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ABSTRACT

Motivation: Systems biology employs mathematical modelling to
further our understanding of biochemical pathways. Since the
amount of experimental data on which the models are parameterized
is often limited, these models exhibit large uncertainty in both
parameters and predictions. Statistical methods can be used to
select experiments that will reduce such uncertainty in an optimal
manner. However, existing methods for optimal experiment design
(OED) rely on assumptions that are inappropriate when data are
scarce considering model complexity.
Results: We have developed a novel method to perform OED for
models that cope with large parameter uncertainty. We employ a
Bayesian approach involving importance sampling of the posterior
predictive distribution to predict the efficacy of a new measurement
at reducing the uncertainty of a selected prediction. We demonstrate
the method by applying it to a case where we show that specific
combinations of experiments result in more precise predictions.
Availability and implementation: Source code is available at:
http://bmi.bmt.tue.nl/sysbio/software/pua.html
Contact: j.vanlier@tue.nl; N.A.W.v.Riel@tue.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Computational models can be used to predict (un)measured
behaviour or system responses and formalize hypotheses in a
testable manner. To be able to make predictions parameters are
required. Despite the development of new quantitative experimental
techniques, data are often relatively scarce. Consequently the
modeller is faced with a situation where large regions of parameter
space can describe the measured data to an acceptable degree
(Brännmark et al., 2010; Calderhead and Girolami, 2011; Girolami
and Calderhead, 2011; Hasenauer et al., 2010; Raue et al., 2009).
This is not a problem when the predictions required for testing the
hypothesis (which we shall refer to as predictions of interest) are
well constrained (Cedersund and Roll, 2009; Gomez-Cabrero et al.,
2011; Gutenkunst et al., 2007; Kreutz et al., 2011; Tiemann et al.,
2011). When this is not the case more data will be required. Optimal
experiment design (OED) methods can be used to determine which
experiments would be most useful in order to perform statistical
inference. Classical design criteria are often based on linearization
around a best fit parameter set (Kreutz and Timmer, 2009) and
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pertain to effectively constraining the parameters (Faller et al.,
2003; Rodriguez-Fernandez et al., 2006) or predictions (Casey
et al., 2007). However, when data are scarce considering the model
complexity or the model is strongly non-linear, such methods are
not appropriate (Kreutz et al., 2011). This makes investigating the
role of parameter uncertainty in OED a relevant topic to explore.
We propose a method for experimental design that overcomes these
issues by adopting a probabilistic approach which incorporates
prediction uncertainty. Our method enables the modeller to target
experimental efforts in order to selectively reduce the uncertainty of
predictions of interest. Using our approach, multiple experiments
can be designed simultaneously revealing potential benefits that
might arise from specific combinations of experiments.

We focus on biochemical networks that can be modelled using
a system of ordinary differential equations. These models comprise
of equations f (�x(t),�u(t),�p) which contain parameters �p (constant
in time), inputs �u(t) and state variables �x(t). Given a set of
parameters, inputs and initial conditions �x(0) these equations can
subsequently be simulated. Measurements �y(t) are performed on a
subset and/or a combination of the total number of states in the
model. Measurements are hampered by measurement noise �ξ while
many techniques used in biology (e.g. western blotting) necessitate
the use of scaling and offset parameters �q (Kreutz et al., 2007). We
define �θ as �θ={�p,�q,�x0}, which lists all the required variables to
simulate the model.

�̇x(t)= f (�x(t),�u(t),�p) (1)

�y(t)=g(�x(t),�q)+�ξ(t) (2)

�x(0)=�x0 (3)

In order to perform inference and experiment design an error
model is required. For ease of notation we shall demonstrate our
method using a Gaussian error model. If we consider M time series
of length N1, N2, ..., NM hampered by such noise, we obtain
Equation (4) for the probability density function of the output
data. Here yt is the true system with true parameters �θt , where
σi,j indicates the SD of a specific data point and K serves as a
normalization constant.

P(y|�θt)=
M∏

i=1

Ni∏
j=1

P(yi(tj),�θt) (4)

=Ke
−

M∑
i=1

Ni∑
j=1

(
yi (tj )−yt

i (tj ,�θt )√
2σi,j

)2

(5)

Using Bayes’ theorem, we obtain an expression for the
posterior probability distribution over the parameters (Klinke, 2009).
The posterior probability distribution is given by normalizing
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Equation (4) multiplied with the prior to a unit area. Here P(y|�θt)
corresponds to the probability of observing dataset y given the
true parameters �θt . Both computational as well as methodological
advances have made Markov Chain Monte Carlo (MCMC) an
attractive option for obtaining samples from such a distribution
(Geyer, 1992; Girolami and Calderhead, 2011; Klinke, 2009).

Given a sample of the posterior parameter distribution, predictions
can be made by simulating the model for each of the parameter
sets. The distribution of such predictions shall be referred to as the
posterior predictive distribution (PPD) and reflects their uncertainty.
Since all of these predictions are linked via the parameter
distributions, the relations between the different predictions can be
exploited for experimental design. By considering the effects of a
new measurement on the PPD, it is possible to predict how useful an
experiment would be. Our approach consists of a number of steps.
First, we briefly mention how to compute the PPD. Subsequently
we detail how to compute the efficacy of the new measurement. In a
third step this measure is used for experimental design. We conclude
by demonstrating the method by applying it to a case study.

2 APPROACH
In order to overcome the limitations of existing OED methods, a sampling-
based approach for experimental design is proposed. This approach consists
of four consecutive steps which we shall outline below.

2.1 Step 1. Computation of the posterior parameter
distribution

The first step in the analysis is computing the posterior parameter distribution
of the model based on the available data:

P(�θ|yD)∝P(yD|�θ)P(�θ) (6)

Here probability reflects a degree of belief and prior knowledge regarding
the parameters is included in the form of priors, and P(yD|�θ) denotes
the conditional probability of the data given the model parameters. The
unnormalized form of this function is often referred to as the likelihood
function. Furthermore, P(�θ) refers to the prior distribution of the parameters.

In order to sample from the posterior distribution we employ a MCMC
method known as the Metropolis–Hastings algorithm. This algorithm
performs a random walk through parameter space where each subsequent
step is based on a proposal distribution (centred on the current step) and
an acceptance criterion based on the proposal and probability densities
at the sampled points. In brief, after an initial burn-in period (which is
discarded), MCMC methods generate samples from probability distributions
whose probability densities are known up to a normalizing factor. The
Metropolis–Hastings algorithm proceeds as follows:

(1) Generate a sample �θn+1 by sampling from a proposal distribution
based on the current state �θn.

(2) Compute the likelihood of the data L(yD|�θn+1) and calculate
P(�θn+1|yD)=L(yD|�θn+1)P(�θn+1), where P(�θn+1) refers to the prior
density function.

(3) Draw a random number γ from a uniform distribution between 0 and

1 and accept the new step if γ<min
(

P(�θn+1|yD)Q(�θn+1→�θn)
P(�θn |yD)Q(�θn→�θn+1)

,1
)

.

Here Q(θ1 →θ2) refers to the proposal density from current parameter
set θ1 to θ2. The ratio of Q ensures detailed balance, a sufficient condition
for the Markov chain to converge to the equilibrium distribution (Neal,
1996). It corrects for sampling biases resulting from non-symmetric proposal
distributions and is defined as the ratio between the proposal densities
associated with going from n to n+1 and n+1 to n. We employ an
adaptive Gaussian proposal distribution whose covariance matrix is based on

a quadratic approximation to the posterior probability at the current sample
point (Gutenkunst et al., 2007). Further details regarding the implementation
can be found in the Supplementary Materials.

2.2 Step 2. Determine PPDs for all candidate
experiments

A PPD is a distribution of predictions conditioned on the available data
as shown in Equation (7). A PPD is obtained by simulating the model
(including the addition of measurement noise) for a sample of parameter
sets from the posterior parameter distribution. We simulate a PPD for each
candidate experiment. These PPDs link the parameters to the predictions
and via the parameters also link predictions (across different experiments)
to each other. The model and data constrain the dynamics of the system
and hereby implicitly impose non-trivial relations between the different
predictions. Therefore, the observables of candidate experiments are related
to our prediction of interest. The next step is to exploit the relations within
these distributions for experimental design.

P(y|yD,�u(t))=
∫

P(y|�θ,�u(t))P(�θ|yD)d�θ (7)

2.3 Step 3. Predict EVR based on PPDs and
measurement accuracies

To be able to perform experiment design a measure of expected measurement
efficacy is required. For this purpose, we introduce the expected variance
reduction (EVR). Consider an independent new measurement of a specific
prediction (observable). This new measurement is associated with an error
model G which reflects a certain degree of uncertainty associated with the
new experiment. If this new experiment were to be performed and a value is
obtained, then the subsequent step would be to incorporate the new data point
(and its associated error model) in the likelihood function and re-perform the
MCMC. This new data would subsequently constrain the posterior parameter
distribution, hence also affecting the prediction of interest (which cannot be
measured directly). This process is illustrated in Figure 1.

The outcome of the experiment is known only after the experiment has
been performed. Therefore the measured value in the error model is not
known a priori. However, the PPD provides us with a predicted distribution of
this value (shown in grey in Fig. 1) which reflects the uncertainty associated
with this value. Samples from the PPD can subsequently be substituted as
‘true’ values in the error model. By repeating this process for every R-
th point of our MCMC chain and averaging the result, we weight by the
probability distribution of this predicted value. Considering that a single
MCMC is often already computationally demanding, such a nested MCMC
is likely not tractable. Here we propose an alternative approach. Consider the
unnormalized densities P̃(y|�θ), P̃(yn|�θ) and P̃(�θ), respectively, corresponding
to the density model of the data used to determine the initial posterior
distribution, the density model for the new data point, and the parameter
prior. Assuming that the new data point is independent of the existing data
points we can state that PN (�θ|y,yn)∝ P̃(y|�θ)̃P(yn|�θ)̃P(�θ) in order to obtain the
following equation for the new normalized posterior (8). In this equation,
Z1 and Z2 denote the normalization constants of the old and new posterior,
respectively.

PN (�θ|y,yn)= P̃(y|�θ)̃P(yn|�θ)̃P(�θ)∫
P̃(y|�θ)̃P(yn|�θ)̃P(�θ)d�θ (8)

= P̃(y|�θ)̃P(�θ)∫
P̃(y|�θ)̃P(�θ)d�θ

P̃(y|�θ)̃P(yn|�θ)̃P(�θ)

P̃(y|�θ)̃P(�θ)

∫
P̃(y|�θ)̃P(�θ)d�θ∫

P̃(y|�θ)̃P(yn|�θ)̃P(�θ)d�θ
(9)

=P(�θ|y)̃P(yn|�θ)

∫
P̃(y|�θ)̃P(�θ)d�θ∫

P̃(y|�θ)̃P(yn|�θ)̃P(�θ)d�θ =P(�θ|y)̃P(yn|�θ)
Z1

Z2

(10)

This relation between the two posteriors can be exploited in order to
compute expected values by re-weighting samples from the old posterior
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Fig. 1. Illustration of the effect of adding a new data point on the PPD. Shown
on the top right is the PPD at one specific time point for two predictions with
a subset of the samples of the chain indicated with white points. The square
denotes the location of the ‘new measurement’. Prediction A refers to a
prediction of which a new measurement can be performed (observable),
whereas B denotes the prediction of interest. Here the grey distribution
corresponds to the PPD before the new measurement, whereas the white
Gaussian corresponds to the error model of the new measurement. Due to
additional constraints imposed by this new measurement in combination with
the old data and the model, the distribution on the hypothesis side is also
updated in light of the new data point and shown in white.

appropriately. Rather than running a new MCMC for every sample, we can
use self normalized importance sampling on the predictions of the output in
order to compute expected values. This is shown in Equation (11), where
samples �θi and �θj are taken from the old posterior distribution, T indicates
the number of MCMC samples included in the analysis and z(�θ) indicates
our quantity of interest.

E[z|y,yn]=
∫

PN (�θ|y,yn)z(�θ)d�θ=
∫

P(�θ|y)̃P(yn|�θ)
Z1

Z2
z(�θ)d�θ

≈
T∑

i=1

P̃(yn| �θi)∑T
j=1 P̃(yn| �θj)

z( �θi) (11)

As mentioned before, the value of yn is not known a priori. Therefore,
we subsequently compute such an expected value for each parameter set in
the PPD with yn set to the predicted output value from the original PPD.
Hence this provides a distribution of expected values considering possible
outcomes of the experiment. The mean of these expected values then provides
us with a prediction of the quantity of interest. The entire approach can then
be succinctly summarized in Equation (12). Here the expected value of z is
computed, G corresponds to the error model and �θi refers to the i-th parameter
vector of the chain. Assuming a Gaussian error model with SD σ for a new
measurement on the output y, probability model G is given by Equation
(13). Note that both input as well as output can be any quantity of interest
(prediction or parameter) indicating the flexibility of the approach.

E[z]= 1

T

T∑
r=1

T∑
i=1

G(t,�u(t),�θi,�θr )∑T
k=1 G(t,�u(t),�θk,�θr )

z(t,�u(t),�θi) (12)

G(t,�u(t),�θi,�θr )=e
−

(
y(t,�u(t),�θi )−y(t,�u(t),�θr )

)2

2σ2 (13)

Since the variance of a variable of interest can be computed by
Equation (14), we can use the aforementioned method to estimate

this quantity. The variance reduction can then be computed as shown in
Equation (15) where σ2

old corresponds to the posterior variance without the
new measurement and σ2

new corresponds to the expected posterior variance
with the new measurements taken into account. In other words, one obtains
the mean variance reduction considering the prediction uncertainty. The
variance reduction computed by this sampling method is referred to as the
sampled variance reduction (SVR).

Var[z]=E[z2]−(
E[z])2

(14)

VarR=1−E

[
σ2

new

σ2
old

]
(15)

2.3.1 Linear variance reduction: When the measurement error models
and PPD can reasonably be assumed Gaussian, one can approximate the
variance reduction by approximating the PPD between the output and the
measurements of interest with a multivariate Gaussian distribution. First
the PD covariance matrix (16) is computed, where z denotes the output of
interest and xa

b the b-th MCMC sample of the a-th measurable state (without
measurement noise), with Q and T the number of measured points and
samples, respectively.

�posterior =cov

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
z1 x1

1 ... xQ
1

z2 x1
2 ... xQ

2

.

.

.
.
.
.

. . .
.
.
.

zT x1
T ... xQ

T

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ (16)

After performing the new measurements with given SDs σb the covariance
matrix is updated according to Equation (18). The resulting variance of the
prediction of interest z can then be obtained as �new(1,1). We shall refer to
the approximated variance reduction as the linear variance reduction (LVR).

�noise =

⎡⎢⎢⎢⎢⎣
0 0 ... 0

0 σ2
1 ... 0

.

.

.
.
.
.

. . .
.
.
.

0 0 ... σ2
Q

⎤⎥⎥⎥⎥⎦ (17)

�new =
((

�posterior +�noise
)−1 +�−1

noise

)−1
(18)

2.4 Step 4. Determine measurement points for optimal
variance reduction

The probability density model can be obtained by multiplying the error
models for each candidate measurement. Subsequently, the space of all
candidate measurements is sampled using Monte Carlo sampling. The
efficacy of a specific combination of measurements is evaluated by
computing the variance reduction, which is defined as Equation (15). During
this sampling stage, additional constraints which arise because of practical
considerations can be imposed on the experimental design (simply by
rejecting such samples). An example of this could be the inability to measure
certain states simultaneously. The optimal experiment is then obtained by
determining the combination of measurements that yields the maximal
predicted variance reduction.

3 COMPUTATIONAL METHODS
All of the discussed algorithms were implemented in Matlab (Natick, MA,
USA). Numerical integration of the differential equations was performed
with compiled MEX files using numerical integrators from the SUNDIALS
CVode package (Lawrence Livermore National Laboratory, Livermore,
CA, USA). Absolute and relative tolerances were set to 10−8 and 10−9,
respectively. The Gaussian proposal distribution for the MCMC was based
on an approximation to the Hessian computed using a Jacobian obtained
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Fig. 2. Model of the JAK-STAT pathway. In this model u1 serves as driving
input, while the total concentration of STAT (x1 +x2 +2x3) and the total
concentration of phosphorylated STAT in the cytoplasm (x2 +2x3) were
measured. Note that the step from x4 back to x1 is associated with a delay.

using finite differencing (H ≈JT J). All available priors were subsequently
included in the Hessian approximation. After convergence, the chain was
thinned to 10 000 samples. The SVR was computed in parallel using OpenCL
on the GPU using a compiled MEX file.

4 RESULTS
To illustrate our method, we apply it to a model of the JAK-STAT
signalling pathway (Raue et al., 2009; Toni et al., 2009). The model
is based on a number of hypothesized steps (See Figure 2). The
first reaction describes the activation of the erythropoietin receptor
which subsequently phosphorylates cytoplasmic STAT (x1). Then
phosphorylated STAT (x2) dimerises (x3) and is imported into the
nucleus (x4). Here dissociation and dephosphorylation occurs which
are associated with a time delay. Similar to the implementation given
in the original paper, the driving input function was approximated
by a spline interpolant, while the delay was approximated using a
linear chain approximation (x5,...,x13).

ẋ1 =2
Vnucleus

Vcyto

(
p4x13

)−p1x1u1 ẋ8 =p4x7 −p4x8

ẋ2 =p1x1u1 −2p2x2
2 ẋ9 =p4x8 −p4x9

ẋ3 =p2x2
2 −p3x3 ẋ10 =p4x9 −p4x10 (19)

ẋ4 = Vcyto

Vnucleus

(
p3x3

)−p4x4 ẋ11 =p4x10 −p4x11

ẋ5 =p4x4 −p4x5 ẋ12 =p4x11 −p4x12

ẋ6 =p4x5 −p4x6 ẋ13 =p4x12 −p4x13

ẋ7 =p4x6 −p4x7

In order to infer the posterior distribution data from the paper
by Swameye et al. [2003; http://webber.physik.uni-freiburg.de/~jeti
/PNAS_Swameye_Data/ (dataset 1)] was used. Measured quantities
were the total concentration of STAT (x1 +x2 +2x3) and the total
concentration of phosphorylated STAT in the cytoplasm (x2 +2x3),

both reported in arbitrary units (which necessitates two scaling
parameters). The initial cytoplasmic concentration of STAT is
unknown while all other forms of STAT are assumed zero at the start
of the simulation. Given the data, not all parameters are identifiable
(Raue et al., 2009). We used uniform priors in logspace for the
kinetic parameters and a Gaussian (μ=200 nM, σ =20 nM) for the
initial condition. Parameter two was bounded between ranges, since
this parameter was non-identifiable from the data (Raue et al., 2009).
We simulated two chains starting at different initial values up to
one million parameter sets and assessed convergence by visually
inspecting differences between batches of samples.

The uncertainty in model parameters propagates as an uncertainty
in the predicted responses of the state variables. PPDs were
simulated for all states as well as the summations of states already
measured. To simulate the PPDs the chain of parameter sets was
thinned to 10 000 samples using equidistant thinning. Since the
error model in this case is additive Gaussian noise, there is no
need to explicitly simulate measurement noise. This can be taken
into account by multiplying the SD of the measurement by

√
2

(see Supplementary Materials for more information). An example is
shown in Figure 3 revealing the relation between two predictions at
different time points. For a complete overview of the PPDs for all
states, see the Supplementary Materials.

The relation between the PPDs of different states was explored.
This relation between two states at the indicated time points is shown
in more detail in both scatter plot and 2D histogram form in Figure 3.
The former shows the actual samples from the PPD for one point in
time. Here each dot represents a simulated value for one parameter
set from the MCMC chain. As shown in the figure, these different
states are often non-linearly related at specific points in time.
The associated 2D histogram corresponds to the same information
interpreted as probability density. Considering state 3 as observable
and state 4 as prediction, while assuming a measurement accuracy
of σ =10/

√
2 for x3, it can be observed that a significant decrease in

variance can be attained during the rise of state 3. Measuring state
3 at the peak value however, results in a smaller variance reduction.
A few things can be observed. In order for the measurement to be
useful, there should be a correlation between the measurement and
the prediction of interest.Additionally, the uncertainty in both should
be large enough. Since all predictions of state 3 start with an initial
condition of zero, this implies that the uncertainty at this point is
low. Therefore, an additional measurement at t =0 would not yield
appreciable variance reduction which is also reflected by the fact
that the SVR starts at a value of zero.

In order to demonstrate the flexibility of our method it was decided
to perform OED for a quantity that depends on the model predictions
in a highly non-linear fashion, namely the time to peak for the
concentration of dimerized STAT in the nucleus (state 4). The time to
peak was computed for the state 4 prediction for each parameter set
from the posterior parameter distribution. We assumed that all states
except state 4 are measurable with an accuracy of σ =10/

√
2. As

potential measurements we also included the two sums of states as
measured in earlier experiments. The experiment space was sampled
using a Monte Carlo approach, uniformly sampling the experiment
space.

This sampling is shown in Figure 4 where the SVR is shown for
several combinations of two measurements. In this figure each axis
corresponds to a potential measurement. Different model outputs
(potential measurements) are separated using grid lines, while
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Fig. 3. Top left: one simulated time course of state 3 superimposed on the
PPD. Two time points are indicated with circles. Bottom left: correlation
coefficient between states 3 and 4 and SVR of state 4 based on a measurement
of state 3 (SVR). The relation between the two states at the indicated time
points is shown in both scatter plot and 2D histogram form. The former
shows the actual samples from the PPD for one point in time. Here the dots
represent simulated values belonging to different parameter sets from the
MCMC chain. In the histogram the colour indicates the number of samples
in a particular region which is proportional to the probability density.

A B

Fig. 4. Variance reduction of the peak time of dimerized STAT (x4) with
respect to two new measurements. (A) Each axis represents an experiment,
where the different model outputs are numbered. Numbers 1 to 3 correspond
to the first three states whereas 4 and 5 correspond to the sums of states on
which the original PPD was parametrized. Note that each block on each axis
corresponds to an entire time series. The block corresponding to experiments
involving state 1 is shown enlarged in (B). Variance reduction is computed
using the importance sampling method.

the interval between each pair of lines corresponds to an entire
time series. The colour value indicates the SVR for that specific
experiment. Recall that the original dataset contained measurements
of two sums of model states. These two observables correspond
to outputs 5 and 6 in Figure 4, which indicates that additional
measurements on these would provide very little additional variance
reduction.

Interestingly, performing the experimental design for two
measurements revealed that the largest reduction in variance could
be obtained by measuring state one at an early and late time
point. This result underlines the benefit of being able to combine
multiple measurements in the OED. Furthermore, the analysis
clearly revealed that the timing of this first time point is crucial.
However, if accurate timing is not possible in the experiment one
could consider measuring state three and one instead. Here smaller
reductions are attained but the timing accuracy required for a

A B

Fig. 5. Comparison of two methods for calculating the variance reduction.
Variance reduction of the peak time of dimerized STAT (x4) with respect
to two new measurements. (A) LVR. (B) Difference between the variance
reduction computed by means of LVR and importance sampling (shown
in Fig. 4).

reasonable reduction is less stringent. Additionally, we investigated
how the bounds of the priors on the non-identifiable kinetic rates
affected our experimental design by widening them. This revealed
that the EVRs obtained when measuring state 2 or 3 in combination
with state 1 were more robust (for more information see the
Supplementary Materials).

Since both error models in this case are Gaussian, the same
analysis can be performed using the LVR (which for T =1000
samples is about 100-fold faster). The resulting sampling is shown
in Figure 5. Qualitatively, the results agree well with those in
Figure 4 revealing its applicability as an initial sampling step.
Information gained from an initial LVR sweep can subsequently be
used to sample only relevant regions of the experiment design space.
Another example can be found in the Supplementary Materials.

5 DISCUSSION AND CONCLUDING REMARKS
In this article, we have outlined a flexible method to perform
experimental design. Here a Gaussian probability density function
was used to model the uncertainties. Note, however, that our
method is not restricted to such error models. In statistical
parameter inference it is important to determine which error model
to use for each experiment as this will define the appropriate
likelihood function. If the likelihood function cannot be computed
explicitly then approximate Bayesian methods can provide a
solution (Toni et al., 2009).

In the OED the timing of the new measurement is assumed
instantaneous (infinitely accurate). It remains an open but relevant
challenge to incorporate temporal inaccuracies in the current
framework. It is expected that when timing is more error prone and
explicitly accounted for, experiments that are only effective during
brief time intervals will be marked as less beneficial for variance
reduction.

In our method, we base the experimental design on the
expected value of a distribution of variance reductions. However,
since the entire distribution of possible variance reductions has
been computed one could also consider incorporating information
regarding the accuracy of this estimate into the selection process.
Finding a sensible trade off between EVR and its inaccuracy
considering the prediction uncertainty remains an open topic for
further research.

In order to obtain the posterior distribution, the parameters
are required to be either identifiable or restricted by means of
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a finite prior distribution. Even for a small model, identifiability
can be problematic but easily tested (Raue et al., 2009). Given
a sufficient amount of data, the posterior distribution should be
relatively insensitive to the assumed priors. It is important to verify
this a posteriori. One option to investigate prior dependence is to
vary the priors or determine the effect of a measurement on the
assumed prior. Note though that the latter strongly depends on the
initial prior, which should be chosen sufficiently wide to cover all
potential parameter regimes. The number of samples required in
order to get a reliable estimate is highly problem specific. MCMC
convergence is hard to assess and only non-convergence can be
diagnosed (Calderhead and Girolami, 2011; Cowles and Carlin,
1996). Once convergence has been attained, one should verify that
the model sufficiently describes the acquired data as EVRs will be
based on model predictions.

The method is not limited to a specific family of distributions
for the parameters and model predictions. However, strongly tailed
distributions (such as high variance logarithmic distributions) can
be problematic. The reason for this is that in such cases variance
estimates from a small sample of the tail are quite unreliable and
give a poor description of the distribution. Therefore it is sensible
to a posteriori visually inspect the distribution at the time point
determined optimal. In the case of heavy tailed distributions, it can be
beneficial to perform a transformation of the PPD before performing
the experimental design.

Consider performing a new measurement as illustrated earlier
in Figure 1. The estimation of the measurement efficacy involves
multiplying samples of the old posterior with new weights in order
to estimate quantities for the situation after the experiment has been
performed. When computing such a weighted average it is important
to keep track of the quality of the estimation. When the posterior
before and after a new experiment is very different, many of these
sample weights will be very low and a large fraction of the samples
will contribute only negligibly to the estimation of the new variance.
It follows that such an estimate will be poor. We monitor this
degeneracy by estimating the effective sample size (ESS) defined
below (Del Moral et al., 2006).

ESSr =
(∑N

k=1G(t,�u(t),�θk,�θr )
)2

∑N
k=1G(t,�u(t),�θi,�θr )2

(20)

We compute a distribution of ESS values (one for each
incorporated sample) which we characterize by its median value.
This ESS gives a measure for the quality of the sampling. In the
case that the importance sampling distribution agrees well with
the new posterior, it should scale linearly with the number of
included samples. When the values for the ESS are very low then
values obtained for the variance reduction can be inaccurate. It also
implies that such a measurement would be very informative from
an inferential perspective. This stems from the fact that the updated
probability distribution would be much narrower. In such a case,
it would be beneficial to perform the experiment and subsequently
redo the MCMC step in such cases (for more information, see the
Supplementary Materials).

Obtaining the PPDs as well as performing the experiment design
is computationally expensive. For the former, model simulation
time is a primary concern which can be significantly reduced
by using compiled simulation code [see COPASI (Hoops et al.,
2006); ABC-SysBio (Liepe et al., 2010); Potters Wheel (Maiwald

and Timmer, 2008); Sloppy Cell (Brown and Sethna, 2003)].
Additionally more efficient sampling methods for obtaining such
posteriors in high dimensional spaces are being developed (Girolami
and Calderhead, 2011; Toni et al., 2009). For the experiment
design part, the computational burden can be divided into two
contributions. First is the sampling of the experiment space. Since
each experiment constitutes a dimension in experiment space,
densely sampling this space for a large number of experiments
can become prohibitively time consuming. In this case, it may be
required to resort to more sophisticated sampling techniques such as
population MCMC or sequential Monte Carlo methods. One option
we employ is to perform a fast initial sweep of the experiment space
by sampling the LVR. Then in a subsequent step the actual SVR
is computed for those samples that resulted in a large LVR. For a
comparison of the LVR and SVR for one specific application, see
the Supplementary Materials. Additionally, profiling the resampling
step revealed that the distance calculations for the error model
were most time consuming. Since this step exhibits a large degree
of parallelism, the resampling step was also implemented to run
on the GPU (using OpenCL), treating the resampling for each
MCMC simultaneously. Even on a modest GPU (NVIDIA Quadro
FX 580) this resulted in considerable speedup (see Supplementary
Material).

As a last remark we would like to point out that if the goal
of the experiment is to discriminate between models, alternative
approaches (Skanda and Lebiedz, 2010) could be relevant to explore.

We proposed a flexible data-based strategy for OED. Where
existing design criteria pertain to effectively constrain specific
parameters or target the variance of predictions using model
linearization (Casey et al., 2007; Faller et al., 2003; Rodriguez-
Fernandez et al., 2006), this method is not limited to any specific
error model or assumption regarding the parameter distribution. It
enables the modeller to select specific predictions of interest that
require decreased uncertainty thereby focus the experimental efforts
in order to save time and resources. Furthermore, it allows the
prediction of interest to be any quantity that can be obtained from
simulations. An additional strength of the method is that multiple
different measurements can be included in the design simultaneously
in order to elucidate their combinatorial efficacy.

ACKNOWLEDGEMENT
The authors gratefully acknowledge the helpful comments of our
two anonymous referees.

Funding: Netherlands Consortium for Systems Biology (NCSB).

Conflict of Interest: none declared.

REFERENCES
Brännmark,C. et al. (2010) Mass and information feedbacks through receptor

endocytosis govern insulin signaling as revealed using a parameter-free modeling
framework. J. Biol. Chem., 285, 20171.

Brown,K.S. and Sethna,J.P. (2003) Statistical mechanical approaches to models with
many poorly known parameters. Phys. Rev. E, 68, 021904.

Calderhead,B. and Girolami,M. (2011) Statistical analysis of nonlinear dynamical
systems using differential geometric sampling methods. J. R. Soc. Interface Focus,
1, 821–835.

Casey,F. et al. (2007) Optimal experimental design in an epidermal growth factor
receptor signalling and down-regulation model. Syst. Biol. IET , 1, 190–202.

1141



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[14:57 27/3/2012 Bioinformatics-bts092.tex] Page: 1142 1136–1142

J.Vanlier et al.

Cedersund,G. and Roll,J. (2009) Systems biology: model based evaluation and
comparison of potential explanations for given biological data. FEBS J., 276,
903–922.

Cowles,M. and Carlin,B. (1996) Markov chain Monte Carlo convergence diagnostics:
a comparative review. J. Am. Stat. Assoc., 91, 883–904.

Del Moral,P. et al. (2006) Sequential monte carlo samplers. J. Roy. Stat. Soc. B,
68, 411–436.

Faller,D. et al. (2003) Simulation methods for optimal experimental design in systems
biology. Simulation, 79, 717.

Geyer,C. (1992) Practical markov chain monte carlo. Stat. Sci., 7, 473–483.
Girolami,M. and Calderhead,B. (2011) Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. J. Roy. Stat. Soc. B, 73, 123–214.
Gomez-Cabrero,D. et al. (2011) Workflow for generating competing hypothesis from

models with parameter uncertainty. J. R. Soc. Interface Focus, 1, 438.
Gutenkunst,R.N. et al. (2007) Universally sloppy parameter sensitivities in systems

biology models. PLoS Comput. Biol., 3, e189.
Hasenauer,J. et al. (2010) Parameter identification, experimental design and model

falsification for biological network models using semidefinite programming. Syst.
Biol. IET , 4, 119–130.

Hoops,S. et al. (2006) Copasia complex pathway simulator. Bioinformatics, 22, 3067.
Klinke,D. (2009) An empirical Bayesian approach for model-based inference of cellular

signaling networks. BMC Bioinformatics, 10, 371.
Kreutz,C. and Timmer,J. (2009) Systems biology: experimental design. FEBS J.,

276, 923–942.

Kreutz,C. et al. (2007) An error model for protein quantification. Bioinformatics,
23, 2747.

Kreutz,C. et al. (2011) Likelihood based observability analysis and confidence intervals
for predictions of dynamic models. Arxiv preprint arXiv:1107.0013.

Liepe,J. et al. (2010) ABC-SysBio approximate Bayesian computation in Python with
GPU support. Bioinformatics, 26, 1797.

Maiwald,T. and Timmer,J. (2008) Dynamical modeling and multi-experiment fitting
with potterswheel. Bioinformatics, 24, 2037–2043.

Neal,R. (1996) Sampling from multimodal distributions using tempered transitions.
Stat. Comput., 6, 353–366.

Raue,A. et al. (2009) Structural and practical identifiability analysis of partially
observed dynamical models by exploiting the profile likelihood. Bioinformatics,
25, 1923.

Rodriguez-Fernandez,M. et al. (2006) A hybrid approach for efficient and robust
parameter estimation in biochemical pathways. Biosystems, 83, 248–265.

Skanda,D. and Lebiedz,D. (2010) An optimal experimental design approach to model
discrimination in dynamic biochemical systems. Bioinformatics, 26, 939.

Swameye,I. et al. (2003) Identification of nucleocytoplasmic cycling as a remote sensor
in cellular signaling by databased modeling. Proc. Natl Acad. Sci., 100, 1028.

Tiemann,C. et al. (2011) Parameter adaptations during phenotype transitions in
progressive diseases. BMC Syst. Biol., 5, 174.

Toni,T. et al. (2009) Approximate bayesian computation scheme for parameter
inference and model selection in dynamical systems. J. Roy. Soc. Interface,
6, 187–202.

1142


	A Bayesian approach to targeted experiment design
	J.Vanlier, C.A.Tiemann, P.A.J.Hilbers and N.A.W.van Riel
	1 Introduction
	2 Approach
	3 Computational methods
	4 Results
	5 Discussion and concluding remarks



