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Zea mays RNA-seq estimated transcript
abundances are strongly affected by read
mapping bias
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Abstract

Background: Genetic variation for gene expression is a source of phenotypic variation for natural and agricultural
species. The common approach to map and to quantify gene expression from genetically distinct individuals is to
assign their RNA-seq reads to a single reference genome. However, RNA-seq reads from alleles dissimilar to this
reference genome may fail to map correctly, causing transcript levels to be underestimated. Presently, the extent of
this mapping problem is not clear, particularly in highly diverse species. We investigated if mapping bias occurred
and if chromosomal features associated with mapping bias. Zea mays presents a model species to assess these
questions, given it has genotypically distinct and well-studied genetic lines.

Results: In Zea mays, the inbred B73 genome is the standard reference genome and template for RNA-seq read
assignments. In the absence of mapping bias, B73 and a second inbred line, Mo17, would each have an
approximately equal number of regulatory alleles that increase gene expression. Remarkably, Mo17 had 2–4 times
fewer such positively acting alleles than did B73 when RNA-seq reads were aligned to the B73 reference genome.
Reciprocally, over one-half of the B73 alleles that increased gene expression were not detected when reads were
aligned to the Mo17 genome template. Genes at dissimilar chromosomal ends were strongly affected by mapping
bias, and genes at more similar pericentromeric regions were less affected. Biased transcript estimates were higher
in untranslated regions and lower in splice junctions. Bias occurred across software and alignment parameters.

Conclusions: Mapping bias very strongly affects gene transcript abundance estimates in maize, and bias varies
across chromosomal features. Individual genome or transcriptome templates are likely necessary for accurate
transcript estimation across genetically variable individuals in maize and other species.

Keywords: Mapping bias, eQTL analysis, Sequence divergence, Gene coexpression analysis, Maize, RNA-Seq, Genetic
diversity, Transcriptome variation

Background
Gene expression differences among genetically distinct
individuals contribute to phenotypic differences. For ex-
ample, disease resistant genotypes in plants may sup-
press the expression of genes that cause them to be
susceptible to a pathogen [1] or have distinct

transcriptome responses to pathogens [2]. In response to
abiotic stresses, distinct transcripts underlie genotypes
with different secondary metabolite accumulation and
survival [3, 4]. Developmentally, flowering time [5], seed
size [6, 7], and fruit size [8] all vary because of gene
regulatory variation. Selection may act on these regula-
tory differences [9].
RNA-seq is the major platform for genome-wide as-

sessment of transcript abundances [10]. A standard
practice is to first assign RNA-seq reads to a single, high
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quality reference genome or transcriptome and second
to use the number of assigned reads as an indicator of
transcript abundance [10, 11]. Nonetheless, estimating
gene expression using this method across genetically dis-
tinct individuals can be problematic. An RNA-seq read
may map to its source gene, but an RNA-seq read from
an allele dissimilar to the reference allele may not map
[12] or may map to an incorrect genomic location [13].
Preferential alignment of reads can be detected if tran-
script levels from different genotypes are systematically
unequal.
The extent to which genetic variation affects RNA-seq

based transcript estimates correlates with genetic dis-
tance. Quinn et al. (2014) aligned RNA-seq reads from
the F1 progeny of a cross between two inbred Drosoph-
ila melanogaster lines to the D. melanogaster reference
genome and estimated allele transcript abundances at
polymorphic sites. The expected proportion of aligned
reads carrying the reference allele was 0.5, and the ob-
served mean proportion was 0.535 using standard align-
ment methods [14]. The two Drosophila lines differ on
average by 3.3 SNPs and 0.74 indels per kb (29,999 SNPs
over 5404 genes) [14, 15]. In humans, Panousis et al.
(2014) found that 15.6% of variants unequally aligned to
the human reference genome [16]. The focal set of Euro-
pean populations in Panousis et al. (2014) had on aver-
age 3.53 million SNPs and 546,000 indels (about 1.1
SNPs and 0.17 SNPS per kb) relative to the reference.
The studies reviewed so far used a single reference gen-
ome. In contrast, Munger et al. 2014 put forth an ap-
proach that uses individual genomes as references [17].
They simulated RNA-seq reads from 277 genetically dis-
tinct mice, finding that reads which mapped to the indi-
vidual genome sequences yielded notably different
results than reads mapped to a single, reference genome
[17]. Out of 6437 true positive cis-acting loci, aligning
reads to individual genomes yielded 6349 (98.6%). One
percent of all cis-acting regulatory loci (64) were false
positives. In contrast, aligning to one reference genome
captured 5973 (92.8%) of the true positive cis-acting loci
and 1086 false positive loci, 16.9% of the true positive
number. The mice lines reported in Munger et al. 2014
had on average 4.6 SNPs per kb and 0.61 indels per kb.
Maize is highly polymorphic, so mapping bias may be

common. In an analysis of 916 maize lines, genotypes
differed by as many as 60 million variant sites, or about
29 variants per kb [18]. Inbred lines B73 and Mo17 are
parents of a high-yielding hybrid and are frequently used
in maize genetics research. Chromosomes from Mo17
differ from B73 at about 8 SNPs and 1 indel per kb (7.66
SNPs and 1.11 indels per kilobase) [19]. The first object-
ive of this study was to explore the extent to which esti-
mates of genetic variation for gene expression in maize
are affected by preferential read mapping of some

genotypes’ RNA-seq reads. Although, there is a large
amount of diversity on average, some genomic regions,
both large and small, are less variable [20]. Untranslated
regions (UTRs) are more variable than coding sequences
[21–23]. Splice sites have relatively few SNP differences
and are usually highly conserved over very long periods
of time [23, 24]. The second objective of this study was
to determine if and how preferential read mappings are
affected by chromosome and gene level attributes.
We discovered that the effect of mapping bias on

maize transcript levels was very strong. Changes in read
mapping methodology ameliorated the magnitude of
bias, but the number of biased genes was largely un-
changed. The degree of preferential mapping differed
across splice sites, UTRs, and most notably chromo-
somal regions. We propose only mapping to individual
genomes will ensure the accuracy of maize transcript
abundance estimates.

Results
Alignment bias affected many genes’ transcript
abundance estimates
To evaluate if mapping bias affected maize transcript
abundance estimates, we determined if reads from a
template genome’s alleles were mapped more often than
reads from non-template alleles. We estimated genes’
expression abundances across a population of 105 re-
combinant inbred maize lines (RILs) derived from a
cross between two inbred parents, B73 and Mo17 [25]
using STAR and StringTie to align RNA-seq reads and
estimate gene coverage [26, 27]. Unlinked loci within
this population are in linkage equilibrium. Thus, an as-
sociation between a gene’s allele and the gene’s expres-
sion level across the population, e.g. the presence of a
cis-eQTL, indicates allelic variation affects gene expres-
sion. 3.47 billion, single-end RNA-seq reads from the
105 lines were aligned to both the B73 and Mo17 gen-
ome sequences [19, 28], and gene transcript abundances
estimated. If reads from B73 alleles preferentially aligned
to the B73 genome relative to reads from Mo17 alleles,
RILs with B73 alleles at cis-eQTL would have higher
transcript abundances than RILs with Mo17 alleles.
Similarly, if reads from Mo17 alleles preferentially
aligned to the Mo17 genome, Mo17 alleles would tend
to upregulate transcripts relative to B73 alleles. Using
the B73 genome as a reference, we detected 9306 cis-
eQTL out of 22,408 variable genes. Remarkably, 68.1%
(6341) of the eQTL had positive B73 alleles and 31.9%
(2965) had positive Mo17 alleles (Table 1). In contrast,
using Mo17 the reference genome detected 7985 cis-
eQTL from 16,983 variable genes. 64.7% (5169) had
positive Mo17 alleles and 35.3% (2816) had positive B73
alleles (Table 1). 50% of the detected eQTL depended on
the reference genome. 56% (3525/6341) of the positive
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B73 cis-eQTL detected when reads were aligned to the
B73 reference genome were not detected when Mo17
was used as a reference genome. 43% (2204/5169) of
Mo17 positive cis-eQTL detected when reads were
aligned to the Mo17 reference genome were not de-
tected when B73 was used as the reference genome.

The eQTL analyses identified 1000s of genes whose
expression level differences amongst inbred lines
depended on the reference genome used to assay expres-
sion. Other genes’ expression levels were likely affected
but not detected by eQTL mapping because the refer-
ence genome had a small effect on transcript level esti-
mates and/or because there was insufficient power to
detect a difference between alleles’ transcripts. Since
neighboring genes are in strong linkage disequilibrium
within the RIL population [29], chromosomal regions
are comprised of B73 and Mo17 haplotypes. To detect
possible biased alignment amongst genes without eQTL,
we determined if genes within haplotypes had correlated
transcript levels. In the presence of mapping bias when
aligning reads to the B73 reference, linked genes within
B73 haplotypes would consistently have higher levels of
expression than linked genes within a Mo17 haplotype,
and these genes would be coexpressed across the RIL
population (Fig. 1a). In contrast, if a B73 haplotype did
not have a consistent, positive effect on gene expression,

Table 1 Numbers of genes with B73 and Mo17 positively
acting cis regulatory alleles using B73 and Mo17 reference
genomes revealed read mapping preferences for reference
alleles

B73 referencea Mo17 referenceb

Total cis-eQTLc 9306 7985

B73 positive cis-eQTL 6341 (68.1%) 2816 (35.3%)

Mo17 positive cis-eQTL 2965 (31.9%) 5169 (64.7%)

RNA-seq were mapped to the B73a or Mo17b reference using STAR with the
default criteria as given in Supplemental Information.
c The numbers of genes with cis-eQTL were recorded excluding genes with
both cis and trans eQTL

Fig. 1 Depiction of a correlation test to determine if preferential alignment affected gene transcript estimates. a A chromosomal region whose
genes transcripts are all inferred to be correlated across RILs indicates preferential read alignment. A hypothetical region has five linked genes (A-
E) that are in complete linkage disequilibrium within the B73 x Mo17 RIL population. Individual members of the RIL population are arbitrarily
labelled 1–97. Preferential read alignment causes the B73 allele to have a positive effect on all genes’ transcript abundance estimates relative to
the Mo17 allele, leading to one group of coexpressed genes. b A chromosomal region with two groups of genes coexpressed across RILs
indicates unbiased read alignments across the regions’ genes. Relative to Mo17, B73 alleles increase transcript abundances for genes A, C, and D
and decrease transcript abundances for genes B and E. Genes A, C, and D are coexpressed, and genes B and E are also coexpressed
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all linked genes would not be coexpressed in a single
group (Fig. 1b). The B73 haplotype was inferred to often
consistently increase transcript levels of linked genes
relative to the Mo17 haplotype. For example, a 132Mb
region of chromosome 10 had one group of 296 corre-
lated genes, the cyan cluster. All genes within this group
were positively affected by B73 alleles. At 212 genes, B73
alleles significantly increased transcript expression
resulting in cis-eQTL. Similarly, a 20Mb region of
chromosome 3 had one group of 92 coexpressed genes,
the plum1 cluster (Tables S1 and S2). All genes within
this group were also positively affected by B73 alleles. 79
genes had cis eQTL, and the B73 allele had a positive ef-
fect on gene expression for all 79. The large number of
genes without eQTL that correlated with linked genes
with eQTL (Tables S1 and S2) suggested alignment bias
was widespread.

Sequence divergence between B73 and Mo17 affected
transcript abundance estimates
The frequency of alignment bias greatly increased from
chromosomes’ centromeres to telomeres mirroring the
occurrence of SNPs between B73 and Mo17. While we
could identify SNPs from our RNA-seq data, gene tran-
script abundance affects SNP calls [30]. Thus, we used
SNPs detected by genomic DNA analyses [18]. The oc-
currence of SNPs between B73 and Mo17 increased
from the centromeres to the end of the chromosomes.

The correlation between alignment bias and sequence
divergence can be seen, for example, in chromosome 3.
The proportion of B73 positive eQTL increased from
below 40% near the centromeres to close to 80% at one
chromosome end (Fig. 2). The number of SNPs per gene
increased from an average of 1 SNP around the centro-
mere to an average of 1.5 SNPs at the chromosome
ends. Higher alignment bias at divergent chromosome
ends can be seen across all chromosomes (Fig. S1).
Nucleotide sequence divergence positively correlated

with transcript level differences between the B73 refer-
ence alleles and the Mo17 non-reference alleles. We cor-
related B73 and Mo17 SNPs detected by genomic DNA
analyses with allelic differences in gene expression [18].
Of the 6341 genes upregulated by B73 cis-eQTL, 5559
had one or more SNP. Median fragments per kilobase
exon per million mapped reads (FPKM) difference be-
tween individuals homozygous for alternative alleles in-
creased by 0.05 FPKM per SNP per 1 kb exon (Fig. 3a,
P = 2.9e-6, R2 = 0.82). Transcript abundances in diver-
gent sequences may differ because sequence divergence
can correlate with regulatory divergence [31]. To investi-
gate this idea, we examined the effects of sequence di-
vergence on Mo17 reads aligned to the B73 reference
genome. Among Mo17 positive eQTL, the expression
differences between Mo17 genes dissimilar to B73 genes
were only slightly higher than differences between the
Mo17 genes similar to B73 genes (Fig. 3b, P = 0.014,

Fig. 2 The relationship between the proportion of cis-eQTL that had positive B73 effects when aligned to the B73 reference genome and the
number of SNPs between B73 and Mo17 genes. The line plots are a lowess smooth of the number of SNPs per gene per 2 Mb of chromosome 3
sequence and the proportion of B73 positive cis-eQTL per gene per 2 Mb of chromosome 3 sequence. The x-axis is the physical location of
intervals in Mb along chromosome 3. The left y-axis is the average number of SNPs within cis-eQTL genes in the intervals. The right y-axis is
proportion of B73 positive cis-eQTL out of the total cis-eQTL in the interval. An arrow indicates the centromere location
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R2 = 0.38). Preferential mapping of B73 reads to the B73
genome at diverged loci best explained the positive rela-
tionship between sequence divergence and expression
divergence amongst eQTL.
Preferential mapping of reads was also higher across

UTRs relative to other gene features. Among the genes
with positive B73 cis-eQTL effects, a median of 15.7% of
reads mapped to UTRs. In contrast, among the genes
with negative B73 cis-eQTL effects, the median was
13.4% (Wilcoxon rank sum test, W = 25,439,952, P <
2.2e-16; Table 2). Furthermore, among those genes that
had B73 alleles that enhanced expression, reads from
B73 alleles aligned more to UTRs than did reads from
Mo17 alleles. Among these genes, 17.1% of genes’ reads
from B73 mapped to UTRs. By contrast, 14.3% of reads
from Mo17 mapped to UTRs (Wilcoxon signed rank
test, V = 7,544,600, P < 2.2e-16, Table 2).
Genes with biased read alignments had a low propor-

tion of reads aligning to splice junctions. Transcript
levels of genes with more junction spanning reads were

Fig. 3 For genes positively affected by B73 (A) and Mo17 (B) cis-eQTL, the number of genic SNPs and expression level differences of homozygous
B73 and Mo17 lines were plotted. Exon sequence divergence was calculated as the number of SNPs matching exons in a gene divided by the
total exon lengths and multiplied by 1000. The numbers in parenthesis represent the numbers of genes in each group. The y-axis is the absolute
value of the allelic expression level difference of B73 minus Mo17 in FPKM, or two times the expected additive effect of the locus. a Expression
differences between B73 and Mo17 were highly correlated with numbers of SNPs per 1 kb exon for the 5559 B73 positive cis-eQTL genes with
SNP information. b Expression level differences between Mo17 and B73 were weakly correlated with numbers of SNPs per 1 kb exon for the 2561
Mo17 positive cis-eQTL genes

Table 2 Median percentages of reads from B73 and Mo17 that
mapped to UTRs relative to exons among genes upregulated by
B73 or Mo17 eQTL

B73 reads Mo17 reads All readsc

B73 + eQTL 17.1a 14.3 15.7

Mo17 + eQTL 13.7b 13.1 13.4
aAmong genes upregulated by B73 alleles at cis eQTL, the percentage of reads
that mapped to UTRs was significantly higher for reads derived from B73
alleles than for reads derived from Mo17 alleles. Wilcoxon signed rank test,
V = 7,544,600, P < 2.2e-16
bAmong genes upregulated by Mo17 alleles at cis eQTL, the proportion of
reads that mapped to UTRs was also significantly higher for reads derived
from B73 alleles than for reads derived from Mo17 alleles. Wilcoxon signed
rank test, V = 1,324,300, P = 1.1e-8
cThe percentage of all reads irregardless of allelic origin that mapped to UTRs was
significantly higher for genes upregulated by B73 alleles than genes with
upregulated by Mo17 alleles. Wilcoxon rank sum test, W = 25,439,952, P < 2.2e-16

Zhan et al. BMC Genomics          (2021) 22:285 Page 5 of 12



less affected by preferential alignment than genes with
fewer. Genes with B73 positive eQTL had a very small
but significantly lower percentage of reads that
spanned splice junctions than did reads with Mo17
positive eQTL (15.2% vs. 15.7%; Wilcoxon rank sum
test, W = 23,696,329, p-value = 4.518e-4; Table 3). In
addition, across the genes with splice sites for which
Mo17 alleles enhanced expression, reads from Mo17
alleles overlapped splice sites at a small yet signifi-
cantly higher percent than reads from B73 alleles
(15.8 vs. 15.6; Wilcoxon signed rank test, V = 1,269,
200, p-value = 0.019; Table 3).

Read alignment parameters and software reduced the
effects of preferential read alignments, but all analyses
detected a large number of biased genes
Allowing more SNPs between reads and the genome
template reduced the effects of preferential read align-
ment. New eQTL identified when allowing more SNPs
in alignment criteria had significantly more Mo17 posi-
tive effects than B73 positive effects relative to existing
eQTL identified with default criteria (Table S3, X2-test,
P < 2.2e-16). The effects of eQTL also changed. 5951
eQTL at which B73 alleles promoted gene expression
were shared between analyses that used gene expression
estimates calculated by the default and most relaxed
mapping criteria. 4801 (80.7%) had greater effects on
transcript abundance in the default analysis (Fig. 4).
Similarly, among the 6005 cis-eQTL detected in analyses
of both the default and more relaxed alignment datasets,
4872 (81.1%) had greater B73 effects in the default ana-
lysis (Fig. S2).
Changing alignment criteria had little effect on the

numbers of genes with biased read alignment. B73
alleles promoted expression at 66.6% of eQTL de-
tected with the most relaxed alignment criteria. This
proportion was not significantly lower than the
68.1% found using default criteria (X2-test, P = 0.03,
Table 4).

Table 3 Median percentages of reads from B73 and Mo17 that
mapped to splice junctions relative to all exons for genes with
B73 or Mo17 positive eQTL

B73 reads Mo17 reads All readsc

B73 + eQTL 15.2a 15.3 15.2

Mo17 + eQTL 15.6b 15.8 15.7
aAmong genes upregulated by B73 alleles, the proportion of reads that mapped
to splice sites was significantly higher for Mo17 derived reads than B73 derived
reads. Wilcoxon signed rank test, V = 5,474,100, p-value = 4.947e-12
bAmong genes upregulated by Mo17 alleles, the proportion of reads that
mapped to splice sites was significantly higher for Mo17 derived reads than
B73 derived reads. Wilcoxon signed rank test, V = 1,269,200, p-value = 0.019
cThe percentage of all reads that mapped to splice sites was significantly
lower in genes upregulated by B73 alleles compared to genes upregulated by
Mo17 alleles. Wilcoxon rank sum test, W = 23,696,329, p-value = 4.518e-4

Fig. 4 Comparison of alignment criteria on cis-eQTL effect size. Each cis-eQTL for which the B73 allele increased a target gene’s expression was
labelled “yes” if its effect estimated using the most relaxed alignment criteria was lower than its effect using the default alignment criteria. The
proportion of “yes” genes was calculated. The cis-eQTL effect was estimated as the average of the mean expression of RILs with the B73
genotype minus the mean expression of RILs with the Mo17 genotype. A large proportion of B73 positive cis-eQTLs had greater effects using
default alignment criteria (binomial test, P < 2.2e-16)
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Many studies have reported genetic variation for gene
expression using TopHat and Cufflinks analyses [32]. Al-
though the STAR read alignment and StringTie tran-
script assembly analyses detected large numbers of genes
whose expression values were due to preferential read
mapping, TopHat and Cufflinks transcript estimates
were even more affected. Among the 28,289 genes with
the most variable expression, 11,908 were significantly
affected by one cis-eQTL and no trans-eQTL (Table 4).
For 83.2% (9905) of these genes, the B73 cis-eQTL up-
regulated transcript levels (Table 4). Among detected
cis-eQTL, sequence divergence explained almost all vari-
ation in median allele expression differences (Fig. S3,
P = 4.4e-10, R2 = 0.95). Alignment bias affected genes in
addition to those with cis eQTL. Genes in many
chromosomal regions were solely upregulated by B73 al-
leles and thus correlated across the RIL population (Fig.
1, Tables S4 and S5). As with the STAR/StringTie ana-
lyses, allowing more SNPs in alignments enabled more
reads to align, but preferential alignment remained wide-
spread. 87.0% (7826 of 8999) of the B73 positive cis-
eQTL detected from analyses of gene expression from
both the default and the most relaxed alignment criteria
had higher effects in the former. Nonetheless, the num-
ber of genes affected by bias was largely unchanged. Re-
ducing stringency reduced the total number of genes
with cis eQTL by only 2% (265 genes) and the propor-
tion of B73 positive eQTL by only 1.6% (Table 4).
Analyses of gene expression estimates calculated with

salmon, an alignment free based approach to map reads
to transcripts [33], also revealed preferential read map-
ping. Salmon estimated gene transcript abundances from
reads mapped to B73 transcripts. Among the genes that
varied across the RIL population, B73 alleles upregulated
63.1% (4959/7855) (Table 4).

Discussion
Large-scale alignment bias in maize may indicate
frequent misestimation of allelic effects on gene
expression
Our results show that in maize mapping bias had a
strong effect on transcript abundance estimates and was
a major, genome-wide driver of eQTL detection. About
50% of cis-eQTL that were detected depended on the
reference genome template that was used (Table 1), and
many genes not associated with cis-eQTL likely had

preferential alignment of one parent’s alleles (Fig. 1; Ta-
bles S1 and S2). Previous investigations of genetic vari-
ation for maize gene expression may have included high
proportions of false positives. For example, we utilized
RNA-seq data from Li et al. 2013. Li et al. estimated
gene transcript abundance by aligning reads to the B73
genome using a method very similar to our default
method, so 50% of eQTL reported in Li et al. were po-
tentially false positives. Similarly, Wang et al. (2018)
aligned reads from maize and its wild progenitor teo-
sinte to the B73 genome. Wang et al. reported maize
eQTL alleles condition higher expression than do teo-
sinte alleles [34] and reported linked genes had cis-
eQTL with the same, positive acting allele [34]. While
Wang et al. interpreted these results as biologically rele-
vant, they may at least partially be due to alignment bias
both genome-wide (Table 1) and within chromosomal
domains (Fig. 2, Table 2, Fig. S1).
The very large effects of alignment bias on transcript

estimates would likely occur in other species that are
highly variable. In Arabidopsis thaliana, accession Can-0
harbors 6.63 SNPs/kb and 1.76 indels/kb compared to
the reference accession Col-0 [35]. A wild-derived
mouse strain MOLF/EiJ contains 6.34 SNPs/kb and 0.96
indels/kb relative to the reference strain C57BL/6 J [36].
Two different specimens of the nematode Caenorhabdi-
tis brenneri differ on nearly every sixth base pair on
average [37].
Remarkably, preferential mapping in maize was un-

evenly distributed across chromosomes and scaled with
chromosomal features’ sequence divergence. Highly di-
vergent chromosome arms had much more frequent
mapping biases than more similar pericentromeric
chromosomal regions (Fig. 2; Fig. S1). This chromo-
somal effect on mapping bias may occur in other cereals
including rice and wheat that have large pericentromeric
regions with low crossover frequencies and low diversity
relative to terminal regions [38, 39]. In plant breeding,
large chromosomal segments from an unrelated species
also may be introgressed into elite germplasm [40].
Reads that aligned to splice site junctions, whose se-

quences evolve slowly, were slightly but significantly un-
derrepresented amongst genes with biased alignments
(Table 3). Genes’ UTRs are more divergent than other
genic regions, and reads that align to UTRs were
also slightly but significantly enriched amongst genes

Table 4 Number of genes with B73 and Mo17 positively acting, cis-regulatory alleles detected in different analyses

Methods STAR-StringTie TopHat2-Cufflinks Salmon

cis-eQTL only default criteria relaxed criteria most relaxed criteria default criteria relaxed criteria most relaxed criteria default criteria

Total 9306 9256 9260 11,908 11,720 11,643 7855

B73 positive cis-eQTL 6341 (68.1%) 6203 (67.0%) 6172 (66.6%) 9905 (83.2%) 9639 (82.1%) 9504 (81.6%) 4959 (63.1%)

Mo17 positive cis-eQTL 2965 (31.9%) 3053 (33.0%) 3088 (33.3%) 2003 (16.8%) 2081 (17.8%) 2139 (18.4%) 2896 (36.9%)
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with preferential read alignment (Table 2). While differ-
ences in UTR and splice site read alignments were small
between B73 and Mo17 alleles, other, relatively short
genome sequence domains likely have greater effects on
gene expression across genotypes. For example, NB-LRR
genes and other biotic response genes are highly poly-
morphic compared to housekeeping genes [41].

The high level of maize alignment bias may be due to
structural variants that can be accounted for by de novo
genome assemblies
Increasing the number SNPs allowed in alignments to
the B73 genome by relaxing criteria caused the effect
sizes of 4/5 B73 positive eQTL to decrease (Fig. 4).
Nonetheless allowing more SNPs within alignments did
little to resolve biased alignment. The total number of
B73 positive eQTL was similar regardless of alignment
criteria changes (Tables 1 and 4). Structural variants in-
cluding translocations, inversions, indels, and copy num-
ber variants, likely contributed most to biased alignment.
Between B73 and Mo17, structural variants occur within
about ~ 20% of maize genes, and 10% of annotated genes
are exclusive to one or the other inbred line [19]. In
humans, eQTL were enriched 50-fold amongst genes
with structural variants relative to genes with SNPs or
short indels [42]. Structural variants would cause reads
not to align to a reference genome or to misalign to the
reference. While in mice reads that did not map to a ref-
erence occurred about 20 times more often than reads
that mismapped to the reference [17], maize has a large
number of closely related gene and pseudogene se-
quences because of genome duplication and transposon
activity [19, 28]. Non-target reference genome sequences
may improperly capture a relatively high proportion of
reads from non-reference genotypes [43].
Software notably affected read alignment bias magni-

tudes (Tables 1 and 4). For example, while 68.1% of
eQTL had B73 alleles that increased expression in
STAR/StringTie analyses, 83.2% did in TopHat/Cufflinks
analyses, and 63.1% did in Salmon analyses. STAR’s
alignment algorithm accurately assigns a higher propor-
tion of reads to a template than does TopHat2’s [44],
and StringTie provides better estimates of gene expres-
sion abundances compared to Cufflinks [27]. Salmon’s
accounting for factors that affect read coverage such as
fragment GC content and 5′ and 3′ sequence bias may
have increased the similarity of different alleles’ expres-
sion values relative to STAR/ StringTie [33]. Steps such
as removing UTRs from a reference template prior to
alignment (Table 2), masking polymorphic sites [34],
and extending reads [45] would generate more accurate
transcript abundance estimates. Cho et al. 2014 showed
that compared to short paired reads, long paired reads
have a higher unique alignment rate; have a higher

chance of differentiating haplotypes at heterozygous
sites; and more accurately quantified transcript abun-
dances [45]. Thus, we anticipate modified genome tem-
plates, novel software, and longer sequencing reads will
reduce biased transcript level estimates.
Nonetheless, these methods are partial solutions in the

presence of structural variants [46]. De novo genome se-
quencing is becoming more routine, comprehensive, and
accurate because of long-read sequencing, long paired-
end reads, and optical mapping [47–51]. Individual ge-
nomes can be inferred from a small number of core gen-
ome sequences [17], reducing sequencing and
bioinformatics burdens. These distinct genome refer-
ences will enable reads from sequences affected by struc-
tural rearrangements to correctly align enabling accurate
estimates of gene expression across genotypes.

Conclusions
In conclusion, read mapping bias greatly affects tran-
script abundance estimates in maize genotypes. Tran-
script level misestimation is much greater for genes at
chromosome ends than in pericentromeric regions, and
its misestimation is slightly but significantly higher for
genes with many UTR sourced reads. Alignment param-
eters and software reduced the magnitude of mapping
bias but had little effect on its widespread presence. Pre-
vious studies of genetic variation of gene expression for
maize and other species with highly divergent chromo-
somal sequences were likely strongly affected by read
mapping bias. Assigning reads to individual genomes or
transcriptomes is likely necessary to consistently and ac-
curately estimate genotypes’ transcript abundances.

Methods
Gene expression estimation, genetic map construction,
and eQTL mapping
A recombinant inbred line population derived from self-
ing F2 plants from a biparental cross is an excellent re-
source for identifying alleles that affect gene expression
abundance. Each allele is expected to be within 50% of
the population, so allelic comparisons are well-powered.
In addition, unlinked loci are in linkage equilibrium, so
an association between an allele and a gene’s abundance
signifies the region causes the expression variation. The
RNA-seq data was composed of raw 103-110 nt single
end RNA-seq reads without barcodes or adapters from
105 maize B73 x Mo17 RILs and two parents. Data were
downloaded from NCBI accession SRA055066 [25]. De-
tails on plant growth, RNA extraction, and sequence
generation are given in Li et al. 2013. We trimmed low
quality 3′ sequences using fastx_trimmer (http://
hannonlab.cshl.edu/fastx_toolkit/).
Genes’ transcript levels were estimated for the parental

lines and 97 RILs eight times. Eight of the 105 RILs were
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excluded because of high heterozygosity and missing
marker calls. The first analysis was with the Mo17 gen-
ome Zm-Mo17-REFERENCE-CAU-1.0 [19]. STAR-
2.5.3a aligned reads using default parameters as listed in
Table S6; StringTie-1.3.3b estimated gene transcript
abundances. The next six analyses used alignments to
the B73 reference genome AGPv3.19 [28]. In the first
three analyses, STAR-2.5.3a software was used with
three parameter sets, default, relaxed, and most relaxed,
which allowed 3, 6 and 12 nucleotide mismatches to the
template, respectively (Table S6), and StringTie esti-
mated transcript abundances. TopHat-2.1.1 and
Cufflinks-2.1.1 software estimated transcript abundances
in the second three analyses with parameter sets analo-
gous to those used in the STAR alignment (Table S6). In
these first seven analyses, samtools-1.3.1 rmdup removed
duplicate reads, and gene transcript abundance was re-
ported as FPKM. Analysis of TPM estimates generated
by StringTie with STAR using the default parameters re-
vealed an almost identical degree of read mapping bias
as did FPKM analysis (Table S7). Salmon 1.3.0 was used
for the eighth analysis. Trimmed reads were mapped to
the AGPv3.19 transcriptome, and transcript abundances
were translated to gene level expression abundances
using Tximport-1.18.0.
To construct a genetic map for eQTL mapping, we

used samtools-1.3.1 mpileup to collect nucleotide infor-
mation from the bam files produced by aligning B73,
Mo17 and RIL reads to the B73 reference with Tophat2
default criteria. BCFtools-1.3.1 called variants. We iden-
tified 25,822 SNPs between B73 and Mo17, requiring
nucleotide calls to have > = 5 reads with phred-scaled
quality scores of > = 20. We used these SNPs to geno-
type RILs. To be included in the genetic map, SNP
markers had to have a minor allele frequency > 30% and
a missing data rate < 5%. MadMapper (https://github.
com/alex-kozik/atgc-map) and MSTmap [52] grouped
and ordered markers, respectively, producing a map with
2236 markers separated by 0.1 to 31.5 cM. The total
map length was 3606 cM. Markers were distributed
throughout the linkage groups corresponding to the 10
maize chromosomes without any breaks, except chromo-
some 7 was represented by two linkage groups. As ex-
pected, the SNP genotyping revealed that individuals
have chromosomes composed of long stretches of B73
and Mo17 DNA. There were no cases where a Mo17 al-
lele was detected in a B73 region or visa- versa.
Using this genetic map, eQTL mapping was conducted

with each of the 8 different gene expression datasets.
We first selected genes expressed at > 1 FPKM or > 1.82
TPM in at least 42 RILs (43%) and subsequently selected
the 75% most variable genes among the RILs. eQTL
were mapped using non-parametric interval mapping in
R/qtl [53] (version 1.36–6). 1000 permutations were

used to define a genome-wide LOD significance thresh-
old for an eQTL at α = 0.05. eQTL linked to the target
gene were deemed cis-eQTL [54], and all other eQTLs
were termed trans-eQTL. The average gene expression
of lines carrying the B73 and Mo17 cis-eQTL alleles
were estimated using the effectplot function in R/qtl.
Cis-eQTL magnitude was expressed as half of the differ-
ence between the two alleles.

Correlating sequence divergence of eQTL genes with eQTL
magnitudes
To determine the relationship between sequence diver-
gence and expression divergence, we downloaded the
Zea mays haplotype map, HapMap v3.2.1 [18] (https://
www.panzea.org/genotypes), and extracted the B73 and
Mo17 SNPs. We mapped the SNPs to exons annotated
in the B73 reference genome AGPv3.19, selected those
exons to which RNA-seq reads mapped, and calculated
the number of SNPs per 1 kb exon. We used SNPs from
the haplotype map instead of the RNA-seq data to have
a complete set of independently measured SNPs. To
map SNP frequencies across chromosomal regions and
compare them to eQTL (Fig. 2), we captured consecu-
tive, non-overlapping windows of 2Mb. Within the win-
dow, we averaged the numbers of SNPs per gene and
calculated the proportion of genes with eQTL that had
positively acting B73 alleles. We plotted results from the
loess.smooth() function in R for each chromosome. To
evaluate the significance of the relationship between
SNPs and eQTL magnitudes (Fig. 3), we modeled me-
dian eQTL magnitude as a linear function of SNP num-
ber using R.

Identification of co-expressed linked genes across the RIL
population
One expects mapping bias would affect genes in addition
to those detected in eQTL analyses. We investigated if a
region’s haplotype had a consistent effect on the region’s
gene expression values (Fig. 1). To determine if a
chromosomal region’s genes were positively correlated,
we used the R package WGCNA-1.49 [55, 56], with a
soft threshold power, β, of 5 to identify correlated gene
groups. The STAR/StringTie and TopHat2/Cufflinks de-
fault criteria expression datasets used for the eQTL ana-
lyses were used for coexpression analyses. Default
WGCNA settings were used to define groups of genes,
except groups with fewer than 60 genes and/or higher
than 0.8 topological overlap (TO) similarity were merged
into the closest neighbour group. We determined the
chromosomal positions of genes within groups, and we
identified the haplotype allele that increased the expres-
sion levels of group’s genes.
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Determining if reads’ UTR and splice site usage affected
eQTL bias
We used similar approaches to test if splice sites and
UTRs affected preferential read alignment. In both cases,
we used processed RNA-seq reads of the B73 and Mo17
inbred lines aligned to the B73 genome with STAR-
2.5.3a with default alignment criteria. For each gene with
a cis-eQTL, the SGSeq R package recorded the number
of B73 and Mo17 reads overlapping annotated splice
junctions and all exons [57]. For each line, we calculated
each gene’s splice junction read ratio, the ratio of splice
junction mapped reads relative to the total mapped
reads. Only genes with reads mapping across splice junc-
tions and other genic regions were considered. The Bio-
conductor package Rsubread was used to count RNA-
seq reads mapping to exons and UTRs. For each cis-
eQTL gene, we calculated the ratio between the number
of reads mapping to UTRs and the number of reads
mapping to all exons for B73 derived reads and Mo17
derived reads [58]. Only genes with reads mapping to
UTRs and CDS sequences were evaluated. The median
difference in splice junction read ratio and the median
difference in UTR read ratio between the B73 inbred
and the Mo17 inbred were calculated and the signifi-
cance evaluated using the Wilcoxon signed rank test
for genes with cis-eQTL. A similar analysis was done
on the subset of eQTL genes for which the B73 cis-
eQTL allele was positive and the subset for which the
Mo17 cis-eQTL allele was positive. The significances
of the median differences in splice junction and UTR
read ratios between B73 cis-eQTL genes and Mo17
cis-eQTL genes were calculated using the Wilcoxon
rank sum test.

Code availability
Code used in the study is available from GitHub: https://
github.com/lewislukens/maizeeqtlstudy and in a supple-
mentary file: codeProtocols.txt (Additional file 11).
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cis-eQTL for which B73 alleles had positive effects on gene expression
when aligned to the B73 reference genome and the number of SNPs be-
tween B73 and Mo17 genes. The line plots are lowess smooths of the
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Mb intervals. The right y-axis is the proportion of B73 positive cis-eQTL
out of all cis-eQTL in a 2 Mb interval. Arrows indicate the centromere
locations.
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alignment criteria was lower than its effect using the default alignment
criteria. The proportion of “yes” genes was calculated. Cis-eQTL effect is
estimated as the average of the mean expression of genotype B73 minus
the mean expression of genotype Mo17. A large proportion of B73 posi-
tive cis-eQTLs have greater effects using default alignment criteria (bino-
mial test, P < 2.2e-16).
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exon lengths and multiplied by 1000. The numbers in parenthesis repre-
sent the numbers of genes in each group. Allelic expression differences
between B73 and Mo17 were highly correlated with numbers of SNPs
per 1 kb exon for the 8794 B73 positive cis-eQTL genes with SNP informa-
tion. The y-axis is the allelic expression level difference of B73 minus
Mo17 in FPKM, or two times the expected additive effect of the locus.
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