyperspectral data processing
Although the aforementioned datasets contain complete information pertaining to the tomatoes, the key inter-
est is in the information content of the sepals, which is where the fungal infection manifests. The following 
subsections outline the process of data cleaning and preprocessing for extracting the content corresponding to 
the sepals.

Radiometric correction.  Analysis begins with a flat-field correction of reflectance measurements and 
noise reduction for each spectral band. Denoting hyperspectral image as a three order tensor m ∈ R

M×N×S 
where M and N are the numbers of rows and columns respectively, while S denotes the number of selected spec-
tral bands. Flat-field correction was done with the standard approach used in48,49 where a reflectance mc(i, j, �) 
per pixel (i, j) and for each spectral band � ∈ R is obtained as follows:

where m(i, j, �) represents the intensity of the measured hyperspectral response of the observed pixel in the 
image, and b(�) and w(�) are the hyperspectral responses of the black and white references respectively. After 
applying (1) over all the spectral pixels and across all available wavelengths � , a noise removal step is conducted 
on images for each � separately.

Noise removal.  On spectral bands of the hyperspectral image, noise standard deviation σ is estimated based 
on the median absolute deviation of the wavelet detail coefficients as described in “Model explanation” section 
of50. In Fig. 5, with red and green color are denoted σ s which have noise level greater than threshold set to 
1.5 times the minimum estimated σ . The spectral bands corresponding to the σ s marked in red are discarded 
from further analysis. Although the σ s coloured in green have greater values than the adopted threshold, the 
corresponding spectral bands are not discarded because of spectral and spatial information useful for sepal 
segmentation.

Overall, the first 13 and last 16 spectral bands were rejected, resulting in 194 spectral bands in the range 
� = [980 nm, 1660 nm] for further processing. For noise reduction, a wavelet soft-thresholding procedure51 is 
applied on these bands. Notice that the noise removal is applied as a preprocessing step to separate the tomato 
region from the calyx and stem. This step is omitted when extracting the hyperspectral responses of the sepal 
tips (see subsection Spectral features), since the region of the tips is tiny and any noise removal can pollute the 
reflectance at the tip with the reflectance of the background.

This procedure identifies the noisy spectral bands, but doesn’t take the noise present between neighboring 
spectral bands into account. In the next step, this inter-band noise, caused by the limited spectral resolution of 
the device, is addressed. Application of a 1D median filter to the spectra at each pixel provides a much smoother 
reflectance while suppressing the noise between consecutive spectral bands.

Calyx and stem segmentation.  After noise removal, calyx and stem segmentation is performed by 
manipulating the spectral bands. Figure 6a displays the reflectance of pixels that belong to the tomato and sepal 
regions. The variation in the responses of reflectance up to 1150 nm is higher for the tomato region, when com-
pared against the variance of the sepal region for the same spectral range. From 1150 nm onwards, the situation 

(1)mc(i, j, �) =
m(i, j, �)− b(�)

w(�)− b(�)

Figure 5.   (a) Estimated σ through spectral bands with a dashed red line denoting the adopted threshold for 
selection of relevant spectral bands. σ s values are colored blue/red color to specify if the corresponding spectral 
bands are kept or disregarded from further analysis. The spectral bands which correspond to the σ s colored 
in green are kept since they provide useful information for sepal segmentation (b) Spectral response of a pixel 
belonging to a sepal marked with blue, red and green colors for correspondence with the estimated σ s in the 
graph on the left.
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is reversed and the variation in reflectance in the sepal region is higher. Therefore, �d = 1150 nm is selected 
as a threshold wavelength which divides spectral range into two regions, one preceding �d is used for generat-
ing mask for the tomatoes and the one proceeding �d is used for obtaining the calyx and stem mask. Next, a 
per-spectrum basis preprocessing step known as standard normal variate transformation (SNV)52,53 is applied. 
SNV is applied only to the hyperspectral responses in the selected range of wavelengths defined in the subsec-
tion Noise removal. SNV transformation suppresses the possible large amount of variability among hyperspec-
tral responses caused due to scattering effects within the same region in the image31,38,54,55 (see Fig. 6b).

To extract the variation of the reflectance for each pixel in the image, 1D convolution is applied to the image 
mc with a first-order derivative of 1D Gaussian function g(x):

where g(x) = 1√
2πσg

e
− x2

2σ2g  and σg indicates the filter width. Motivation for the use of g′ came from56 where g′ 
was used as an approximation for the optimal step edge operator. Convolution of mc with g′ can be expressed as:

where filter width is defined as L(σg) which depends on the choice of σg.
The convoluted spectral image can now be used to generate two maps of significance which indicate for 

each pixel position its association to the tomato or calyx-stem region. Denoting results of convolution as 
r(i, j, n) = (mc ∗ g′)(i, j, �n) then significance masks t, s for tomato and calyx-stem regions respectively are gen-
erated in the following way for each pixel position (i, j):

where �1 = 980 nm and �N = 1660 nm are the first and last spectral bands of the selected spectral range. An 
example of significance maps is shown in Fig. 7.

The intensity of the calculated maps is then rescaled using percentiles such that the border between calyx-stem 
and tomato region is amplified. Final binary maps for the region of tomato and calyx-stem are obtained after 
application of the Otsu method57 on normalized significance maps t and s . Using this procedure, the spectral 
image can be automatically segmented into the tomato and calyx-stem regions. The precision and accuracy of 
the automatic segmentation of calyx-stem region is evaluated by comparing its estimated mask with manually 
created ground truth mask. Figure 8 shows results of comparison using Sørensen Dice coefficient metric (also 
called Dice score)58,59.

(2)g′(x) = −
x

σ 2
g

g(x)

(3)(mc ∗ g′)(i, j, �n) =
L(σg)
∑

�s=−L(σg)

(

mc(i, j, �n)−mc(i, j, �s)
)

g′(�s)

(4)

t(i, j) =
�d
∑

n=�1

∣

∣r(i, j, n)
∣

∣

s(i, j) =
�N
∑

n=�d

∣

∣r(i, j, n)
∣

∣

Figure 6.   (a) Spectral responses of pixels within the tomato and sepal regions and their corresponding mean 
responses. (b) Spectral response after SNV transformation. Shaded regions in the graphs denote which spectral 
bands are used for the creation of masks for tomato (red region) and calyx-stem (green region).
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Sepal extraction.  Next preprocessing stage is to extract the pixels corresponding only to the sepals from 
the hyperspectral images. This is a semi-automated procedure that is conducted in three steps:

•	 The first step requires segmentation of calyx-stem region of interest (ROI), as discussed in the previous sec-
tion (see Fig. 9 under the labels a, b and c);

•	 The second step consists of manual creation of a “rough” sepal identification mask for each truss (see Fig. 9d);
•	 The final step involves an intersection on the ROI with the manual masks. This step provides the mask for a 

sepal belonging to a particular tomato.

Spectral features.  The preprocessing steps described in the previous section lead to the extraction of spec-
tra corresponding to individual sepals belonging to each tomato. Each sepal pixel has its spectral signature across 
194 wavelength bands, having a good signal-to-noise ratio. Information on the level of pixels is aggregated to 
obtained features on the level of sepals. The mean and standard deviation of pixel values, corresponding to sepal 
for each of the 194 wavelength bands, is then extracted. Finally, each sepal is described by two 194 sized feature 
vectors—the mean spectra and the spectral standard deviation.

Results
Machine learning based predictive models.  Two ensemble methods, Random Forest60 and extreme 
gradient boosting (XGBoost)61, were used to train the predictive models for the assessment of fungi infection 
severity. Both are able to deal with a large number of features and are not vulnerable to overfitting. Random 

Figure 7.   (a) Significance masks for tomato (b) calyx-stem region and (c) pseudo color image created from 
them.

Figure 8.   (a) Obtained Dice scores per batches with the following values for parameters: windows size for 
median filter equal to 5 and σg = 2.5 (b) Averaged Dice scores during grid search for parameters σg and 
windows size for median filter.
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Forest algorithm builds many decision trees independently and then averages their predictions. XGBoost uses 
feature sampling, same as Random Forest, but builds trees through an iterative process. In each iteration, trees 
are added to correct the errors made by the existing ones.

Training predictive models, based on Random Forest and XGBoost algorithms, included training/test split 
into 80% and 20% of data and hyperparameter tuning with cross-validation procedures on training set. 10-fold 
as well as group-fold cross-validation methods were used to evaluate the performance of the models and select 
parameters of the models. Group-fold cross-validation ensures that the same group is not represented in both 
training and test sets. In the reported experiments, groups correspond to different tomato batches. Cross-val-
idation results were obtained as the best over grid search procedure for parameters with objective function to 
maximize R2 score of the model. Optimal parameters are further used to fit model on the whole training data 
and final validation is performed on the test set. Table 3 summarizes the results for both models and both types of 
cross-validation methods, as well as the results on hold-out test set. Numbers represent mean values of 5 experi-
ments with random training/test splits. Besides R2 score, other metrics - Root Mean Squared Error (RMSE) and 
Pearson correlation, were also used to inspect the performance of the models.

Random Forest models provided slightly better results. Predicted fungal infection severity correlates well with 
the ground truth estimates with Pearson correlation of 0.820 and 0.757, and a high proportion of the variance 
explained with R2 scores of 0.673 and 0.572 for 10-fold cross validation and group cross validation, respectively. 
Similarly, Random Forest models had lower errors expressed through RMSE compared to the XGBoost. Slightly 
lower performance of group-k-fold validation comes from smaller number of training samples in folds split 
according to 6 batches and the intrinsic variability of different tomatoes coming from different batches. Thus, 
group-k-fold results provide estimates on the lower bound of the model’s performance which could be further 
improved with more samples from different origins. Figure 10 presents joint plots of true and predicted obser-
vations in the form of kernel-density distribution and includes the marginal distribution of true and predicted 

Figure 9.   (a) Mask of the truss, (b) mask of the region belonging to tomatoes, (c) mask of the ROI (sepal 
region) and (d) sepal identification mask.
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sensitivity of tomato sepals to fungal infection. Performance on the test set results did not drop and remained 
stable across 5 repetitions of the experiments.

From an application perspective, the key question is the susceptibility to fungal infections of individual toma-
toes, as well as specific batches, rather than individual sepals. To aggregate predictions from sepal to tomato level 
all predicted sepal values were utilized - obtained through cross-validation and on test set. For each tomato, the 
mean prediction is computed over all of its sepals as the final tomato susceptibility. The true tomato susceptibility 
is also calculated in the same manner. Tomato level predictions are plotted against the true predictions in the 
scatter plot presented in Fig. 11. The overall predictive performance remains high at tomato level. The plot also 
unveils information on batch specific sensitivity to infection, with a Pearson correlation of 0.92. It can also be 
observed that the predictions affirm what is already known from the ground truth—Batch F, distinct for being 
a new crop (the first harvest) was almost resilient to the infection, and batches A and E showed less sensitivity 
to the infection compared to the other three batches.

Model explanation.  In this section, focus is on interpreting the developed model. Interpretability, here, 
refers to the understanding of which features are most useful in a model’s prediction. Such information has 
practical advantages, for example, it could help in selecting a limited number of wavelengths to construct a 
multi-spectral camera specific to the problem addressed in this paper.

Ensemble methods based on decision trees, like Random Forest and XGBboost, offer global interpretations 
of input features which can help in understanding the impact/importance of each feature to model predictions62. 
Although highly useful, such interpretations have the drawback that they do not allow local interpretation, that 
is, the impact of input features on prediction over individual samples63.

In the next subsections, two model explanation approaches are explored to interpret the model results glob-
ally as well as locally.

Table 3.   Performance of the models.

Model Validation RMSE R2 score Pearson corr.

Random Forest 10-Fold cross validation 0.947 0.673 0.820

XGBoost 10-Fold cross validation 0.976 0.653 0.809

Random Forest Group-K-Fold validation 1.077 0.572 0.757

XGBoost Group-K-Fold validation 1.132 0.528 0.731

Random Forest Test; param. from 10-Fold CV 0.918 0.674 0.827

XGBoost Test; param. from 10-Fold CV 0.932 0.659 0.818

Random Forest Test; param. from Group-K-Fold 0.905 0.699 0.837

XGBoost Test; param. from Group-K-Fold 1.016 0.606 0.791

Figure 10.   Joint plot of predicted and true values with marginal distributions (a) 10-fold, (b) Group-K-fold.
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Global interpretation.  Not all features contribute equally to the model decisions. In other words, not all wave-
lengths are equally relevant for making the decision on potential fungal severity. Global feature importance 
analysis derived from the best performing model, based on Random Forest method, is presented in Fig. 12.

Results indicate that the majority of the examined spectral wavelengths are not important for the predic-
tion of future fungal development. What clearly stands out as significant is the range between 1390 nm and 
1420 nm. Furthermore, features representing sepals’ mean have higher importance compared to standard devia-
tion features. In summary, according to the feature importance values, the mean spectra feature in the range 
1390–1420 nm contribute most to the model’s performance.

When predictive models were built only on this range, model performance either slightly diminished com-
pared to the model trained on the whole examined spectral range. Model achieved R2 scores of 0.608, Pearson 
correlation of 0.781 and RMSE if 1.025 in 10-fold cross validation experiment and on test set 0.656, 0.812 and 
0.991 for R2, Pearson correlation and RMSE metrics.

For further understanding of the trained model, a unified framework SHAP (SHapley Additive exPlana-
tions)63,64 is used for interpreting the model and its predictions. SHAP framework calculates Shapley value for 
each feature based on a conditional expectation function that assigns its contribution to a particular prediction. 
Prediction is explained through additive features’ importance, i.e. the contribution is fairly distributed among 
the features according to the calculated conditional expectations. On a global scale, this analysis estimates the 
effect of how each feature contributes to the classification decision and thus provides a full model explanation. 
Contributions can be positive or negative when compared to the baseline, which is the average model prediction. 
Summary plots for 10 top-ranking features derived from SHAP framework are provided in Fig. 13.

It can be observed that the main top-ranking features (mainly top 5) correspond to sepals’ mean spectral 
response in the range from 1390–1410 nm. This result agrees with the global interpretation from the ensemble 
feature importance metric. All features exhibit a similar pattern - if the feature value is high, so is its SHAP value. 
That is, sepals with high values of these features are more susceptible to higher infection incidence. The smaller 
feature values in this range correspond to lower infection susceptibility. Among 10 top-ranking features, 3 cor-
respond to sepal’s standard deviation features, but their contribution is significantly low in final model prediction.

Instance level model interpretation.  In addition to global explanation, SHAP also enables interpretation of 
model predictions over individual samples. For three sepals from the test set, with high, moderate and no infec-
tion, corresponding explanations are provided. Sepals with different infection levels are marked in Fig. 14. Model 
predictions for the first, second and third sepal are 4.17, 2.16 and 0.48, respectively. The predictions are close to 
the grades assigned by the panel of researchers that are 4.54, 2.89 and zero.

Explanations for the predicted sensitivity to infection for selected sepals are shown in Fig. 15. These instance 
level explanations uncover which features and their particular values contributed to the final prediction for that 
specific sepal. Baseline prediction is the mean value observed in the ground truth data.

In case of the first sepal, one can observe that most of the features contributed in the direction of high 
infection, as indicated by red arrows. Higher values of features MEAN_1400 , MEAN_1396 , MEAN_1403 and 
MEAN_1407 imply high sensitivity to infection. From the explanation graph for the second sepal, there is a 
decrease in the contribution of red features and an increase of green features that lower the value of prediction. 
The obtained explanation also aligns well with infection severity estimated by the panel of researchers. The 

Figure 11.   Aggregated true and predicted values at tomato level.
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predicted value for the third sepal, on which the development of the infection is not observed, is quite low at 0.40 
and lines up with the true value. Related explanation confirms the high contribution of features in the direction 
of lower infection, as denoted with green arrows. The highest contribution in this prediction comes from features 
MEAN_1396 , MEAN_1400 and MEAN_1403 . Overall, the instance level explanations for the three scenarios are 
consistent with the global explanations. Small differences in baseline predictions in presented examples come 
from estimates of the means in different cross validation data folds.

Discussion
The model explanations discussed above are valuable to understand which features/wavelengths contribute the 
most in predicting the susceptibility of sepals to future fungal infection. In particular, from both global and local 
interpretations, the range 1390 nm to 1420 nm stands out as a key indicator in predicting future sepal suscep-
tibility. This is likely not coincidental. As can be noticed in Fig.16, there is a sharp drop in spectral reflectance 
in this range. Research reported in this paper does not make an explicit correlation between the NIR spectral 
response and the actual compounds responsible for the absorption/reflection. However, some insights can be 
derived from the literature.

NIR reflectance is due to the vibration overtones and combination modes attributed to functional groups 
containing a hydrogen atom65. Drawing parallels from the literature on fruits and leaves, the NIR region identi-
fied in this paper corresponds mainly to one of the typical water absorption regions (i.e. spectrum with vibration 

Figure 12.   Hyperspectral wavelengths importance: (a) features corresponding to the mean values, (b) features 
corresponding to the standard deviation values.
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overtone of the O–H bonds)66–70. It is well known that, in addition to the O–H bonds, NIR absorption features 
are also due to stretching and bending vibrations of C–H, N–H, C–O within organic compounds such as, lignin, 
cellulose, starch, proteins and nitrogen66,70. However, the absorption of these compounds is not strong and is 
cloaked in presence of water content in leaves70. In drier leaves, the absorption features of other compounds are 
expected to be more clear.

For healthy sepals, which have a higher water content, one interpretation is that the presence of O-H bond in 
water leads to stronger absorption (i.e. lower reflectance) of NIR in this range. As discussed, it can be assumed 
that the effects of other compounds on healthy sepals are masked due to high water content. Machine learning 
based model explanations also demonstrated that lower values of mean features correspond to reduced suscepti-
bility to fungal infection. Figure 16 presents mean spectral responses with standard deviations of sepals grouped 
into 3 categories, where red, yellow and green denote sepals with severe (> 4), moderate (1–4) and no infection 
respectively (<1). Overall, highly susceptible sepals have markedly different spectral responses in comparison to 
the healthy ones, and the spectra of moderately susceptible sepals lie in-between the extremes.

From a physiological point of view, a low water content of the sepal tissue may indicate that the tissue is not 
fully hydrated or may have limited capacity to attract and retain water. The latter may be related to a lack of suf-
ficient osmotic compounds (such as sugars) or to an impaired cell membrane integrity and/or the presence of 
dead cells. Such conditions likely make the tissue more vulnerable to fungal infections. The lack of any infections 
in the trusses harvested from the new crop, Batch F, that was grown under supplemental lighting, shows that the 
state of the crop is also an important determinant for the physiological features of the sepals. Moreover, this is a 
potential reason why the model does not perform equally well on this batch. For measuring traits of fruits and 

Figure 13.   The 10 most important features, listed from top to bottom, and their contribution. Dots visualized 
in each row, corresponding to a specific feature, represent feature values of all the training samples.

Figure 14.   Examples of sepals with different levels of infection: (a) severe infection, (b) moderate infection, (c) 
no infection.
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vegetables, NIR models are known to perform poorly when used on batches that are markedly different from 
the ones used in model construction71–73. Although batch F samples were used in training, it is clearly different 
from the rest, with different growth conditions, this being the first crop, and the infection severity being mini-
mal. It is likely that the model captures the traits of batches A–E, which are similar, better than those of batch 
F. This raises the question, can the model and conclusions in this work be applied to other cultivars, and other 
batches? Recalibration is one of the leading approach to adapt old NIR models to new variations, wherein some 
approaches completely recalibrate the model parameters74, while other techniques offer parameter-free calibra-
tion enhancement71,75. Although not addressed in this work, this is a natural future direction.

Since lowering of water content amplifies NIR absorption features by other compounds, the NIR spectra of 
the susceptible sepals is likely a mixed response to multiple compounds. Also, the NIR range near 1400 nm is 
only one of the water absorption regions. Another region, which is captured by the current sensor, is near 1200 
nm. However, model interpretation methods do not place significant relevance to this region. Therefore, although 
presence of water appears to be an indicator of a sepal’s health, it cannot be stated as a conclusion.

Conclusions
This paper presents an automated approach to predict the susceptibility of the sepals of recently harvested 
tomatoes to future fungal infections. The proposed approach is a combination of NIR hyperspectral imaging 
(1000–1700 nm), data preprocessing pipeline and machine learning based modelling.

An experiment was designed where 6 batches of recently harvested cocktail tomatoes (cultivar Brioso), 
obtained from 5 growers based in The Netherlands and Belgium, were imaged using a hyperspectral camera 

Figure 15.   Instance explanations for three sepals from Fig. 14. Red colored features are pushing the prediction 
higher, while the green ones are nudging the prediction lower.

Figure 16.   Mean spectral response with with standard deviations of sepals grouped into 3 categories. Two 
vertical lines highlight the range of 1390–1420 that model explanation identified as the most important.
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before there was any evidence of visual fungal infection, leading to the hyperspectral dataset. These tomatoes 
were then placed for 4 days under controlled conditions with 100% humidity, an ideal setting for the fungal 
germination. After 4 days, almost all sepals were observed to have had fungal infection to a certain degree, and 
to objectively capture the degree of infection these tomatoes were imaged using a color camera. The severity of 
infection of each sepal was ranked by 11 annotators, and the final severity value for each sepal was fused using 
principal component analysis, by projecting the infection grade onto the first component.

A novel data pre-processing pipeline is proposed for automated segmentation the calyx and the individual 
sepals from the hyperspectral images. From data of each sepal two spectral features are computed, the mean 
spectra over the sepal and the standard deviation of the spectra across the sepal. Two ensemble machine learning 
methods, Random Forest and XGBoost, were investigated to model the relation between the spectral features 
and the fungal severity observed 4 days later. With the Random Forest regressor, a Pearson correlation of 0.82 
is achieved, demonstrating a strong linear relationship between the spectral features and the eventual fungal 
severity. The sepal level results were averaged to predict the overall susceptibility of each tomato. A Pearson cor-
relation of 0.92 was achieved, correlating the averaged human-annotated severity sepals from a tomato with the 
averaged prediction from the model. At the individual tomato as well as the batch level, the model predictions 
also had strong agreements with the ground truth. Such predictions, prior to the onset of infection, can offer key 
insights for post-harvest management of these tomatoes.

However, what does this correlation mean, and how can one interpret the results from this model? Another 
key contribution of the paper is the focus on model interpretation, with a focus on understanding which spectral 
features contribute the most to the model’s prediction. The contribution of individual spectral features in model 
decision was investigated using SHAP63,64 and Random Forest’s inbuilt feature importance metric. Using both 
approaches, a clear conclusion could be derived that not all wavelengths were relevant, and the NIR spectra 
between the 1390–1420 nm wavelength range contributed most to the model’s final decision. From an application 
perspective, this article highlights the importance of wavelengths ranging from 1390 to 1420 nm. A model trained 
on the features derived from this spectral region only slightly decreases in performance (Pearson correlation of 
0.78) compared to the model based on the whole spectral range (Pearson correlation of 0.82).

From a chemometric perspective, NIR region identified in this paper corresponds mainly to one of the typi-
cal water absorption regions. However, another water absorption region, near 1200 nm, showed no significant 
contribution to model’s prediction. Therefore, it can be concluded that water content alone is not sufficient 
indicator of a sepal’s sensitivity to future fungal infection. From a practical view, identification of a limited set of 
wavelengths also has potential benefits. It is feasible to develop dedicated sensors, such as multi-spectral cameras, 
which include only the most relevant spectral wavelengths. This can lead to a practicable non-invasive sensor 
for mass inspections of recently harvested tomatoes for cultivar Brioso.

It must be stated that the contributions and conclusions drawn, correspond to the data acquired under this 
research, which relates to cocktail tomatoes from cultivar Brioso. How applicable are these results for other 
cultivars? This is the key inquiry not explored in this work, and provides a perspective for future research direc-
tion. There are two clear future directions: investigation of the suitability of identified NIR range to other tomato 
cultivars, and exploration of calibration transfer approaches to extend the current model to new cultivars.
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