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The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory
behavior. Neuronal activity in this area is modulated when rats initiate consummatory
licking and reversible inactivations eliminate reward contrast effects and reduce a
measure of palatability, the duration of licking bouts. Together, these data suggest
the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control
of consummatory behavior. The muscarinic cholinergic system is known to regulate
membrane excitability and control low-frequency rhythmic activity in the mPFC.
Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which
have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that
act on KCNQ channels within the mPFC have effects on consummatory behavior, we
made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine),
the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their
effects on consummatory behavior. A consistent finding across all drugs was an effect
on the duration of licking bouts when animals consume solutions with a relatively
high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout
durations, both systemically and intra-cortically. By contrast, the muscarinic agonist
oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker
XE-991, and ghrelin all increased the durations of licking bouts when infused into the
mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC,
acting through KCNQ channels, regulates the expression of palatability.
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INTRODUCTION

Consummatory behavior modulates neuronal activity in the medial prefrontal cortex
(mPFC) of rats and primates (Petykó et al., 2009, 2015; Bouret and Richmond, 2010;
Horst and Laubach, 2012, 2013). For example, a recent study from our group (Horst
and Laubach, 2013) found that population activity in the rostral prelimbic cortex
was strongly modulated at the moment when rats initiated licking. These changes in
spike activity were coterminous with 4–8 Hz phase locking in simultaneously recorded
field potentials. It is possible that these signals are used to monitor the consequences
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of ongoing orolingual actions and are integrated with gustatory
information, which has recently been shown to be encoded by
neurons in the mPFC (Jezzini et al., 2013), to control reward-
guided behaviors.

In a related recent study, we developed an operant incentive
contrast task to study how rats learn to maximize consumption
of rewarding solutions relative to less rewarding options (Parent
et al., 2015). Pharmacological and optogenetic inactivations of
the rostral prelimbic area shortened bouts of licking when
rats consumed relatively high, but not low, levels of sucrose.
Classic (Davis, 1973) and more recent investigations (e.g.,
Dwyer, 2012) have established that the duration of licking bouts
in animals ingesting varying quantities of sucrose reflect the
relative reward value (aka subjective value) of the solutions.
Following inactivation of the mPFC, animals responded as if
they were naive to the task. We interpreted these findings as
evidence for the rostral mPFC being crucial for the expression
of incentive contrast and for the deployment of learned feeding
strategies.

In the incentive contrast task, performance depends on the
animal’s ability to attend to changes in reward value (stop
consumption when solution switches to the low value) and
their motivation to consume (drive to consume a rewarding
solution of high caloric content). Attention and motivation are
both partially driven by the influences of acetylcholine (Voytko,
1996; Robbins, 2002; Chudasama et al., 2004; Bloem et al.,
2014) and ghrelin (Kojima et al., 1999; Nakazato et al., 2001),
respectively, in the brain. The mPFC has receptors for both
of these neuromodulatory neurotransmitters (van der Zee and
Luiten, 1999; Hou et al., 2006; Mani et al., 2014). Activation of
muscarinic acetylcholine receptors (mAChRs) has been shown to
change neuronal excitability (Brown and Passmore, 2009; Santini
and Porter, 2010) via activation of the Gq/G11-PLC-linked
intracellular cascades (Suh and Hille, 2002; Zhang et al., 2003;
Delmas and Brown, 2005). This cascade ultimately increases the
excitability of neurons via closure of Kv7 (KCNQ) potassium
channels and inhibition of the M-current. Modulation of M-
currents in mPFC specifically has been shown to regulate mPFC
dependent behaviors, such as in fear conditioning tasks (Santini
and Porter, 2010). Increases in neuronal excitability by mAChRs
may increase the influence of synaptic input to this region and
provide an efficient mechanism for engagement of mPFC during
arousal and attention. To our knowledge, no group has examined
the role of mACh receptors or KCNQ channels in the control of
consummatory behavior by the mPFC.

The orexigenic peptide ghrelin has recently been shown
to enhance the excitability of dopamine neurons in the
substantia nigra pars compacta (Shi et al., 2013). The G-protein-
mediated activation of the intracellular pathway responsible
for modulation of KCNQ channels by mAChR overlaps
with ghrelinergic modulation of excitability. Activation of
the ghrelin receptor—growth hormone secretagogue receptor
(GHS-R)—triggers activation of the same intracellular pathway,
and ultimate closure of KCNQ channels (Shi et al., 2013),
as mAChRs. The published functional impact of mPFC M-
current manipulation on excitability and behavior, together
with the potential co-regulation of these same effector KCNQ

channels by mAChR and GHS-R, suggests that consumption
in a task that is dependent on mPFC may be regulated by
both of these neurotransmitter systems. As with the muscarinic
system described above, no group has examined the role of
ghrelin receptors in the mPFC with regard to the control of
consummatory behavior.

Here, we demonstrate that both systemic andmPFC infusions
of the muscarinic receptor antagonist scopolamine decreased the
duration of licking bouts during access to high value sucrose
solutions when provided alternating access to high and low
value solutions. These results are similar to what has been
previously reported following reversible inactivation of mPFC
(Parent et al., 2015), and suggest that blocking mACh receptors
with scopolamine disrupts the same elements of neuronal
processing that is similarly affected by total cortical inactivation
via muscimol. Exactly the opposite result was obtained when
cholinergic tone was enhanced locally in mPFC with infusion
of the cholinesterase inhibitor physostigmine (aka eserine),
activation of mAChR with the mAChR agonist oxotremorine,
and blocking KCNQ channels linked to mAChR receptors with
XE-991. Furthermore, infusion of ghrelin, which acts on the
same KCNQ channels as the muscarinic system enhanced the
same measure of palatability (bout duration) only when the
high value sucrose solution was available. All four of these
manipulations effectively block KCNQ channels and increases
neuronal excitability (at least in brain slices, Guan et al.,
2011; Pafundo et al., 2013). These stimulatory manipulations
all selectively increased the duration of licking bouts when a
high value sucrose reward was available, and had no impact on
licking for a lower value solution. As the duration of licking
bouts is thought to reflect the palatability (or hedonic value) of
ingested fluids (Davis, 1973), the present study is the first to
implicate cholinergic and ghrelinergic signaling in the mPFC,
acting through KCNQ channels, in the expression of palatability.

MATERIALS AND METHODS

All procedures carried out in this set of experiments were
approved by the Animal Use and Care Committee of the John
B. Pierce Laboratory and conform to the guidelines set forth for
the Ethical Treatment of Animals (National Institutes of Health).

Animals
Twenty-five Long-Evans rats of 350–450 grams were used in
this study. Animals were housed individually and kept on a
12/12 h light/dark cycle switching at 7:00 AM and 7:00 PM.
Upon arrival, animals were given 1 week of habituation to their
new environment with free access to rat chow followed by daily
handling for 1 week. After habituation and initial daily handling,
animals had regulated access to food to maintain their body
weights at approximately 90% of their free-access weights. Rats
typically received 14–18 g of food each day around 5 pm and
were weighed daily throughout the period of training and testing
in the incentive contrast licking task. Animals had free access
to water throughout the experiments. Of the rats used in this
study, three rats were removed either due to improper surgical
placement of cannulas or drastic changes in behaviors following
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central infusions that permanently altered baseline behavioral
performance following multiple drug infusions.

Behavioral Apparatus
All animals were trained in sound-attenuating behavioral boxes
(ENV-008; Med Associates) containing a single horizontally
placed spout located on one wall at 6.5 cm from the floor
and a house light at the top of the box. Control of pumps
and behavioral quantification was done using a MedPC system
version IV (Med Associates). The licking spout was custom
built to allow the convergence of two independent solution
lines stemming from two independent pumps at a single point
(John B. Pierce Laboratory Instruments Shop). Licking was
tracked optically as breakage of an infrared beam by the tongue
between a custom built emitter/detector placed directly in front
of the licking spout (John B. Pierce Laboratory Instruments
Shop). Movement of the animal during licking was restricted
via placement of two walls on either side of the spout. Solution
lines were connected to 60 ml syringes and solution was made
available to animals by lick-triggered, single speed pumps (PHM-
100; Med Associates) which drove syringe plungers. Each lick
activated a pump which delivered roughly 0.029 ml of fluid per
pump activation, or an average of 9.7 microliters of fluid per
lick.

Behavioral Task
The incentive contrast licking task used in these experiments is
the same as described previously (Parent et al., 2015). Briefly,
animals were placed into the operant chamber for 30min and had
constant access to the spout. Two independent pumps delivered
sucrose solution to the same spout and were loaded with syringes
containing either high value 20% sucrose solution (wt/vol) or low
value 4% sucrose solution (wt/vol). After animals were placed
into the behavioral box, the MedPC script was started causing
the house light to turn on. Licking at the spout initiated a 30-s
epoch of access to the high value solution. Each lick was recorded
and a lick occurring after the end of the 30-s epoch triggered
a 30-s epoch of access of low value sucrose. These epochs of
access continually switched back and forth between pumps and
provided alternating access to high and low value solutions. At
the end of the 30 min session, the house light turned off and
animals stopped receiving sucrose solution. Quantification of
behavior was implemented via analysis of both licking counts
and metrics of licking microstructure such as duration of licking
bouts, number of licking bouts, and intra-bout licking rates.

Behavioral Data Analysis
Analysis of licking was carried out via custom scripts written in
MATLAB. Detection and quantification of licking bouts were
done as in previous studies (Gutierrez et al., 2010; Horst and
Laubach, 2013; Parent et al., 2015). Specifically, bouts were
defined as having at least three licks within 300 ms and with
an inter-bout interval of 0.5 s or longer. The first 10 epochs
during each behavioral session were used to analyze licking
microstructure. Statistical analyses were performed using R1.

1http://www.r-project.org

Surgery
Prior to cannulation, animals were given 2–3 days of free access
to rat chow and water. Animals were initially anesthetized using
3.5% isoflurane gas followed by intraperitoneal injections of
ketamine and xylazine. The scalp was shaved clean and animals
were injected with a bolus of carprofen subcutaneously. Animals
were placed into a stereotaxic frame using non-penetrating ear
bars and the skull was covered with iodine for 1 min. Iodine
was wiped clean from the scalp and the eyes were covered
with ophthalmic ointment to prevent drying over the span of
the surgery. Lidocaine (0.3 ml) was injected under the scalp
and an incision was made longitudinally along the skull. The
skin was retracted laterally and all tissue was cleaned from
the surface of the scalp. The skull was leveled by adjusting
the stereotaxic apparatus to ensure bregma and lamda were
within the same horizontal plane. Four screw were placed in
the parietal skull plates for support of the guide cannulas.
Craniotomies were drilled bilaterally in the frontal skull plates
over the medial prefrontal cortex and 26 gauge guide cannulas
with dummy cannulas were inserted into the medial prefrontal
cortex at 1 mm dorsal to the target coordinate (AP: +3.6;
ML: ±1.4 @ 12◦ from the midsagittal plane; DV: −4.0). Later,
33 gauge injection cannulas were used which extended 1 mm
past the tip of the guide cannulas. Craniotomies were sealed
and implants initially secured with cyanoacrylate and accelerator.
The entire intra-cranial implants were then secured to the skull
crews and covered with methyl methacrylate dental cement.
Skin surrounding the implant was cleaned and maintained
taut via placement of a metal suture placed posteriorly to
the implant. The wound was covered in antibiotic ointment
and rats were injected with intraperitoneally the antibiotic
enrofloxacin.

Following surgery, once animals were able to maintain an
upright posture and move around the recovery cage, the animals
were placed back into the animal housing facility and were
provided water containing the enrofloxacin antibiotic as well as
carprofen for painmanagement for 2 days. Full access to foodwas
provided. Animals were checked and weighed daily for 1 week
following surgery. To prevent the removal of dummy cannulas
during grooming, Kwik Cast silicon sealant was placed over the
dummy cannula caps and removed when access to the cannulas
was needed. After 1 week, animals’ body weights returned to
presurgical levels, restricted access to rat chow was reinstated,
and animals continued with daily behavioral testing sessions.

Drug Infusions
Following recovery from surgery and a period of retraining in
the task with restricted food access, a series of controls were
performed on all rats. First, animals were exposed to the same
duration and levels of isoflurane gas used during infusion of drug
on test day as an initial gas control session. Second, a PBS control
was carried out where the same volume of vehicle without drug
was injected intraperitoneally or infused into the mPFC while
the animals were anesthetized under isoflurane gas. Finally, on
test day, animals were anesthetized via isoflurane gas and drug
was injected intraperitoneally or infused centrally into themPFC.
Following test day, recovery sessions were carried out. Each rat

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 October 2015 | Volume 9 | Article 284

http://www.r-project.org
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Parent et al. KCNQ channels in mPFC regulate consummatory behavior

received between 1 and 4 sessions of drug infusions during the
time of this study, and took on average 2.6591 (SD = 1.8165)
sessions to recover back to a baseline level of performance on the
task.

Drugs used in this study included scopolamine,
physostigmine, oxotremorine, XE-991, and ghrelin. All drugs
were obtained from Tocris and made into solutions using
sterile PBS with pH 7.4. Doses were based on published
studies: systemic scopolamine—Sánchez-Resendis et al.
(2012); intracortical scopolamine—Santini et al. (2012);
physostigmine—Herremans et al. (1997); oxotremorine—Desai
and Walcott (2006); XE-991—Santini and Porter (2010);
ghrelin—Naleid et al. (2005).

Confirmation of Cannula Placement
At the termination of experiments, animals were initially
anesthetized with isoflurane gas and injected intraperitoneally
with Euthasol. Animals were transcardially perfused first with
200 ml of cold saline solution followed by 200 ml of cold 4%
paraformaldehyde. Brains were removed and post-fixed in a
mixture containing 4% paraformaldehyde, 20% sucrose, and 20%
glycerol. Brains were then cut into 100 µm-thick coronal slices
using a freezing microtome. Brain sections were mounted onto
gelatin-coated slides andNissl stained via treatment with thionin.
Thionin-treated slices were dried through a series of alcohol steps
and cleared with Xylene. Slides were covered with permount
and coverslipped. Sections were imaged using a Tritech Research
scope (BX-51-F), Moticam Pro 282B camera, and Motic Images
Plus 2.0 software. The most ventral point of the injection bolus
was compared against the Paxinos and Watson atlas to confirm
coordinates.

RESULTS

Systemic Effects of the Muscarinic
Antagonist Scopolamine
Scopolamine was administered systemically over a range of doses
(PBS, 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg) with intraperitoneal (IP)
injections. Independent, one-way repeated measures analysis of
variance (ANOVAs) were performed between control and drug
administration sessions on epochs of access to high and low value
sucrose. ANOVAs were carried out on descriptors of licking
microstructure (e.g., mean duration of licking bouts, mean
number of bouts) and mean lick counts across all 30-s epochs
within a daily 30 min session. Global metrics of consummatory
behavior were also tested with ANOVAs including total licks
within a daily session and time spent engaged in the task prior
to satiation. Effects of drugs were compared across sessions to
avoid potential confounding factor of satiety.

Clear effects of systemic scopolamine were apparent across
the range of doses that were tested. During the 30-s epochs with
access to either high or low levels of liquid sucrose, there was a
significant decrease in mean licks per epoch (Figure 1A; HVS:
[F(3,24) = 17.21, p< 0.001], LVS: [F3,24] = 5.84, p< 0.01), number
of bouts per epoch (Figure 1B; HVS: [F(3,24) = 19.18, p < 0.001],
LVS: [F3,24] = 4.02, p < 0.05), and duration of licking bouts
(Figure 1C; HVS: [F(3,24) = 6.37, p < 0.01], LVS: [F3,24] = 5.77,
p < 0.01) with increasing doses of scopolamine. There was also
a significant decrease in the total number of licks (Figure 1D;
[F(3,24) = 7.04, p < 0.01]) and a slight, yet insignificant, increase
in the duration of time required to reach satiety within a session
(Figure 1E; [F(3,24) = 0.91, p = 0.44]). Post hoc Tukey tests
between PBS and the three drug levels found a significant change

FIGURE 1 | Systemic scopolamine injections reduce performance on consummatory contrast task. There is a dose-dependent decrease in consumption
with systemic scopolamine injections. (A) Reduction in mean number of licks per 30 sepoch of access to high or low value sucrose solution across all epochs in a
daily session at 0.3 mg/kg and 1.0 mg/kg systemic scopolamine injection relative to PBS vector. (B) There was a decrease in mean number of licking bouts per 30
sepoch at 0.3 mg/kg and 1.0 mg/kg systemic scopolamine. (C) Mean duration of licking bouts in epochs decreases at 1.0 mg/kg scopolamine. (D) Total number of
licks across both high and low reward epochs combined in daily sessions were reduced at the 1.0 mg/kg dose of scopolamine. (E) There was a dose-dependent
increase in the time spent by rats engaging in the task under injections of scopolamine. (F) Systemic injections of scopolamine did not alter the intra-bout licking rate,
regardless of the given dose. ∗p < 0.05.
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in licking, specifically with the mean number of licks and number
of bouts during access to the high value sucrose solution, began
to occur at the 0.3 mg/kg dose (p < 0.05). The 1 mg/kg dose
strongly affected consumption of both the high and low reward
solutions (p < 0.05 for all measures shown in Figures 1A–D).
These reductions in consummatory behavior, especially at the
higher dose of scopolamine, were independent of any effects on
sensorimotor abilities, as there were no significant changes in the
intra-bout licking rate at any dose injected (Figure 1F).

Prefrontal Effects of the Muscarinic
Antagonist Scopolamine
Having established systemic effects of scopolamine in the
incentive contrast licking task, we next examined effects of local
infusions of scopolamine within the mPFC. We focused on
the same rostral region that contains licking-entrained neuronal
activity (Horst and Laubach, 2013) and leads to the loss of
incentive contrast effects and temporally fragmented licking
when inactivated with muscimol (Parent et al., 2015). Figure 2A
depicts cannula locations for all rats across all drug infusions
into mPFC. Infusion of scopolamine (10 µg in 1 µl) resulted in
a decrease in mean licks per epoch (Figure 2B; [F(1,6) = 18.68,
p < 0.01]) and duration of licking bouts (Figure 2C; [F(1,6) =
39.18, p < 0.001]) during access to the high value solution. The
effects on othermeasures weremuch less dramatic in comparison
to the systemic data described above. While there was a decrease
in the mean number of bouts initiated during access to the high
value solution following infusion of scopolamine, this decrease
did not reach significance (Figure 2D). During epochs of access
to the low value solution there was a strong trend of increasing
number of bouts (Figure 2D; [F(1,6) = 4.96, p = 0.068]) that were
found to be of significantly shorter duration (Figure 2C; [F(1,6) =
22.04, p < 0.01). Overall, there was a significant increase in the

length of time spent engaged in the task before reaching satiety
(Figure 2E; [F(1,6) = 6.47, p < 0.05]), and a marginal decrease
in licking throughout the entire session (Figure 2F; [F(1,6) =
2.61, p = 0.16]). While fluid intake for each session was recorded
for each drug treatment in this study, only central infusions of
scopolamine produced a significant change in volume consumed
throughout the session, as measured by the average volume of
fluid consumed per high value sucrose epoch divided by the
average volume consumed for low value epochs in a given session
(paired t-test: [t(6) = 3.6669, p < 0.05]). For central infusions of
scopolamine, high value sucrose intake decreased while low value
sucrose intake increased.

Prefrontal Effects of Physostigmine and
Oxotremorine
If blockade of cholinergic signaling decreases consumption
by reducing the ability of mPFC to contribute to the
regulation of motivated behavior, it may be possible to augment
the ability of rats to optimally negotiate the task via the
upregulation of cholinergic tone locally within mPFC. This
hypothesis was tested via the infusion of physostigmine, a
classic cholinesterase inhibitor. Inhibition of acetylcholinesterase
blocks the degradation of acetylcholine and generally increases
cholinergic tone non-specifically regarding cholinergic receptor
subtypes. Infusion of 10 µm physostigmine into mPFC
augmented behaviors related to consumption and palatability
during access to the high value sucrose. There was a significant
increase in the mean number of licks per 30-s epoch (Figure 3A;
[F(1,6) = 8.57, p < 0.05]). While there was only a trend toward
a decrease in the number of bouts for the high value sucrose
(Figure 3B; [F(1,6) = 4.66, p = 0.075]), there was a significant
increase in the duration of licking bouts during sessions with
physostigmine infusions (Figure 3C; [F(1,6) = 7.89, p < 0.05]).

FIGURE 2 | Central infusions of scopolamine into mPFC reduce performance on consummatory contrast task. (A) Central infusions of drugs across all
rats were targeted to the medial prefrontal cortex. (B) There was a dramatic decrease in mean number of licks across epochs of access to the high value sucrose
solution. (C) Scopolamine decreased the duration of licking bouts during access to both low and high value sucrose solutions. (D) There was a trending decrease
and increase in the number of bouts performed within epochs of access to high and low value sucrose solutions, respectively. (E) Animals spent significantly more
time engaged in the task following central infusions of scopolamine. (F) Scopolamine infusions led to a trending decrease in the total lick counts during daily
sessions. ∗p < 0.05.
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FIGURE 3 | Augmenting cholinergic tone in mPFC with physostigmine
enhances consummatory behavior. (A) Local infusion of physostigmine
significantly enhanced the mean number of licks during epochs of access to
the high value sucrose solution. (B) Physostigmine infusions led to a
decreasing trend in the mean number of bouts during access to the high value
sucrose solution. (C) Physostigmine enhanced consumption by significantly
increasing the mean duration of licking bouts during access to the high value
solution. (D) There was a slight but insignificant increase in the total time spent
engaged in the task per 30 min session following infusion of physostigmine.
(E) There was no significant difference with physostigmine infusions in the total
number of licks emitted across the entire session. ∗p < 0.05.

There was also a trending increase in the time spent licking
during the session before reaching satiety (Figure 3D; [F(1,6) =
3.04, p = 0.132]). Physostigmine infusions did not alter the total
number of licks emitted during the session (Figure 3E). Licking
microstructure for the low value sucrose remained unchanged
during physostigmine infusion sessions.

The impact of scopolamine on consummatory behavior
suggested that the increased consumption during the
task following infusion of physostigmine may be rooted
in modulation of muscarinic receptors. To explore this
hypothesis, we infused a non-specific muscarinic receptor
agonist oxotremorine into mPFC. While the mean number
of licks per epoch remained unchanged during sessions with
10 µm oxotremorine infusions (Figure 4A), the total number
of licks occurring during the session for the high value sucrose
greatly increased ([F(1,4) = 8.04, p < 0.05]). Similar to the effects
of physostigmine, infusion of oxotremorine showed a trend
toward a decrease in the number of bouts for the high value
sucrose solution (Figure 4B; [F(1,6) = 7.47, p = 0.052]). Infusion
of oxotremorine significantly increased the duration of licking
bouts for the high value sucrose solution (Figure 4C; [F(1,4)
= 13.28, p < 0.05]). There was no significant change in the
time spent engaged in the task (Figure 4D), nor was there a
significant effect on total licks emitted across the entire session
with oxotremorine infusions (Figure 4E).

Prefrontal Effects of the KCNQ Channel
Blocker XE-991
A critical downstream effector of muscarinic receptor activation
within neurons is the KCNQ (Kv7.1) type potassium channel

FIGURE 4 | Augmenting cholinergic tone in mPFC with oxotremorine
enhances consummatory behavior. (A) Local infusion of oxotremorine did
not significant alter the mean number of licks emitted for the high value
sucrose solution. (B) There was a decreasing trend in the number of bouts
emitted for the high value sucrose solution following infusion of oxotremorine.
(C) Oxotremorine significantly increased the duration of licking bouts for the
high value sucrose solution. (D) Oxotremorine infusions did not significantly
alter the time spent engaged in the task. (E) Infusions of oxotremorine did not
significantly change the total number of licks emitted throughout the session.
∗p < 0.05.

(Delmas and Brown, 2005; Brown and Passmore, 2009).
Activation of these potassium channels decrease neuronal
activity and promote neuronal synchrony in populations of
neurons (e.g., in mPFC: Pafundo et al., 2013). Binding of
acetylcholine to muscarinic receptors ultimately drives closure
of KCNQ channels. This action drives neuron depolarization
and increased neuronal excitability. Given the link between
muscarinic receptors and KCNQ channels, alteration of KCNQ
channel tone via direct pharmacological manipulations should
alter consumption within our task. To test this hypothesis, 10
µM XE-991, a specific KCNQ channel blocker, was infused
into mPFC. XE-991 significantly increased consumption during
access to the high value sucrose solution via an increase in mean
lick count (Figure 5A; [F(1,12) = 17.42, p < 0.01]). While there
was no significant difference in the number of bouts emitted
(Figure 5B), there was a significant increase in mean bout
duration (Figure 5C; [F(1,12) = 13.81, p < 0.01]). There was
no change in time spent licking during sessions with infusions
of XE-991 (Figure 5D). Infusions of XE-991 did, however,
have a significant increase in the total number of licks emitted
throughout the behavioral session (Figure 5E; [F(1,12) = 6.202,
p < 0.05]).

Prefrontal Effects of Ghrelin
Ghrelinergic modulation of intrinsic excitability in neurons is
mediated via the same intracellular signaling pathway as the
muscarinic modulatory system, specifically KCNQ channels (Li
et al., 2013). Due to the presence of ghrelinergic receptors
within the mPFC (Zigman et al., 2006) and the influence of
muscarinic receptors on consumption reported above, ghrelin
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FIGURE 5 | Modulation of KCNQ channels in mPFC increased
consumption for the high value sucrose solution. (A) XE-991 significantly
altered the mean number of licks occurring during epochs of access to the
high value sucrose. XE-991 enhanced consumption of the high value sucrose
solution. (B) Infusions of XE-991 did not significantly change the mean number
of bouts for the high value sucrose solution. (C) XE-991 significantly increased
the duration of bouts during access to the high value solution. (D) There was
no impact on the time spent licking throughout the session follow infusions of
XE-991. (E) There was a significant increase in total licks emitted with XE-991
infusions. ∗p < 0.05.

was infused centrally into the mPFC and its influence on
behavior using the consummatory contrast task was tested.
Similar to increased cholinergic tone, muscarinic receptor
activation, and KCNQ channel inhibition, infusion of 1 µM
ghrelin into the mPFC increased consumption of the high value
sucrose solution via an increase in the mean number of licks
(Figure 6A; [F(1,8) = 24.61, p < 0.01]) and total number of
licks across the session (Figure 6E; [F(1,8) = 14.60, p < 0.01]).
On average there were significantly fewer bouts for the high
value sucrose solution (Figure 6B; [F(1,8) = 7.85, p < 0.05]).
There was a marginal effect of increased mean duration of
licking bouts for the high value sucrose solution (Figure 6C;
[F(1,8) = 4.58, p = 0.065]). Similar to infusion of oxotremorine
and XE-991, there was no effect of ghrelin on consumption
during epochs of access to the low value sucrose solution, nor
was there a change in the time spent engaged in the task
(Figure 6D).

DISCUSSION

Summary and Interpretation of Findings in
the Present Study
In the present study, we found that decreasing cholinergic tone
at muscarinic receptors with scopolamine both systematically
and locally within the mPFC paralleled the results found
following inactivation of mPFC using muscimol in an incentive
contrast licking task (Parent et al., 2015). Decreased muscarinic
tone in mPFC impairs performance on the task by decreasing
the duration of licking bouts yielding a decreased rate of
consumption. Further, we found that augmenting cholinergic

FIGURE 6 | Central infusions of ghrelin enhance consummatory
behavior. Infusion of ghrelin into mPFC increases consumption for the high
value sucrose solution. Consumption of the low value sucrose solution
remained unchanged. (A) Ghrelin significantly increased the mean number of
licks during epochs of access to the high value sucrose solution. (B) There
was a significant decrease in the number of bouts emitted during access to
the high value sucrose solution following infusion of ghrelin. (C) Ghrelin
infusions increased the duration of licking bouts during access to the high
value solution. (D) Ghrelin had no effect on time spent engaged in the task.
(E) Infusions of ghrelin increased the total number of licks emitted during the
task. ∗p < 0.05.

tone locally within mPFC using physostigmine as well as
more specifically via direct application of the muscarinic
receptor agonist oxotremorine yielded an increase in task
performance with greater consumption of the high value
reward. A major downstream effector of muscarinic receptor
activation is KCNQ (Kv7.1) potassium channel. Binding
of acetylcholine to muscarinic receptors drives KCNQ
channels into a closed conformation yielding neuronal
depolarization and increased excitability. Blocking KCNQ
channels with XE-991 drove an increase in task performance
that paralleled what occurred following enhancement of
cholinergic tone using physostigmine and oxotremorine.
Finally, as the orexigenic peptide ghrelin has recently been
shown to act on the same KCNQ channels (Shi et al., 2013),
we evaluated its actions within the mPFC in some of the
same animals, and found similar behavioral effects to the
drugs that enhanced cholinergic tone and blocked KCNQ
channels.

In all cases, the behavioral effects of the drugs were selective
to the relatively higher concentration of sucrose that was tested
(20%) and altered the same microstructural measure of licking,
bout duration. Previous studies have found that the bout
duration increases in proportion the concentration of sucrose
(or other sapid nutrients) in the ingested solutions (Davis, 1973).
Bout duration has been thus considered to reflect how palatable
the solutions are to the animal (e.g., Davis and Perez, 1993) and
reflect the relative reward value of a given solution (Grigson et al.,
1993). Therefore, we conclude that cholinergic and ghrelinergic
receptors and KCNQ channels in the medial PFC regulate the
expression of palatability.
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Our interpretation uses the phrase ‘‘expression of palatability’’
and not palatability per se. This is to emphasize the ‘‘readout’’
side of the control of consummatory behavior, and not
the encoding of taste information or relative reward value,
which has been proposed for other brain areas (agranular
insular cortex and basolateral amygdala) and can be assayed
using different behavioral measures, such as orofacial
reactions (Grill and Norgren, 1978). The temporal control
of consummatory behavior involves regulation of sensorimotor
and autonomic/visceral systems. Sensorimotor control of
consumption is regulated by a part of the medial agranular
cortex (Yoshida et al., 2009) that is immediately adjacent
to the mPFC area (rostral prelimbic cortex) that was the
focus of the present study. Autonomic and visceral controls
have been more traditionally emphasized for the prelimbic
area (and the adjacent infralimbic cortex) (Terreberry and
Neafsey, 1983) through its connections with the hypothalamus
and autonomic midbrain and brainstem, as reviewed below.
For example, the mPFC area that was studied here was
recently shown to be involved in the regulation of breathing
(Hassan et al., 2013). The rostral mPFC is well placed to
coordinate the sensorimotor and autonomic motor systems
through its descending projections (see Gabbott et al., 2005 for
review).

Potential Neuronal Mechanism of
Cholinergic and Ghrelinergic Regulation of
Palatability
The drugs that we tested might have altered the animals’ bout
durations due to effects of the drugs on the ability of the
mPFC to emit theta-range rhythms that normally accompany
the initiation of consummatory behavior in rodents. Several
recent studies have reported that neurons in the mPFC exhibit
changes in firing rate around the initiation of licking (Petykó
et al., 2009, 2015; Horst and Laubach, 2013). One of these
studies (Horst and Laubach, 2013) also reported phasic changes
in field potentials occur when rats initiate and terminate bouts of
licks. The fields showed enhanced phase locking near the licking
rhythm, between 6 and 8 Hz, a frequency range that is normally
associated with ‘‘theta’’ in rodents. This rhythm might reflect
a temporal synchronization of network-level activity that could
serve to monitor the outcome of licking (Gutierrez et al., 2006)
or could reflect a transient encoding of reward expectancy (van
Wingerden et al., 2010), as proposed for similar signals in the
orbitofrontal cortex.

Theta can be generated in several ways in the frontal
cortex, by hippocampal inputs (which do not synchronize
with licking: Vanderwolf, 1969), thalamocortical inputs (Hughes
and Crunelli, 2007), and NMDA receptor-mediated spiking by
layer 5 pyramidal neurons that are coupled to theta bursts
by layer 2/3 pyramidal cells (Carracedo et al., 2013). These
rhythms are enhanced by cholinergic agonists that act on the M
current (Marrion, 1997), generated by KCNQ channels (Delmas
and Brown, 2005; Brown and Passmore, 2009). In vitro slice
physiology has shown that the application of the selective
KCNQ channel blocker, XE-991, increases neuronal excitability,

especially in response to low frequency inputs (<10 Hz; Guan
et al., 2011; see also Pafundo et al., 2013 for effects in prefrontal
cortical slices). Theta activity can be generated intracortically by
regular spiking neurons in layer V (Carracedo et al., 2013). These
cells are temporally gated by coterminous lower-frequency delta
rhythms generated by intrinsic bursting cells (Carracedo et al.,
2013). A disruption of the precise temporal interactions between
these neurons, by any drug that acts on KCNQ channels or alters
extracellular transmitters that act to regulate these channels,
would thus disrupt the normal control of rhythmic behaviors
that depend on neuronal processing within the cortical area of
interest and/or within a collection of brain areas that control
consummatory behavior in a coordinated manner.

We must point out that the interpretation of our findings are
based on in vitro slice physiology studies, and not in vivo studies
done in awake, behaving animals. Testing the implications
of our findings will require new experiments that combine
neuronal recordings with local infusions of muscarinic drugs and
KCNQ channel blockers as well as optogenetic and chemogenetic
manipulations of cholinergic activity (e.g., ChAT rats) in the
mPFC.

Potential Neuronal Circuits for the
Regulation of Palatability
The mPFC region examined in the present study is one part
of a large brain network that encodes the value of foods and
regulates consummatory behavior. We have emphasized a role
of the mPFC in the expression of palatability. There are neurons
in the mPFC that are modulated by sensory (taste) properties
of foods (Jezzini et al., 2013). However, a more likely candidate
for encoding taste information or retrieving values determined
by taste information from memory is the agranular insular
cortex (AIC), which is classically considered as ‘‘taste cortex’’
(Yamamoto et al., 1989). The AIC contains neurons that encode
for the palatability of tastants (Grossman et al., 2008) and
respond more vigorously and with shorter latencies to specific
tastants compared to the mPFC (Jezzini et al., 2013). The source
of these palatability signals within the AICmay be the basolateral
amygdala (Grossman et al., 2008) which projects to both the
AIC and the mPFC (Hoover and Vertes, 2007; Reppucci and
Petrovich, 2015).

Several studies have implicated the AIC in the reward-
guided control of action (DeCoteau et al., 1997; Ragozzino
and Kesner, 1999; Balleine and Dickinson, 2000; Kesner and
Gilbert, 2007; Gardner and Fontanini, 2014; Kusumoto-Yoshida
et al., 2015), but not other mPFC dependent behaviors such
as action timing (Smith et al., 2010) and delayed alternation
(Horst and Laubach, 2009). This region seems to be involved
in the retrieval of outcome values that are encoded by the
basolateral amygdala (BLA; Parkes and Balleine, 2013). However,
as reversible inactivations of the AIC andmPFC have comparable
effects on palatability driven feeding (Baldo et al., 2015), we
propose that the two areas work together with BLA to regulate
consummatory behavior, by enabling the conversion of reward
values into control signals that guide action selection (e.g., lick
now or later in the incentive contrast licking task).
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Anatomical tract-tracing studies have reported heavy
interconnections between the mPFC and AIC (Gabbott et al.,
2003) and there are significant inputs from the BLA to the region
of mPFC that was the focus of the present study (Bacon et al.,
1996). Inputs from BLA terminate on parvalbumin interneurons
in the mPFC (Gabbott et al., 2006), which regulate the dynamics
of neuronal in the mPFC (Dilgen et al., 2013). These connections
could both provide value signals to the mPFC and shape the
timing of neuronal activity associated with the initiation of
consummatory behavior, as described by Horst and Laubach
(2013). The BLA also directly innervates corticospinal neurons
in the mPFC (Gabbott et al., 2012), which are associated with the
autonomic nervous system (Gabbott et al., 2005). Through these
connections, information about the palatability of an ingested
food or fluid may be processed in the mPFC and modulated by
cholinergic tone and cerebrospinal levels of ghrelin to control
consummatory behavior.

In addition to its corticospinal connections, the mPFC sends
dense projections to autonomic and feeding-related centers in
the hypothalamus (Floyd et al., 2001), midbrain (Floyd et al.,
2000), and brainstem (Gabbott et al., 2005), including a recently
described projection to a trigeminal relay in the brainstem
(Iida et al., 2010). The target of the mPFC in the lateral
hypothalamus has recently been shown to contain neurons
that encode palatability-related information (Li et al., 2013)
and to become phasically active in relation to licking behavior
(Tandon et al., 2012). Another major output of the mPFC is the
ventral striatum, a region associated with encoding reward values
(Bissonette et al., 2013) and controlling food seeking behaviors
(Taha and Fields, 2005). Cholinergic or ghrelinergic modulation
of any of these projections, acting through KCNQ channels,
could influence neuronal activity in these subcortical centers
to regulate the expression of palatability. This neuronal circuit
interpretation of our findings could be tested in new studies that
involve multi-site neuronal recordings and opto-/chemo-genetic

perturbations of neuronal recordings at the specific times when
animals initiate consummatory actions.

Prefrontal vs. Hypothalamic Effects of
Ghrelin
A novel finding of the present study is that the direct
administration of ghrelin into the mPFC alters a specific
behavioral measure of palatability (i.e., the duration of licking
bouts). This finding is in contrast to a recent study in
which ghrelin was infused into the ventricles near the ventral
hypothalamus (Overduin et al., 2012). The Overduin study
found that ghrelin increases overall intake but does not
increase measures of palatability. This difference between
these findings is likely due to actions of ghrelin on different
brain areas (hypothalamus vs. mPFC). Feeding centers in
the hypothalamus contain neurons such as the agouti-related
pepride-secreting (AgRP) neurons that are sensitive to ghrelin
but do not influence palatability (Denis et al., 2015). Our
finding that ghrelin is able to influence the expression of
palatability may simply be due to ghrelin acting on the
same ion channels that the muscarinic cholinergic system
acts on (KCNQ channels) and the subsequent modulation of
consummatory related neuronal activity in the mPFC (i.e.,
increases in firing and increased gain of transmission in the
licking (theta) frequency). This interpretation of our results
could be tested in future studies that combine neuronal
recordings with local drug infusions or opto-/chemo-genetic
manipulations of neurons with ghrelin receptors in the mPFC
and hypothalamus.

FUNDING

Financial Support: National Science Foundation grant 1121147,
National Institutes of Health grant DK099792-01A1, and two
grants from the Klarman Family Foundation to ml.

REFERENCES

Bacon, S. J., Headlam, A. J., Gabbott, P. L., and Smith, A. D. (1996). Amygdala
input to medial prefrontal cortex (mPFC) in the rat: a light and electron
microscope study. Brain Res. 720, 211–219. doi: 10.1016/0006-8993(96)
00155-2

Baldo, B. A., Spencer, R. C., Sadeghian, K., and Mena, J. D. (2015). GABA-
mediated inactivation of medial prefrontal and agranular insular cortex
in the rat: contrasting effects on hunger- and palatability-driven feeding.
Neuropsychopharmacology doi: 10.1038/npp.2015.222 [Epub ahead of print].

Balleine, B. W., and Dickinson, A. (2000). The effect of lesions of the insular
cortex on instrumental conditioning: evidence for a role in incentive memory.
J. Neurosci. 20, 8954–8964.

Bissonette, G. B., Burton, A. C., Gentry, R. N., Goldstein, B. L., Hearn, T. N.,
Barnett, B. R., et al. (2013). Separate populations of neurons in ventral striatum
encode value and motivation. PLoS One 8:e64673. doi: 10.1371/journal.pone.
0064673

Bloem, B., Poorthuis, R. B., andMansvelder, H. D. (2014). Cholinergic modulation
of the medial prefrontal cortex: the role of nicotinic receptors in attention and
regulation of neuronal activity. Front. Neural Circuits 8:17. doi: 10.3389/fncir.
2014.00017

Bouret, S., and Richmond, B. J. (2010). Ventromedial and orbital prefrontal
neurons differentially encode internally and externally driven motivational

values in monkeys. J. Neurosci. 30, 8591–8601. doi: 10.1523/JNEUROSCI.0049-
10.2010

Brown, D. A., and Passmore, G. M. (2009). Neural KCNQ (Kv7) channels. Br. J.
Pharmacol. 156, 1185–1195. doi: 10.1111/j.1476-5381.2009.00111.x

Carracedo, L. M., Kjeldsen, H., Cunnington, L., Jenkins, A., Schofield, I.,
Cunningham, M. O., et al. (2013). A neocortical delta rhythm facilitates
reciprocal interlaminar interactions via nested theta rhythms. J. Neurosci. 33,
10750–10761. doi: 10.1523/JNEUROSCI.0735-13.2013

Chudasama, Y., Dalley, J. W., Nathwani, F., Bouger, P., Robbins, T. W., and
Nathwani, F. (2004). Cholinergic modulation of visual attention and working
memory: dissociable effects of basal forebrain 192-IgG-saporin lesions and
intraprefrontal infusions of scopolamine. Learn. Mem. 11, 78–86. doi: 10.
1101/lm.70904

Davis, J. D., and Perez, M. C. (1993). Food deprivation- and palatability-induced
microstructural changes in ingestive behavior. Am. J. Physiol. 264, R97–R103.

Davis, J. D. (1973). The effectiveness of some sugars in stimulating licking behavior
in the rat. Physiol. Behav. 11, 39–45. doi: 10.1016/0031-9384(73)90120-0

DeCoteau, W. E., Kesner, R. P., and Williams, J. M. (1997). Short-term memory
for food reward magnitude: the role of the prefrontal cortex. Behav. Brain Res.
88, 239–249. doi: 10.1016/s0166-4328(97)00044-2

Delmas, P., and Brown, D. A. (2005). Pathways modulating neural KCNQ/M
(Kv7) potassium channels. Nat. Rev. Neurosci. 6, 850–862. doi: 10.
1038/nrn1785

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 October 2015 | Volume 9 | Article 284

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Parent et al. KCNQ channels in mPFC regulate consummatory behavior

Denis, R. G., Joly-Amado, A., Webber, E., Langlet, F., Schaeffer, M., Padilla, S. L.,
et al. (2015). Palatability can drive feeding independent of AgRP neurons. Cell
Metab. 22, 646–657. doi: 10.1016/j.cmet.2015.07.011

Desai, N. S., and Walcott, E. C. (2006). Synaptic bombardment modulates
muscarinic effects in forelimbmotor cortex. J. Neurosci. 26, 2215–2226. doi: 10.
1523/jneurosci.4310-05.2006

Dilgen, J., Tejeda, H. A., and O’Donnell, P. (2013). Amygdala inputs drive
feedforward inhibition in the medial prefrontal cortex. J. Neurophysiol. 110,
221–229. doi: 10.1152/jn.00531.2012

Dwyer, D. M. (2012). Licking and liking: the assessment of hedonic responses in
rodents. Q. J. Exp. Psychol. (Hove) 65, 371–394. doi: 10.1080/17470218.2011.
652969

Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., and Bandler, R. (2000).
Orbitomedial prefrontal cortical projections to distinct longitudinal columns
of the periaqueductal gray in the rat. J. Comp. Neurol. 422, 556–578. doi: 10.
1002/1096-9861(20000710)422:4<556::aid-cne6>3.0.co;2-u

Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., and Bandler, R. (2001).
Orbitomedial prefrontal cortical projections to hypothalamus in the rat.
J. Comp. Neurol. 432, 307–328. doi: 10.1002/cne.1105

Gabbott, P., Warner, T. A., Brown, J., Salway, P., Gabbott, T., and Busby, S. (2012).
Amygdala afferents mono-synaptically innervate corticospinal neurons in rat
medial prefrontal cortex. J. Comp. Neurol. 520, 2440–2458. doi: 10.1002/cne.
23047

Gabbott, P. L., Warner, T. A., and Busby, S. J. (2006). Amygdala input
monosynaptically innervates parvalbumin immunoreactive local circuit
neurons in rat medial prefrontal cortex. Neuroscience 139, 1039–1048. doi: 10.
1016/j.neuroscience.2006.01.026

Gabbott, P. L., Warner, T. A., Jays, P. R., and Bacon, S. J. (2003). Areal and
synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and
insular cortices in the rat. Brain Res. 993, 59–71. doi: 10.1016/j.brainres.2003.
08.056

Gabbott, P. L., Warner, T. A., Jays, P. R., Salway, P., and Busby, S. J.
(2005). Prefrontal cortex in the rat: projections to subcortical autonomic,
motor and limbic centers. J. Comp. Neurol. 492, 145–177. doi: 10.1002/cne.
20738

Gardner, M. P., and Fontanini, A. (2014). Encoding and tracking of outcome-
specific expectancy in the gustatory cortex of alert rats. J. Neurosci. 34,
13000–13017. doi: 10.1523/JNEUROSCI.1820-14.2014

Grigson, P. S., Spector, A. C., and Norgren, R. (1993). Microstructural analysis of
successive negative contrast in free-feeding and deprived rats. Physiol. Behav.
54, 909–916. doi: 10.1016/0031-9384(93)90301-u

Grill, H. J., and Norgren, R. (1978). The taste reactivity test. I. Mimetic responses
to gustatory stimuli in neurologically normal rats. Brain Res. 143, 263–279.
doi: 10.1016/0006-8993(78)90568-1

Grossman, S. E., Fontanini, A., Wieskopf, J. S., and Katz, D. B. (2008). Learning-
related plasticity of temporal coding in simultaneously recorded amygdala-
cortical ensembles. J. Neurosci. 28, 2864–2873. doi: 10.1523/JNEUROSCI.4063-
07.2008

Guan, D., Higgs, M. H., Horton, L. R., Spain, W. J., and Foehring, R. C. (2011).
Contributions of Kv7-mediated potassium current to sub- and suprathreshold
responses of rat layer II/III neocortical pyramidal neurons. J. Neurophysiol. 106,
1722–1733. doi: 10.1152/jn.00211.2011

Gutierrez, R., Carmena, J. M., Nicolelis, M. A., and Simon, S. A. (2006).
Orbitofrontal ensemble activity monitors licking and distinguishes among
natural rewards. J. Neurophysiol. 95, 119–133. doi: 10.1152/jn.00467.2005

Gutierrez, R., Simon, S. A., and Nicolelis, M. A. L. (2010). Licking-induced
synchrony in the taste-reward circuit improves cue discrimination during
learning. J. Neurosci. 30, 287–303. doi: 10.1523/JNEUROSCI.0855-09.2010

Hassan, S. F., Cornish, J. L., and Goodchild, A. K. (2013). Respiratory, metabolic
and cardiac functions are altered by disinhibition of subregions of the medial
prefrontal cortex. J. Physiol. 591, 6069–6088. doi: 10.1113/jphysiol.2013.262071

Herremans, A. H., Hijzen, T. H., and Olivier, B. (1997). Effects of cholinergic
drug infusions into the dorsal part of the medial prefrontal cortex on delayed
conditional discrimination performance in the rat. Behav. Brain Res. 84,
291–299. doi: 10.1016/s0166-4328(97)83336-0

Hoover,W. B., andVertes, R. P. (2007). Anatomical analysis of afferent projections
to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179.
doi: 10.1007/s00429-007-0150-4

Horst, N. K., and Laubach, M. (2009). The role of rat dorsomedial prefrontal
cortex in spatial working memory. Neuroscience 164, 444–456. doi: 10.1016/j.
neuroscience.2009.08.004

Horst, N. K., and Laubach, M. (2012). Working with memory: evidence for a
role for the medial prefrontal cortex in performance monitoring during spatial
delayed alternation. J. Neurophysiol. 108, 3276–3288. doi: 10.1152/jn.01192.
2011

Horst, N. K., and Laubach, M. (2013). Reward-related activity in the medial
prefrontal cortex is driven by consumption. Front. Neurosci. 7:56. doi: 10.
3389/fnins.2013.00056

Hou, Z., Miao, Y., Gao, L., Pan, H., and Zhu, S. (2006). Ghrelin-containing neuron
in cerebral cortex and hypothalamus linked with the DVC of brainstem in rat.
Regul. Pept. 134, 126–131. doi: 10.1016/j.regpep.2006.02.005

Hughes, S. W., and Crunelli, V. (2007). Just a phase they’re going through: the
complex interaction of intrinsic high-threshold bursting and gap junctions in
the generation of thalamic alpha and theta rhythms. Int. J. Psychophysiol. 64,
3–17. doi: 10.1016/j.ijpsycho.2006.08.004

Iida, C., Oka, A., Moritani, M., Kato, T., Haque, T., Sato, F., et al. (2010).
Corticofugal direct projections to primary afferent neurons in the trigeminal
mesencephalic nucleus of rats. Neuroscience 169, 1739–1757. doi: 10.1016/j.
neuroscience.2010.06.031

Jezzini, A., Mazzucato, L., La Camera, G., and Fontanini, A. (2013). Processing of
hedonic and chemosensory features of taste in medial prefrontal and insular
networks. J. Neurosci. 33, 18966–18978. doi: 10.1523/JNEUROSCI.2974-13.
2013

Kesner, R. P., and Gilbert, P. E. (2007). The role of the agranular insular cortex
in anticipation of reward contrast. Neurobiol. Learn. Mem. 88, 82–86. doi: 10.
1016/j.nlm.2007.02.002

Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K.
(1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach.
Nature 402, 656–660. doi: 10.1038/45230

Kusumoto-Yoshida, I., Liu, H., Chen, B. T., Fontanini, A., and Bonci, A. (2015).
Central role for the insular cortex in mediating conditioned responses to
anticipatory cues. Proc. Natl. Acad. Sci. U S A 112, 1190–1195. doi: 10.
1073/pnas.1416573112

Li, J. X., Yoshida, T., Monk, K. J., and Katz, D. B. (2013). Lateral
hypothalamus contains two types of palatability-related taste responses with
distinct dynamics. J. Neurosci. 33, 9462–9473. doi: 10.1523/JNEUROSCI.3935-
12.2013

Mani, B. K., Walker, A. K., Lopez Soto, E. J., Raingo, J., Lee, C. E., Perelló, M., et al.
(2014). Neuroanatomical characterization of a growth hormone secretagogue
receptor-green fluorescent protein reporter mouse. J. Comp. Neurol. 522,
3644–3666. doi: 10.1002/cne.23627

Marrion, N. V. (1997). Control of M-current. Annu. Rev. Physiol. 59, 483–504.
doi: 10.1146/annurev.physiol.59.1.483

Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K.,
et al. (2001). A role for ghrelin in the central regulation of feeding. Nature 409,
194–198. doi: 10.1038/35051587

Naleid, A. M., Grace, M. K., Cummings, D. E., and Levine, A. S. (2005).
Ghrelin induces feeding in the mesolimbic reward pathway between the ventral
tegmental area and the nucleus accumbens. Peptides 26, 2274–2279. doi: 10.
1016/j.peptides.2005.04.025

Overduin, J., Figlewicz, D. P., Bennett-Jay, J., Kittleson, S., and Cummings,
D. E. (2012). Ghrelin increases the motivation to eat, but does not alter food
palatability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R259–R269.
doi: 10.1152/ajpregu.00488.2011

Pafundo, D. E., Miyamae, T., Lewis, D. A., and Gonzalez-Burgos, G. (2013).
Cholinergic modulation of neuronal excitability and recurrent excitation-
inhibition in prefrontal cortex circuits: implications for gamma oscillations.
J. Physiol. 591, 4725–4748. doi: 10.1113/jphysiol.2013.253823

Parent, M. A., Amarante, L. M., Liu, B., Weikum, D., and Laubach, M. (2015).
The medial prefrontal cortex is crucial for the maintenance of persistent licking
and the expression of incentive contrast. Front. Integr. Neurosci. 9:23. doi: 10.
3389/fnint.2015.00023

Parkes, S. L., and Balleine, B. W. (2013). Incentive memory: evidence the
basolateral amygdala encodes and the insular cortex retrieves outcome values to
guide choice between goal-directed actions. J. Neurosci. 33, 8753–8763. doi: 10.
1523/JNEUROSCI.5071-12.2013

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 October 2015 | Volume 9 | Article 284

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Parent et al. KCNQ channels in mPFC regulate consummatory behavior

Petykó, Z., Gálosi, R., Tóth, A.,Máté, K., Szabó, I., Szabó, I., et al. (2015). Responses
of rat medial prefrontal cortical neurons to pavlovian conditioned stimuli and
to delivery of appetitive reward. Behav. Brain Res. 287, 109–119. doi: 10.1016/j.
bbr.2015.03.034

Petykó, Z., Tóth, A., Szabó, I., Gálosi, R., and Lénárd, L. (2009). Neuronal activity
in rat medial prefrontal cortex during sucrose solution intake. Neuroreport 20,
1235–1239. doi: 10.1097/wnr.0b013e32832fbf30

Ragozzino, M. E., and Kesner, R. P. (1999). The role of the agranular
insular cortex in working memory for food reward value and allocentric
space in rats. Behav. Brain Res. 98, 103–112. doi: 10.1016/s0166-4328(98)
00058-8

Reppucci, C. J., and Petrovich, G. D. (2015). Organization of connections between
the amygdala, medial prefrontal cortex and lateral hypothalamus: a single
and double retrograde tracing study in rats. Brain Struct. Funct. doi: 10.
1007/s00429-015-1081-0 [Epub ahead of print].

Robbins, T. W. (2002). The 5-choice serial reaction time task: behavioural
pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163,
362–380. doi: 10.1007/s00213-002-1154-7

Sánchez-Resendis, O., Medina, A. C., Serafín, N., Prado-Alcalá, R. A.,
Roozendaal, B., and Quirarte, G. L. (2012). Glucocorticoid-cholinergic
interactions in the dorsal striatum in memory consolidation of inhibitory
avoidance training. Front. Behav. Neurosci. 6:33. doi: 10.3389/fnbeh.2012.
00033

Santini, E., and Porter, J. T. (2010). M-type potassium channels modulate the
intrinsic excitability of infralimbic neurons and regulate fear expression and
extinction. J. Neurosci. 30, 12379–12386. doi: 10.1523/JNEUROSCI.1295-10.
2010

Santini, E., Sepulveda-Orengo, M., and Porter, J. T. (2012). Muscarinic receptors
modulate the intrinsic excitability of infralimbic neurons and consolidation
of fear extinction. Neuropsychopharmacology 37, 2047–2056. doi: 10.1038/npp.
2012.52

Shi, L., Bian, X., Qu, Z., Ma, Z., Zhou, Y., Wang, K., et al. (2013). Peptide hormone
ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels.
Nat. Commun. 4:1435. doi: 10.1038/ncomms2439

Smith, N. J., Horst, N. K., Liu, B., Caetano, M. S., and Laubach, M.
(2010). Reversible inactivation of rat premotor cortex impairs temporal
preparation, but not inhibitory control, during simple reaction-time
performance. Front. Integr. Neurosci. 4:124. doi: 10.3389/fnint.2010.
00124

Suh, B.-C., and Hille, B. (2002). Recovery from muscarinic modulation of M
current channels requires phosphatidylinositol 4,5-bisphosphate synthesis.
Neuron 35, 507–520. doi: 10.1016/s0896-6273(02)00790-0

Taha, S. A., and Fields, H. L. (2005). Encoding of palatability and appetitive
behaviors by distinct neuronal populations in the nucleus accumbens.
J. Neurosci. 25, 1193–1202. doi: 10.1523/jneurosci.3975-04.2005

Tandon, S., Simon, S. A., and Nicolelis, M. A. L. (2012). Appetitive changes during
salt deprivation are paralleled by widespread neuronal adaptations in nucleus
accumbens, lateral hypothalamus and central amygdala. J. Neurophysiol. 108,
1089–1105. doi: 10.1152/jn.00236.2012

Terreberry, R. R., and Neafsey, E. J. (1983). Rat medial frontal cortex: a visceral
motor region with a direct projection to the solitary nucleus. Brain Res. 278,
245–249. doi: 10.1016/0006-8993(83)90246-9

van der Zee, E. A., and Luiten, P. G. (1999). Muscarinic acetylcholine receptors in
the hippocampus, neocortex and amygdala: a review of immunocytochemical
localization in relation to learning and memory. Prog. Neurobiol. 58, 409–471.
doi: 10.1016/s0301-0082(98)00092-6

van Wingerden, M., Vinck, M., Lankelma, J., and Pennartz, C. M. A. (2010).
Theta-band phase locking of orbitofrontal neurons during reward expectancy.
J. Neurosci. 30, 7078–7087. doi: 10.1523/JNEUROSCI.3860-09.2010

Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary
movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418.
doi: 10.1016/0013-4694(69)90092-3

Voytko, M. L. (1996). Cognitive functions of the basal forebrain cholinergic
system in monkeys: memory or attention? Behav. Brain Res. 75, 13–25. doi: 10.
1016/0166-4328(95)00143-3

Yamamoto, T., Matsuo, R., Kiyomitsu, Y., and Kitamura, R. (1989). Taste
responses of cortical neurons in freely ingesting rats. J. Neurophysiol. 61,
1244–1258.

Yoshida, A., Taki, I., Chang, Z., Iida, C., Haque, T., Tomita, A., et al. (2009).
Corticofugal projections to trigeminal motoneurons innervating antagonistic
jaw muscles in rats as demonstrated by anterograde and retrograde tract
tracing. J. Comp. Neurol. 514, 368–386. doi: 10.1002/cne.22013

Zhang, H., Craciun, L. C., Mirshahi, T., Rohács, T., Lopes, C. M. B., Jin, T., et al.
(2003). PIP(2) activates KCNQ channels and its hydrolysis underlies receptor-
mediated inhibition of M currents. Neuron 37, 963–975. doi: 10.1016/s0896-
6273(03)00125-9

Zigman, J. M., Jones, J. E., Lee, C. E., Saper, C. B., and Elmquist, J. K. (2006).
Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp.
Neurol. 494, 528–548. doi: 10.1002/cne.20823

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Parent, Amarante, Swanson and Laubach. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution and reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 October 2015 | Volume 9 | Article 284

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability
	INTRODUCTION
	MATERIALS AND METHODS
	Animals
	Behavioral Apparatus
	Behavioral Task
	Behavioral Data Analysis
	Surgery
	Drug Infusions
	Confirmation of Cannula Placement

	RESULTS
	Systemic Effects of the Muscarinic Antagonist Scopolamine
	Prefrontal Effects of the Muscarinic Antagonist Scopolamine
	Prefrontal Effects of Physostigmine and Oxotremorine
	Prefrontal Effects of the KCNQ Channel Blocker XE-991
	Prefrontal Effects of Ghrelin

	DISCUSSION
	Summary and Interpretation of Findings in the Present Study
	Potential Neuronal Mechanism of Cholinergic and Ghrelinergic Regulation of Palatability
	Potential Neuronal Circuits for the Regulation of Palatability
	Prefrontal vs. Hypothalamic Effects of Ghrelin

	FUNDING
	REFERENCES


