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Whole-genome association and genome partitioning revealed 
variants and explained heritability for total number of teats in a 
Yorkshire pig population

Md. Rasel Uzzaman1,a, Jong-Eun Park1,a, Kyung-Tai Lee1, Eun-Seok Cho1,  
Bong-Hwan Choi1,*, and Tae-Hun Kim1,*

Objective: The study was designed to perform a genome-wide association (GWA) and par
titioning of genome using Illumina’s PorcineSNP60 Beadchip in order to identify variants 
and determine the explained heritability for the total number of teats in Yorkshire pig.
Methods: After screening with the following criteria: minor allele frequency, MAF≤0.01; 
Hardy-Weinberg equilibrium, HWE≤0.000001, a pair-wise genomic relationship matrix was 
produced using 42,953 single nucleotide polymorphisms (SNPs). A genome-wide mixed 
linear model-based association analysis (MLMA) was conducted. And for estimating the 
explained heritability with genome- or chromosome-wide SNPs the genetic relatedness 
estimation through maximum likelihood approach was used in our study.
Results: The MLMA analysis and false discovery rate p-values identified three significant 
SNPs on two different chromosomes (rs81476910 and rs81405825 on SSC8; rs81332615 on 
SSC13) for total number of teats. Besides, we estimated that 30% of variance could be ex
plained by all of the common SNPs on the autosomal chromosomes for the trait. The maxi
mum amount of heritability obtained by partitioning the genome were 0.22±0.05, 0.16±0.05, 
0.10±0.03 and 0.08±0.03 on SSC7, SSC13, SSC1, and SSC8, respectively. Of them, SSC7 ex
plained the amount of estimated heritability along with a SNP (rs80805264) identified by 
genome-wide association studies at the empirical p value significance level of 2.35E-05 in our 
study. Interestingly, rs80805264 was found in a nearby quantitative trait loci (QTL) on SSC7 
for the teat number trait as identified in a recent study. Moreover, all other significant SNPs 
were found within and/or close to some QTLs related to ovary weight, total number of born 
alive and age at puberty in pigs.
Conclusion: The SNPs we identified unquestionably represent some of the important QTL 
regions as well as genes of interest in the genome for various physiological functions respon
sible for reproduction in pigs.
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INTRODUCTION 

As one of the most in-demand livestock species, pigs play a big role in the global meat mar-
ket economy. The success of pig production is related to an important trait: total number of 
teats. This trait directly affects the mothering ability of sows [1]. An increased total number 
of teats can enhance the productivity of the sows functioning teats through some manage-
ment factors/considerations [2]. Therefore, an increased number of weaned piglets from 
increased total number of teats. On the other hand, the trait is known to have low (<0.20) 
to medium (approximately 0.30) heritability [1,3,4], and this also indicates a reasonable 
expectation of response to genetic selection for total number of teats.
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  Generally, teats are grouped into functional (good and 
desirable) teats, inverted and supernumerary (extra) teats. A 
functional teat is one with a well-developed predominant 
sphincter whereas a teat that is turned inwards is called in-
verted. Supernumerary teats are usually small and shorter in 
size in relation to the normal (functional) teats. While visual 
inspection and classification of teats can be done during pro-
cessing 2 to 3 days after birth, it is not possible to accurately 
differentiate between functional and non-functional teats. 
Lundheim et al [5] examined the genetic association between 
total number of teats and number of functional teats evalu-
ated at the end of a performance test (100 kg body weight) in 
Yorkshire gilts. They found that the total number of teats and 
number of functional teats had a high and positive genetic cor-
relation (0.82) indicating that selection for total number of 
teats would result in a significant increase in number of func-
tional teats. Thus, from an objective measurement point of 
view the total number of teats is usually used as a proxy for the 
number of functional teats. 
  The genetic improvement of female reproductive traits is 
complex because of this low to medium heritability and their 
sex-limited expression, and because phenotyping is only pos-
sible late in a sow’s life. These conditions constitute a challenge 
for traditional animal breeding programs. Exploration of the 
genetic architecture of reproductive traits is necessary because 
of the complex genetic and biological processes involved [6,7]. 
Thus, the use of genome-wide association studies (GWAS) can 
be useful in searching for chromosomal regions that can help 
to explain the genetic architecture of total number of teats in 
pigs.
  Hundreds and thousands of single nucleotide polymor-
phisms (SNPs) triggered the genotyping technology that began 
the revolution leading to GWAS. Among available methods, 
an increasing interest has been noticed in using the mixed lin-
ear models (MLMs) for GWAS because of their demonstrated 
effectiveness in accounting for relatedness among samples and 
in controlling for population stratification and other con-
founding factors [8-13]. 
  In our study, we conducted a genome-wide association 
analysis for the total number of teats in a Yorkshire population 
using MLM approach. We thereafter estimated the proportion 
of phenotypic variance explained by genome- or chromosome-
wide SNPs using genetic relatedness estimation through 
maximum likelihood (GREML) approach.

MATERIALS AND METHODS 

Animals and phenotypes
The studied animals were from a commercial population of 
Sunjin (http://www.sj.co.kr/eng/sunjin_eng/about.asp); a com-
mercial pig breeding company in South Korea. The animals 
were of purebred Yorkshire pigs and born between 2007 and 

2014. All animals were raised in similar dietary supply and 
housing management system. Phenotypic measurements of 
total number of teats were obtained from 1,061 pigs as a proxy 
for the number of functional teats. The sampled animals were 
half-sib and full-sib pigs produced from 171 sires and 477 
dams of Yorkshire breed. The record for the total number of 
teats was performed at 3 to 5 days of age by visual inspection. 
And, all the animals were of the first parity origin of their par-
ents.

Genotyping and SNP quality
Genotyping was performed using the Illumina Porcine SNP 
60K Beadchip. Blood samples collected for DNA extraction 
were only used for the purposes of the breeding program, and 
procedures were strictly in line with Korean law on the pro-
tection of animals. DNA was extracted from whole blood and 
genotyped at Illumina, Inc. (San Diego, CA, USA). We re-
moved SNPs with a GenCall score <0.7, call rate <95%, minor 
allele frequency <0.01, and the SNPs with no physical position 
on the pig genome (pig genome build 10.2). After quality con-
trol, a total of 42,953 SNPs remained for association analysis.

Statistical analysis
For studying the association between genotyped SNPs and the 
trait of interest the following MLM was used in our study:

  y = a + bx + g- + e

  Where y is the phenotype, a is the mean term, b is the ad-
ditive effect (fixed effect) of the candidate SNP to be tested 
for association, x is the SNP genotype indicator variable coded 
as 0, 1, or 2, g- is the accumulated effect of all SNPs except 
those on the chromosome where the candidate SNP is located. 
The var(g-) will be re-estimated each time when a chromo-
some is excluded from calculating the genomic relationship 
matrix (GRM) and e is the residual. For the ease of compu-
tation, the genetic variance, var(g-), is estimated based on the 
null model i.e. y = a + g- + e and then fixed while testing for 
the association between each SNP and the trait. We thereby 
used a designed option called ‘mlma-loco’ for the association 
analysis as implemented in the genome-wide complex trait 
analysis (GCTA) tool [14]. 
  Two types of p value plots had been demonstrated as part 
of the standard presentation of GWAS results: −log10 (P) ge-
nome-wide association plots (Manhattan plots) and quantile-
quantile (QQ) plots. Manhattan plot represented the p values 
on the y-axis against genomic order by chromosome and po-
sition on the x-axis. Because of local correlation of the genetic 
variants, arising from infrequent genetic recombination, groups 
of significant p values tend to rise up high on the Manhattan 
plot. The QQ plot was used to assess the number and mag-
nitude of observed associations between genotyped SNPs 
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and trait under study, compared to the association statistics 
expected under the null hypothesis of no association [15]. Ob-
served association statistic (−log10) p-values were ranked in 
order from smallest to largest on the y-axis and plotted against 
the expected values from a theoretical x2-distribution under 
the null hypothesis of no association on the x-axis of the QQ 
plot. Deviations from the identity line suggested either that the 
assumed distribution was incorrect or that the sample con-
tained values arising in some other manner, such as by true 
association. Since the underlying assumption in GWA studies 
is that the clear majority of assayed SNPs are not associated 
with the trait, strong deviations from the null suggest either 
a very highly associated and excessively genotyped locus (i.e. 
an associated gene with many genotyped SNPs) or spurious 
associations. On the other hand, very little deviation from the 
expected values could be attributed to cryptic relatedness in 
the study population, in the genotyping, or either true asso-
ciation.
  For the estimation of the explained variances by genome-
wide SNPs the basic concept behind our method was to fit the 
effects of all the SNPs simultaneously as random effects in a 
MLM without testing for associations of any individual SNP 
with the trait. The linear equation could be written using the 
following model:

  y = Xβ+Wu+ε with var(y) = V = WW′σ2
μ+Iσ2

ε   	 (I)

  Where y is an n×1 vector of phenotypes, n is the sample 
size, β is a vector of fixed covariate herd-year season (HYS) and 
eigenvectors from principal component analyses (PCAs). The 
HYS had 4 levels of season (winter, summer, spring, and fall) 
since 2007 to 2014. Individual GRMs were used to calculate 
the first 20 eigenvalues and eigenvectors and the eigenvector 
of the covariance matrix was subsequently used to calculate the 
PCA (PC1 and PC2), where U is a vector of SNP effects with 
u~N (0, Iσ2

u), I is an nxn identity matrix, and ε is a vector of 
residual effects with ε ~N (0, Iσ2

ε). W is a standardized geno-
type matrix with the ijth element wij = 
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to test whether these components explain significant amounts 
of phenotypic variance. Each genetic component represents 
an arbitrary group of genetic markers, usually chromosomes 
or smaller linkage groups. Additive genetic variance compo-
nents are estimated from identity-by-state GRMs rather than 
from pedigree data [14,16]. The heritability of genome- or 
chromosome-wide SNPs was estimated as the ratio [V(G)/Vp] 
of the genetic variance to the phenotypic variance estimate of 
the animals using the GRM-restricted maximum likelihood 
(GREML) approach. Chromosome-specific heritability (h2) 
was estimated by generating one GRM for each chromosome 
using only SNPs on that chromosome and fitting this GRM 
alongside a second GRM based on all genome-wide SNPs 
apart from those on that chromosome. A likelihood- ratio test 
(LRT) was then carried out between the full model and the 
model excluding the chromosome-specific component. The 
threshold of an LRT would depend both on the log-likelihood 
values as well as parameter numbers of the two models. In case 
of positive LRT (>10) values the generated probability is often 
large and conclusive.

RESULTS AND DISCUSSION

Genome-wide association
We estimated the GRM between pairs of individuals based on 
42,953 autosomal SNPs, followed by a mixed linear model-
based association analysis (MLMA). The summary of the 
MLMA for total number of teats with 42,953 genome-wide 
SNPs was produced. A false discovery rate (FDR level: 0.05) 
correction of p-values derived from MLMA identified three 
significant (q≤0.01) SNPs (Table 1). The Manhattan plot of the 
GWA analysis for the trait is given in Figure 1A. The QQ plot 
to illustrate the level of potential p-value inflation is shown in 
Figure 1B. Several effective statistical methods are available to 
correct for population structure and are a standard component 
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of rigorous GWA analyses [17,18]. Determining the popula-
tion structure by PCA indicated that the sampled animals were 

from a little bit disperse but still a single population (Figure 2). 
Genome-wide significant hits on SSC8 were detected, namely 

Table 1. A false discovery rate (FDR level: 0.05) correction of p-values derived from mixed linear model-based association analysis identified three significant (q≤0.01) SNPs 
for total number of teats in a Yorkshire pig population

Chr SNP refSNP bp A1 A2 Freq b se p-value q-value

8 ASGA0102835 rs81476910 145,098,780 A G 0.01 –1.54 0.25 1.66E–09 7.12E–05
8 ALGA0050175 rs81405825 145,451,027 A G 0.07 –0.49 0.09 7.03E–07 0.010
13 H3GA0052641 rs81332615 12,004,442 A C 0.03 –0.83 0.15 1.34E–07 0.003

Chr: chromosome; SNP, single nucleotide polymorphism; refSNP, reference SNP identification from the SNP database; bp, physical position; A1, reference allele; A2, other allele; 
Freq, frequency of the reference allele; b, SNP effect; se, standard error.

Figure 1. (A) Manhattan plot for the total number of teats examined in the genome-wide association study using Korean Yorkshire pigs. (B) The QQ plot in the upper-right 
corner compares expected versus observed –log10 (p-values) for all 42,953 single nucleotide polymorphisms included in the genome-wide association (GWA) analysis, with 
the red line corresponding to the null hypothesis of no association.

(A)

(B)
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rs81476910 (p = 1.66E–09) and rs81405825 (p = 7.03E–07) 
located in the 145,098,780- and 145,451,027-bp genomic re-
gions, respectively. The other significant SNP was rs81332615 
(p = 1.34E–07), located in the 12,004,442-bp genomic region 
on SSC13 (Table 1). The three highly significant loci did not 
fall within the previously reported quantitative trait loci (QTL) 
for the teat number trait in pigs. Apart from it, a SNP (rs8080 
5264) identified on SSC7 by GWAS at the empirical p value 
significance level of 2.35E-05 was found likely to be con-
cordant being in a nearby QTL (103,789,642 to 105,224,235) 
region on SSC7 for the teat number trait as identified in a re-
cent study [19]. The most promising candidate gene nearby 
the QTL on this chromosome is VRTN (vertebrae develop-
ment associated). This gene had been suggested to be related 
to the total number of vertebrae, a trait correlated with the total 
number of teats [20]. Additionally, rs81476910 and rs81405825 
were found within the reproduction QTL (140,282,531 to 
148,491,826 bp) on SSC8 for pig ovary weight. On the other 
hand, rs81332615 were seen nearby the QTLs for total number 
born alive (13,012,892 to 13,038,269 bp) and age at puberty 
(9,843,648 to 45,496,370 bp) on SSC13 for pig reproduction 
traits (http://www.animalgenome.org/cgi-bin/QTLdb/SS/
download?file=gbpSS_10.2). Therefore, significant SNPs along 
with the genomic regions derived from our genome-wide asso-
ciation analysis should undergo for further studies to explore 
the genomic underpinnings of total number of teats in York-
shire pigs.

Genome partitioning and explained variances
The heritability of teat number varies over a wide range, from 
0.07 to 0.79, but most estimates are at the low to medium level, 
from 0.20 to 0.50 [21]. The estimated explained variance i.e. 
heritability estimating with the variance component V(G)/Vp 

for the total number of teats was 0.30±0.05 (Table 2) in our 
study. The partitioning of the total genetic variance to chro-
mosome-specific by fitting the GRMs with the SNPs on each 
of the chromosomes is shown in Table 3.
  An estimated heritability of 0.34±0.05 for teat number was 
reported using a GRM constructed from all SNP markers, 
whereas using the additive relationship matrix with pedigree 
information the heritability estimate was found to be 0.43±0.04 
in a purebred Duroc population [22]. Again, using pedigree 
information, an estimated heritability of 0.44±0.04 for teat 
number was obtained in a population of purebred Berkshire 

Figure 2. Population structure revealed by principal component analysis (PCA). 
Individuals genomic relationship matrix (GRM) was used to calculate first 20 
eigenvalues and eigenvectors and subsequently the eigenvector of covariance 
matrix was used to calculate the PCA (PC1 and PC2).
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Table 2. Estimation of variance component for 1,048 animals using REML

Source Variance SE

V(G) 0.32 0.06
V(e) 0.76 0.05
Vp 1.09 0.05
V(G)/Vp 0.30 0.05
L(H0)

1) –558.524 -
L(H1)

2) –527.841 -
LRT3) 61.366 -
df 1 -
Pval 2.387e-15 -
n 1,048 -

REML, restricted maximum likelihood; SE, standard error; V(G), genetic variance 
estimate; V(e), residual variance estimate; Vp, phenotypic variance estimate; V(G)/
Vp, ratio of genetic variance to phenotypic variance estimate. 
1) log-likelihood under the null hypothesis that σ2

g =  0. 
2) log-likelihood under the null hypothesis that σ2

g ≠ 0. 
3) log likelihood ratio test statistic, LRT =  2[L(H1)−L(H0)], L(H1); log-likelihood for 
alternative model, L(H0); log-likelihood for null model. 

Table 3. Genome partitioning of genetic variation associated with total number 
of teats using autosomal SNPs

Chromosome number Length (Mb) Explained heritability

1 315.32 0.10
2 162.57 0.04
3 144.79 0.07
4 143.47 0.04
5 111.51 0.00
6 157.77 0.02
7 134.76 0.22
8 148.49 0.08
9 153.67 0.06
10 79.10 0.07
11 87.69 0.03
12 63.59 0.07
13 218.64 0.16
14 153.85 0.04
15 157.68 0.02
16 86.90 0.05
17 69.70 0.04
18 61.22 0.02

SNPs, single nucleotide polymorphisms.
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pigs [23]. Therefore, a difference was observed between the 
heritability estimates obtained using pedigree information and 
that based on genomic information. Studies suggest that one 
reason for this difference in heritability estimates is the im-
perfect LD between SNPs and QTL. Accordingly, it would be 
impossible to detect all the QTL that contributed to genetic 
variation in teat number using the SNP information available 
thus far in the Porcine SNP60 BeadChip.
  Partitioning of genome revealed that the four chromo-
somes (SSC1, SSC7, SSC8, and SSC13), would exhibit higher 
explained heritability as compared to all the other chromo-
somes (Figure 3). SSC13 and SSC8 explained an estimated 
heritability of 0.16±0.05 and 0.08±0.03, respectively, reflecting 
the effects of significant SNPs detected on these chromosomes. 
Conversely, SSC1 explained an estimated heritability of 0.10± 
0.03 having no significant SNPs detected on it. On the other 
hand, SSC7 explained an estimated heritability of 0.22±0.05 
along with a SNP (rs80805264) identified on it by GWAS at the 
empirical p value significance level of 2.35E-05 in our study.
  However, for the chromosome 1, 7, where none of the three 
highly significant SNPs was detected, the explained propor
tion of genetic variance was greater (10%, 22%) than the 
chromosome 8 (8%). In GCTA, the model hereby assumes 
that expected heritability does not vary with either linkage 
disequilibrium (LD) or genotype certainty. On the contrary, 
by analyzing imputed data for a large number of human traits, 
researchers empirically derived a model that more accurately 
describes how heritability varies with minor allele frequency 
(MAF), LD, and genotype certainty [24]. Their improved 
model across 19 traits leaded to estimates of common SNP 
heritability on average 43% (standard deviation 3) higher than 
those obtained from the widely used software GCTA and 25% 
(standard deviation 2) higher than those from the recently 
proposed extension GCTA-LDMS (LD+MAF Stratification). 
So, the chromosome(s) with the highly significant SNPs ex-

plaining lower proportion of genetic variance might be under 
this pitfall. And, in particular rs81476910 has been noticed 
with lower MAF (0.01) but highly significant SNP on SSC8 
(Table 1).
  On the other hand, the summed values of explained heri-
tability were 1.13, which was quite different from 1.00. This 
would be because of the LD structure of the genome which 
is commonly seen while partitioning the heritability into the 
contributions of genomic regions [25].
  While estimating the proportion of (narrow sense) herita-
bility of a trait a substantial portion of missing heritability may 
arise from over estimation of the denominator. And, in such 
case the numerator is the proportion of the phenotypic vari-
ance explained by the additive effects of known variants and 
the denominator is the proportion of the phenotypic variance 
attributable to the additive effects of all variants, including those 
not yet discovered. This over estimation of denominator thus 
under estimate explained heritability by a set of known genetic 
variants and therefore may fall far short of 100%. This gap is 
known as phantom heritability [26]. Possibly due to this reason 
our chromosome-specific heritability remains as shortfall to 
100% of those explained in genome-wide scale for the trait 
(Table 3).
  In conclusion, the SNPs we identified unquestionably rep-
resent some of the important QTL regions as well as genes of 
interest in the genome for various physiological functions re-
sponsible for reproductive traits. In addition, chromosome-
specific partitioning was concordant, while phenotypic variances 
were explained by highly significant SNPs together with other 
SNPs on certain chromosomes. Therefore, these SNP markers 
along with the important genes in those QTL regions as ob-
served on the four chromosomes (SSC1, SSC7, SSC8, and 
SSC13) should be considered for further validating research 
on total number of teats in Yorkshire pigs.
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