
ORIGINAL CONTRIBUTION

Simulations of Lévy Walk
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Abstract The simulation of stable distributions was per-

formed to study an ideal movement pattern for the spread

of a virus using an autonomous carrier. It has been

observed that Lévy walks are the most ideal way to spread

and further study was done on how the parameters in Lévy

distribution affect the spread.
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Introduction

Biological systems cannot be described only in the aspects

of probabilistic distributions. However, in the interest of

studying interactions and common behaviours we consider

systems to imitate similar laws at different scales [1].

Stable distributions have scale invariant behaviour, where

linear combination of independent and identical distribu-

tions (IIDs) with finite mean and variance leads to a normal

distribution (ND) [2]. Similarly, when rescaled and reor-

dered sum of IIDs were considered with non-finite vari-

ance, it may converge to a Lévy distribution (LD). Though

NDs are pervasive in most systems, LDs are found in

biological system mostly associated with optimal foraging

behaviour [1, 3] and human mobility. Most literature sup-

ports the statistical similarity between human mobility

through different modes of transportation and Lévy distri-

bution [4–6], but in some instances a log-normal

distribution was also observed [7]. LD comprises Lévy

walk (LW) where multiple short steps are taken with long

steps in-between, whereas the ND comprises Brownian

walk (BW) where multiple similar steps are taken.

Observing the spread of present virus [8], studying simu-

lations have been considered of a simple model using

stable distributions. It can be observed that spread takes a

Lévy like walk which seems to happen in different distance

scales. Initially, spreading across different continents tak-

ing long steps followed by multiple short steps within the

continent, then again long steps across different countries

within the continent and followed by multiple short steps

within the country, then different states within the country

and so on, the distance scales keep changing but the

behaviour is nearly the same. This similar behaviour can

perhaps be observed in the recently available data of

COVID-19 taken up to 10th November 2020 [8].

Fig 1(a) shows the data of daily new cases in different

countries, and Fig 2(a) shows the data of daily new cases per

100,000 people in different states within the USA. It has been

observed that the different distributions of these countries and

states are characterized by an initial peak followed by a

decline or flattening of the curve and then followed by a

higher peak than the initial. It was assumed that the macro-

scopic behaviour of such a system is nearly the same which

can be a continent, or a country within the continent, or a state

within the country. Independent of the microscopic interac-

tions which influence the local behaviour such as environ-

mental factors, demographics, government policies

implemented to control the spread and various other factors

that are different in each scale and each system. This study

qualitatively concerns only on which movement pattern is

ideal for the spread of a virus on a macroscopic scale, without

the consideration of such influence on the microscopic scales.

Simple parameters have been implemented which depend
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only on the stable distributions to observe simulations. These

simulations are based on the logic of steering behaviour

developed by Craig Reynolds [9] and Daniel Shiffman [10].

Previously, such models have been extensively studied

using many parameters to govern the spread [11]. Also

most human mobility models and realistic simulations

which are needed for applications like SLAW [12] and

SWIM [13] are based on Lévy walks. There are also other

compartmental models that typically forecast the rate of

spread and behavioural count of the population (such as the

compartments of susceptibles, infectives and recovered in

the SIR model) [14, 15].

Simulation Model

Two-dimensional canvas of dimensions 1080�720 is being

considered characterised by blue dots indicative of popu-

lation densities as shown in Fig. 2. This canvas may

represent a continent, a country or a state where the scale

invariant behaviour is observed; consecutively, the blue

dots have high density value if they represent a continent

and low value if they represent a state. The population is

highly concentrated in some regions and sparsely spread in

other. A single autonomous carrier (blue triangle) moves

around randomly controlled by ND or LD spanning across

the canvas infecting and spreading the virus indicated by

turning the blue to red dots. There may be no direct

physical significance to this carrier since the virus can

spread by many different means. As the autonomous carrier

moves along in a direction, it has a perceptive radius of few

pixels where it infects only the blue dots within a definite

boundary surrounding it. The perceptive radius imitates the

realistic situation where a certain carrier can only infect a

specific region around. Multiple iterations were run of a

simulation with same parameters for different stable distri-

butions to observe how the spread varies. The time taken

by the autonomous carrier was obtained to infect 50% of

the population and indicate it by T50, whereas the mean

time for different iterations as T50. They are measured in

seconds (s) where the wall time for each iteration is

approximately equal to T50.

Comparing Simulations of LD and ND

Initially we studied which stable distribution is more ideal

for the spread. The probability distribution function (PDF)

for LD is described by

Fig. 1 COVID-19 data

Fig. 2 Simulation
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where r is the standard deviation. Here x represents ran-

dom values in the distribution with probability p(x) which

are different lengths traversed by the carrier in pixels. For

the LD shown in Fig. 3(a) where c ¼ 9:3 and d ¼ �3, we

obtain T50 as 291 � 21 s. The parameters were closed such

that the peak for the PDFs are comparable. Similarly, for

NDs Normal1 (N1) and Normal3 (N3) whose standard

deviations are rðN1Þ ¼ 8 and rðN3Þ ¼ 800 as shown in

Fig. 3a and 3b, we obtain T50 as 714 � 173 s and 412 � 57

s, respectively. The standard deviation was considered of

N1 such that it is comparable with the perceptive radius of

the autonomous carrier and the standard deviation of N3 is

comparable with the size of the canvas.

It was observed that the spread in LW is more patchy

but spans the entire region (Fig. 4a), whereas in BW with

low r such as N1, the spread is more thorough and confined

to particular regions (Fig. 4b). It takes longer T50 compared

to LW and is more non deterministic. The measurement

was done on T50 for other NDs with standard deviation

ranging between rðN1Þ and rðN3Þ. r of ND Normal2 (N2)

is the geometric mean of r(N1) and r(N3) as shown in

Fig. 3a, 3b. For ND with r ranging between r(N1) and

r(N2), T50 was obtained as 420 � 64 s. T50 for N2 was

obtained as 400 � 53 s. Similarly, for ND with r ranging

between r(N2) and r(N3), T50 was obtained as 372 � 37 s.

Comparing Simulations of LD with Varying

Parameters c and d

The parameters for controlling LD were varied, c and d to

observe the change in spread by finding T50 in each case.

Fig. 3 Comparing probability distributions

(a) Lévy walk (b) Brownian walk

Fig. 4 Simulations of random walk
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Location parameter d determines where the peak of the

probability distribution function lies and scale parameter c
determines the proportion of short steps and long steps. To

study this wide range of parameter space, faster simulation

rates were used since we run around 50 hours of simula-

tion. This may affect the accuracy of measuring T50 but a

qualitative study can be made. We display T50 for varying

parameters by factor of 10 in Table 1. The region of

parameter space has been displayed where significant

change was observed.

A deducible change could not be observed in T50 by

varying d for each individual value of c. However for d ¼
102 the model dimensions are ideal where steps of lengths

102 pixels are more prominent for uniform spread, without

hitting the boundary and find T50 to be minimum. This is

also observed when studying ND simulations with r
ranging between 80(N2) and 800(N3). Hitting the bound-

ary or corners delays the spread since the carrier traverses

through already infected regions and has to come back.

Varying the c for different d, we observe that smaller c and

d values delay the spread where too many short steps take

place compared to long steps. Long steps are necessary to

cover the wide region, and also T50 becomes more non-

deterministic in this parameter space. If the carrier is stuck

taking many short steps in a region of highly crowded blue

dots T50 value becomes low, whereas if stuck in a sparse

region T50 is high. But also too many long steps in the

region of higher c and d values make the spread slower

than ideal, with similar behaviour not affecting T50. The

newly infected blue dots have been displayed per unit time

of different iterations for c ¼ 10�6 in Fig. 5(a) and for

c ¼ 101 in Fig. 5(b). To reduce the boundary effects, we

chose d ¼ 102 and observed how the spread varies for

different c. For lower c value, a steady decline has been

observed, whereas for the higher c value, the fall and

increase have been observed in the newly infected blue

dots per unit time.

Comparing Simulations of Log-Normal Distribution

Though a log-normal distribution has similar characteris-

tics with LD and ND in the sense that it can be expressed

by sum of arbitary number of IIDs [16], it is not a

stable distribution [17]. However since the interest is in

distributions whose normalized sum can reproduce the

original distribution, it was considered. Recent evidence

suggests that individual modes of human mobility are

Table 1 T50 of LD with varying c and d

d c

10�6 10�3 10�2 10�1 100 101

100 60 � 10 s 60 � 7 s 57 � 8 s 58 � 7 s 58 � 9 s 54 � 7 s

101 65 � 13 s 57 � 9 s 60 � 7 s 60 � 9 s 56 � 7 s 55 � 7 s

102 50 � 7 s 51 � 5 s 49 � 6 s 49 � 6 s 51 � 6 s 51 � 7 s

103 56 � 7 s 55 � 7 s 55 � 6 s 54 � 5 s 51 � 7 s 53 � 7 s

Fig. 5 Newly infected blue dots per unit time for different iterations
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based on log-normal distribution [7]. Log-normal distri-

bution is described by PDF

pðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffi

2pr02
p exp

�ðln xÞ2

2r02

 !

; ð3Þ

and the parameter r0 is chosen such as the distribution is

relatable to LD with heavy-tailed characteristics. For the

same simulation rates used in previous section, we do not

observe much difference by varying r0 � 10 where it has

been obtained as T50 ¼ 56�6 s, 56±8 s and 57±6 s for

r0 ¼ 10, 100 and 1000, respectively. Here, the long steps

are dominating which are essential for the spread. For

r0\10 it has been observed the PDF narrowed with lim-

iting the number of long steps where it has been obtained

as, T50 ¼ 60 � 13 s for r0 ¼ 1.

Conclusion

Initially it was analysed for this model of simulation, Levy

walk is the most ideal movement pattern for the spread of a

virus. This may be related to the principle of least effort in the

context of Zipf distribution [18], which have similar long-

range correlations [19, 20]. It can perhaps be seen as by

following Lévy walk the autonomous carrier takes the least

effort to achieve maximum spread compared to Brownian

walk. Further, the study was done on how the parameters in

Lévy and log-normal distributions affect the spread and how

the behaviour of the spread varies. To consolidate, the random

variables have been implemented from scale-invariant con-

tinuous distributions as random events causing movement of a

virus to study how the spread changes. Recently, scale-in-

variant discrete structures like fractals were implemented to

study the spread of COVID-19[21]. Implementing such self-

similarity into other mathematical models used to study the

epidemic may lead to new insights. Future studies can be tried

using more realistic parameters [11, 15] such as restricting the

movement in infected zones, implementing multiple carriers

and varying the dimensions of the simulations which could

imitate real world scenario.
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