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Abstract
Definitive pharmacological therapies for COVID-19 have yet to be identified. Several hundred trials are ongoing globally in the hope
of a solution. However, nearly all treatments rely on systemic delivery but COVID-19 damages the lungs preferentially. The use of a
targeted delivery approach is reviewed where engineered products are able to reach damaged lung tissue directly, which includes
catheter-based and aerosol-based approaches. In this review we have outlined various target directed approaches which include
microbubbles, extracellular vesicles including exosomes, adenosine nanoparticles, novel bio-objects, direct aerosol targeted pul-
monary delivery and catheter-based drug delivery with reference to their relative effectiveness for the specific lesions. Currently
several trials are ongoing to determine the effectiveness of such delivery systems alone and in conjunction with systemic therapies.
Such approaches may prove to be very effective in the controlled and localized COVID-19 viral lesions in the lungs and potential
sites. Moreover, localized delivery offered a safer delivery mode for such drugs which may have systemic adverse effects.
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Introduction

Definitive COVID-19 therapies have yet to be identified,

despite the many ongoing trials globally. The results based

on early, small, underpowered, non-controlled studies and a

few open label randomized-controlled trials (RCTs) have been

discouraging. For example, one trial evaluating Lopinavir-

Ritonavir for COVID-19 therapy, noted that an even higher

dose than what was administered may be required to achieve

therapeutic efficacy.1 Only 2 pharmaceuticals have demon-

strated signals toward efficacy. Remdesivir has been shown

to reduce the total amount of time in ICU required per patient

(Remdesivir for the Treatment of Covid-19 — Preliminary

Report;J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. This

article was published on May 22, 2020, at NEJM.org. DOI:

10.1056/NEJMoa2007764, and dexamethasone had reduced

deaths by 35% in patients who needed treatment with invasive

ventilation and by 20% in those needing supplemental oxygen

(EU Clinical Trials Register: EudraCT 2020-001113-21

Clinical Trials.gov: NCT04381936).

However, almost all the proposed pharmaceutical therapies

for COVID-19 pose at least a few possible adverse effects

while citing the need for increased dosing. Targeted drug
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delivery of these promising pharmaceuticals might prove to be

more effective, enhancing the local effect while attenuating

their off-target side effects.2 SARS-CoV-2 has an affinity for

2 host cell factors, which are primarily expressed in human

lung tissue: ACE-2 and TMPRSS2.3,4 Considering that

COVID-19 primarily affects the lungs in patients with ARDS,5

we propose a targeted drug delivery strategy using different

types of drug delivery vehicles including microbubbles, extra-

cellular vesicles (EV), nanoparticle drug carriers, liposomes,

viral vectors, perfluorocarbon droplets, catheter-based and

aerosol-based approaches. It should be noted that while there

has been substantial research on local drug delivery vehicles in

cancer and cardiovascular medicine, broadly; there appear to

be only a handful of reports that describes using different car-

riers for targeted delivery in patients with COVID-19.6-10 In the

following, some of the newer approaches for targeted drug

delivery in COVID-19 patients are discussed. It may also apply

to other bacterial or viral pneumonias not associated with

COVID-19.

Microbubbles

Microbubbles specifically have shown to adhere to sites of

damaged vascular endothelium and thus may be a method of

systemically targeting delivery of therapeutics to damaged

lungs with SARS-CoV-2. For example, perfluoro butane gas

microbubbles (PGMC) with a coating of dextrose and albumin

efficiently bind to different pharmaceuticals. These 0.3 to 10

mm particles bind to sites of vascular injury.5 Further, the per-

fluoro butane gas is an effective cell membrane fluidizer. The

potential advantages of microbubble carrier delivery include

none to minimal (additional) vessel injury through delivery,

no resident polymer to degrade leading to eventual inflamma-

tion, rapid bolus delivery, and repeated delivery. Microbubble

carriers were successfully used in different animal models and

clinical trials to deliver antisense oligonucleotide and/or Siro-

limus to the injured vascular bed.11-13 The formulation of

microbubbles and therapeutics is easy and could be performed

in a hospital pharmacy, considering they are currently used

widely to enhance diagnostic ultrasound imaging.14 We pro-

pose to use microbubbles with pro-inflammatory cytokine

(TNF-a, IL-1, or IL-6) inhibitors as an approach to mitigate

the ARDS-induced cytokine storm. One possible drug is Toci-

lizumab, which is an IL-6 inhibitor, which shows some early

promise as a possible COVID-19 therapeutic.15,16 Tocilizumab

may enhance the metabolism of drugs utilizing the cytochrome

P450 system, which warrants further investigation into whether

the same effects are attenuated or maintained when given

locally versus systemically.17,18

Extracellular Vesicles (EV)

Kumar and colleagues describe the use of extracellular vesicles

(EVs), which are a family of natural carriers in the human

body.9 EVs play a critical role in cell-to-cell communications

and can be used as unique drug carriers to deliver protease

inhibitors to treat COVID-19. Though the authors of the

reported investigations concluded that certain limitations need

to be overcome as well as understanding the mechanism to

control targeted delivery. Specifically, the isolation and drug

encapsulation techniques employed to engineer EVs could

result in the loss of functional properties of the EVs, such as

the destruction of surface proteins. These unintended changes

could lead to nonspecific interactions with other cells, leading

to off-target effects, toxicity, and suboptimal efficacy.9

Adenosine Nanoparticles

Recently, the efficacy in mitigating inflammation was demon-

strated through the targeted delivery of adenosine and of multi-

drug formulations.10 Bioconjugation of adenosine to squalene

produces a prodrug-based nanocarrier, which, after nano for-

mulation with Vit E, yields stable multidrug nanoparticles. This

nanoparticle improves the bioavailability of both drugs with

significant pharmaceutical activity in models of acute inflam-

matory injury. There are several clinical studies planned to use

this technology in patients with COVID-19.19

Novel Bio-Objects

A group of researchers has succeeded in engineering a new

kind of microscopic bio-object that may one day be used for

personalized diagnostics and targeted delivery of drugs. The

object consists of a genetically modified E. coli bacterium and

nano-erythrosomes (small vesicles made of red blood cells),

and it demonstrates a substantial improvement in motility over

previous designs.20

Direct Pulmonary Delivery

Direct pulmonary delivery (e.g., aerosol, inhalers, etc.) is a

more selective mode of drug delivery that typically requires a

lower quantity of drug to achieve an effective dose. Currently,

2 studies are enrolling patients to study the feasibility and

efficacy of this approach — the NOSARSCOVID Phase II

Trial (NCT04306393) and the Pulsed Inhaled Nitric Oxide for

Treatment of Patients with Mild or Moderate COVID-19

Expanded Access Program (NCT04358588). Pulmonary drug

delivery can provide the following advantages: quick onset of

action coupled with ease and convenience of administration;

the pulmonary dose is significantly lower than the oral dose;

and degradation of the drug in the liver can be avoided. On the

other hand, the following drawbacks are often associated with

pulmonary drug delivery: improper dosing, stability problems,

and difficulty in producing the optimum particle size. In addi-

tion, not all drugs can be delivered via a pulmonary route due to

formulation difficulties. Given that acoustically activatable

perfluoro propane droplets permeate across endothelial barriers

to reach the interstitial spaces and even intracellular locations.9

This may be an ideal method of enhancing nitric oxide delivery

to regions of abnormal ventilation to perfusion mismatch in

COVID-19 pneumonia. However, it should be noted that
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inhaler-based delivery is an aerosol-generating procedure and

therefore and it should be performed with extreme caution and

the appropriate personal protective equipment (PPE).

Heparin and low-molecular weight heparin have been used

in the anticoagulant management of COVID-19. Heparin also

exhibit antiviral properties and localized delivery in the lung

may have therapeutic effects including both the antiviral and

anticoagulant effects. The inhaled formulations of heparins

have been reported before in animal models such as dogs.21

Special devices such as jet and ultrasonic nebulizers have also

been used to deliver heparin to intrapulmonary sites.22 A recent

article has reported on the intrapulmonary delivery of heparin

in COVID-19 patients and call for randomized clinical trial to

validate the clinical efficacy of this approach.23 Localized

delivery of heparin may also results in anti-inflammatory, cyto-

protective and membrane stabilizing effects. Other modalities

may include heparin mist in different formulations to produce

eco effects.

Catheter-Based Drug Delivery

Catheter-based local drug delivery of antivirals (liquid remde-

sivir) and/or pro-inflammatory cytokine inhibitors (tocilizu-

mab) can be performed trans-pulmonary, with a Swan-Ganz

catheter. The drug can be administered through the pulmonary

artery to target pulmonary vasculature, which is safe and fea-

sible. This does not require imaging and could be performed

bedside. Another aspect recently revealed is the prothrombo-

tic state in some COVID-19 patients. Systemic antithrombotic

and thrombolytic therapy has been anecdotally used with scat-

tered reports of acute improved oxygenation. Therefore,

catheter-directed thrombolysis could be another approach

through localized thrombolysis. Another approach is the

recently, commercially available intravenous microbubbles,

which has been utilized for ultrasound-targeted sono-

thrombolysis in acute myocardial infarction and in pulmonary

thromboembolic disease.6,7 The mechanism for sono-

thrombolysis appears to be cavitation induced thrombus dis-

solution in addition to vasodilation induced by endothelial

shear-release of nitric oxide.8

Conclusion

Given the growing evidence that the most detrimental SARS-

CoV-2 reactions are primarily within the respiratory system,

localized targeted delivery of therapeutics may prove advanta-

geous over a systemic approach, provided that bioavailability

to the target tissue can be proven/verified. Several approaches

have been discussed, in which microbubbles are the only car-

rier to have been used in clinical practice and therefore are the

most promising. Adenosine nanoparticles and novel bio-

objects are other classes of drug carriers under either pre-

clinical development or in early clinical investigation. Beyond

carriers, there are several delivery methods to also consider.

For example, direct inhalation or pulmonary delivery are a

highly selective modes requiring less dosage, and there are

several ongoing trials and expanded access programs to eval-

uate this approach. Finally, there are several catheter-based

drug delivery approaches, including catheter-directed thrombo-

lysis to treat viral coagulopathies (pulmonary embolism,

micro-thrombosis) induced by SARS-CoV-2 infection. The

nebulized drug delivery systems provide a practical and clini-

cally feasible approach for the localized delivery of heparins

and other drugs in the management of pulmonary lesions with

high viral load. Further investigations through well-designed,

timely clinical studies for targeted site-specific therapy will

demonstrate evidence toward the best carriers, delivery meth-

ods, and approach (i.e. combination systemic and local delivery

versus stand-alone).
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17. Kim S, Östör AJ, Nisar MK. Interleukin-6 and cytochrome-P450,

reason for concern? Rheumatol Int. 2012;32(9):2601-2604. doi:

10.1007/s00296-012-2423-3

18. Machavaram KK, Almond LM, Rostami-Hodjegan A, et al. A

physiologically based pharmacokinetic modeling approach to pre-

dict disease-drug interactions: suppression of CYP3A by IL-6.

Clin Pharmacol Ther. 2013;94(2):260-268. doi:10.1038/clpt.

2013.79

19. Porter TR, Arena C, Sayyed S, et al. Targeted transthoracic acous-

tic activation of systemically administered nanodroplets to detect

myocardial perfusion abnormalities. Circ Cardiovasc Imaging.

2016;9(1). doi:10.1161/CIRCIMAGING.115.003770

20. Buss N, Yasa O, Alapan Y, Akolpoglu MB, Sitti M.

Nanoerythrosome-functionalized biohybrid microswimmers.

APL Bioeng. 2020;4(2):026103. doi:10.1063/1.5130670

21. Manion JS, Thomason JM, Langston VC, et al. Anticoagulant

effects of inhaled unfractionated heparin in the dog as determined

by partial thromboplastin time and factor Xa activity. J Vet Emerg

Crit Care (San Antonio). 2016;26(1):132-136. doi:10.1111/vec.

12344

22. Bendstrup KE, Newhouse MT, Pedersen OF, Jensen JI. Charac-

terization of heparin aerosols generated in jet and ultrasonic nebu-

lizers. J Aerosol Med. 1999;12(1):17-25. doi:10.1089/jam.1999.

12.17

23. van Haren FMP, Page C, Laffey JG, et al. Nebulised heparin as a

treatment for COVID-19: scientific rationale and a call for rando-

mised evidence. Crit Care. 2020;24(1):454. doi:10.1186/s13054-

020-03148-2

4 Clinical and Applied Thrombosis/Hemostasis 26(1)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


