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ABSTRACT
Identification of cancer subtypes and associated molecular drivers is critically 

important for understanding tumor heterogeneity and seeking effective clinical 
treatment. In this study, we introduced a simple but efficient multistep procedure to 
define ovarian cancer types and identify core networks/pathways and driver genes 
for each subtype by integrating multiple data sources, including mRNA expression, 
microRNA expression, copy number variation, and protein-protein interaction data. 
Applying similarity network fusion approach to a patient cohort with 379 ovarian 
cancer samples, we found two distinct integrated cancer subtypes with different 
survival profiles. For each ovarian cancer subtype, we explored the candidate 
oncogenic processes and driver genes by using a network-based approach. Our 
analysis revealed that alterations in DLST module involved in metabolism pathway 
and NDRG1 module were common between the two subtypes. However, alterations in 
the RB signaling pathway drove distinct molecular and clinical phenotypes in different 
ovarian cancer subtypes. This study provides a computational framework to harness 
the full potential of large-scale genomic data for discovering ovarian cancer subtype-
specific network modules and candidate drivers. The framework may also be used 
to identify new therapeutic targets in a subset of ovarian cancers, for which limited 
therapeutic opportunities currently exist.

INTRODUCTION

Ovarian cancer is a major cause of cancer-related 
mortality in women, with an estimated 21,290 new cases 
and 14,180 deaths predicted for 2015 in the United States 
[1]. Over the past few decades, genetic studies have 
elucidated some crucial genetic alterations implicated in 
the pathogenesis of ovarian cancer. The rapid development 
of next-generation sequencing technologies in recent years 
has facilitated the identification of numerous somatic 
genetic alterations in ovarian cancer. These somatic 
genetic alterations are classified as drivers or passengers, 
and distinguishing these two remains a challenge in cancer 
research.

Instead of individual genes, signaling pathways 
and networks control the biology of tumorigenesis and 
cancer development. Expert-curated pathways have been 

employed to interpret genetic alterations [2, 3]. Although 
helpful, these approaches are restricted by the coverage 
of curated pathways [4]. Consequently, network-based 
methods such as NetWalker [5] and Netbox [6] have been 
developed and extensively used to extract the subnetworks 
that are enriched with genetic alterations.

Network-based approaches elucidate the system 
level of complex genetic alterations. However, current 
studies often compare all tumor samples with normal 
samples, thereby identifying signaling pathways common 
to all cancer samples but ignoring the heterogeneity. 
Tumor subtypes represent different biological processes; 
thus, cancer subtype analysis is suitable to understand 
the cancer heterogeneity and seek therapy treatment for 
different subtypes. Various subtypes of ovarian cancer 
have been recently identified from the different types 
of data and methods used. For example, The Cancer 
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Genome Atlas (TCGA) identified four transcriptional 
subtypes based on gene expression data [2]. Tothill et al. 
[7] applied an unsupervised clustering to the mRNA data 
of epithelial ovarian cancer and identified six subtypes. 
Yuan et al. [8] identified three subtypes derived from 
ovarian cancer microRNA (miRNA) expression through 
non-negative matrix factorization. However, investigation 
of tumor subtypes based on the combination of genetic and 
epigenetic factors was often ignored. Moreover, subtype 
and network analyses play vital roles in cancer research, 
but existing studies usually performed subtype analysis in 
isolation and failed to determine the driving force behind 
each subtype.

In this study, we developed a novel integrative 
genomics approach for defining ovarian cancer types and 
identifying core networks/pathways and driver genes for 
each subtype. Figure 1 shows the schematic overview of 
methods used in our study. Firstly, we discovered two 
molecular subtypes of ovarian cancer by simultaneously 
clustering mRNA and miRNA expression data derived 
from TCGA ovarian cancer samples with similarity 
network fusion (SNF) approach [9]. We then used 
an integrated network-based approach [6] to identify 
frequently altered network modules and candidate drivers 
in each ovarian cancer subtype. Collectively, our result 
demonstrates the ability of integrative genomics to 
identify ovarian cancer subtype-specific network modules 
and candidate drivers.

RESULTS

Identification of two molecular subtypes in 
ovarian cancer

Multiple methods have been applied to identify 
ovarian cancer subtypes. The use of various data and 
analysis methods often results in different conclusions. For 

example, TCGA identified four transcriptional subtypes 
on the basis of gene expression data [2]. However, these 
four subtypes show no significant correlation with survival 
difference. Integrating mRNA and miRNA may be a 
powerful approach to identify clinically relevant subtypes.

In this study, we used SNF [9] to fuse two data types, 
namely, mRNA expression (17,813 genes) and miRNA 
expression (798 miRNAs), for 379 ovarian cancer patients. 
Details are described in the Materials and Methods section. 
We chose the group with a minimum P value in the Cox 
log-rank test. Figure 2 shows that SNF reliably identified 
two ovarian cancer subtypes (157 cases in subtype 1 and 
222 cases in subtype 2) with distinct survival differences. 
The majority of patients with subtype 2 ovarian cancer 
(58.6%; 222 of 379 cases) had significantly shorter overall 
survival durations than those with subtype 1 ovarian 
cancer (P = 0.0128, log-rank test; Figure 2).

Properties of the ovarian cancer subtype 1 
network

A total of 493 genes that exceeded the frequency 
threshold were retained and served as altered genes for 
ovarian cancer subtype 1, as described in the Materials 
and Methods section. We then used NetBox [6], a well-
established method, to extract 56 altered genes and 5 linker 
genes (linker genes are not altered in ovarian cancer, but are 
statistically enriched for connections to ovarian cancer altered 
genes) and identify a total of 8 modules (Supplementary 
Table S1), with an overall network modularity of 0.326. 
However, the 1000 simulated random networks have an 
average modularity of 0.018, with a standard deviation of 
0.01. This resulted in a scaled modularity score of 30.8, 
which indicates that the ovarian cancer subtype 1 network is 
more modular than random network.

Among the 8 modules identified in ovarian cancer 
subtype 1, four are connected and comprise a large network 

Figure 1: Schematic overview of method used in our study. Overview of the approach used for identify core modules for 
individual subtypes. Given the gene expression and miRNA expression data sets for different patients and genes, the SNF alogrithm 
fused these two data types and obtained the final cluster. We then extracted the subtype-specific genomic aberration matrix, and utilized 
a literature curated Human Interaction Network (HIN). Finally, NetBox was used to assess the level of connectivity seen within each of 
subtype networks and identify the network modules and candidate drivers.
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(Figure 3A). These modules are involved in critical 
signaling pathways. For example, alterations within the 
RHOA module include MAPK11 and MAPK12, which are 
members of the p38 MAPK pathway. MAPK signaling is 
associated with human cancers, including ovarian cancer 
[10]. Previous study has revealed an association between 
MAPK expression, and the clinical course of ovarian cancer, 
which suggests an in vivo role for this signal transduction 
pathway in ovarian carcinoma [11].

We also identified a NDRG1 (N-myc downstream-
regulated gene 1) module. NDRG1is a cancer-related gene 
that is strictly up-regulated under hypoxic conditions 
[12] and is directly targeted by p53 [13]. Biological 
experiments have revealed that NDRG1 was associated 
with ovarian cancer metastases [14].

The most densely interconnected network is 
the DLST module, which contains many members of 
metabolic pathways, including those involved in ATP 
synthase (ATP5O, ATP5D, ATP5H, ATP5L, ATP5G1, 
ATP5J, ATP5B, ATP5F1, ATP5A1, ATP5E, ATP5I）[15], 
and DLST, which play a role in the citric acid cycle [16]. 
As shown in Figure 4, upstream oncogenic pathways that 
monitor cell conditions can affect metabolism, which leads 
to the activation of downstream signaling pathways [13]. 
Bonnet et al. [17] proposed that cancer cells may convert 
oxidative metabolism to anaerobic metabolism to escape 
cell death. Overall, accumulating evidence indicated that 
alterations in metabolic pathways may play a crucial role 
in ovarian cancer subtype 1 development.

NetBox [6] can also identify candidate driver 
genes. For example, the most notable and significant 

candidate gene within the NDRG1 module is NDRG1, 
which connects hypoxic reaction and p53-mediated 
responses [12]. ILF3 is another important gene in the 
NDRG1 module, where it has been shown to be involved 
in ovarian cancer [18]. PRKACA involves in lung cancer 
epithelial–mesenchymal transition, migration, and 
invasion [19]. Further evidence suggested that the cAMP 
signaling pathway can be activated through PRKACA 
mutation in cancer [20]. 

Identification of additional modules and 
candidate drivers for ovarian cancer subtype 1 
network

Four additional modules aside from the four main 
modules were identified by network analysis; three of 
these modules contain at least three genes (Figure 5).

The SMARCA4 module (Figure 5A) includes 11 
genes: FGFR3, RPL8, EEF1D, CTBP1, MYC, PARP10, 
ACTL6A, SMARCA4, CCNE1, HSF1, and DNAJB1. 
FGFR3 genetic alterations frequently occur in myeloma 
and bladder cancers, suggesting that this molecule plays 
a vital role in carcinogenesis [21]. EEF1D strongly 
correlates with gene expression in ovarian clear cell 
adenocarcinomas [22]. An obvious feature of ovarian 
cancer is the presence of recurrent regions of copy 
number gains or losses [2], and rare recurrent genomic 
events contain known oncogenes [2], such as MYC and 
CCNE1 in our analysis. The POLR2H module includes 
three genes, namely, POLR2H, CPSF1, and WHSC2. 
Gene expression correlates with the copy number in 

Figure 2: Kaplan-Meier plot. The two integrated subtypes of ovarian cancer identified by SNF show survival difference.
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this module (Figure 5B). The LY6H module is altered 
in 24% of ovarian cancer subtype 1 cases (Figure 5C)  
and includes three altered genes, namely, DVL3, LY6H, 
and PPP1R16A.

Properties of the ovarian cancer subtype 2 
network

A total of 457 genes that exceeded the frequency 
threshold were retained and served as altered genes for 
ovarian cancer subtype 2, as described in the Materials and 
Methods section. After importing these genes into NetBox, 
59 altered genes were automatically extracted and five linker 
genes were identified. Using the module detection algorithm 
in NetBox, we detected 14 modules (Supplementary Table 
S2), with an overall network modularity of 0.608. The 1000 
simulated random networks have an average modularity of 
0.367, with a standard deviation of 0.041. This resulted in 
a scaled modularity score of 17.2, which indicates that the 
ovarian cancer subtype 2 network is also more modular than 
random network.

The major members of the network modules 
identified in ovarian cancer subtype 2 are summarized 

in Figure 6A. The one with the largest density connected 
in the network is the DLST module. All members of the 
network are involved in the metabolic pathway, among 
which IDH3B, IDH3A, IDH3G, and DLST participate in 
the tricarboxylic acid cycle [16, 23, 24]. The relationship 
between cancer and altered metabolism was observed 
during the early period of cancer research; it has been 
demonstrated that altered metabolism is a common 
phenomenon observed in cancerous tissues [25], which has 
raised interest in targeting metabolic enzymes of cancer 
cells [26]. Cancer cells modify their metabolic pathways to 
satisfy their increasing energy demands during carcinoma 
proliferation [27]. Cairns [27] considered the alterations of 
cellular metabolism as a vital hallmark of ovarian cancer. 
Therefore, drugs that can target cancer metabolism have a 
great potential in human cancer therapy [26]. For example, 
IDH3A is an up-regulated protein involved in oxidative 
metabolism in metastatic breast cancer [28]. IDH3G 
was identified in a module and as a hub gene associated 
with endometrial cancer [29], which is consistent with 
our results. Therefore, we hypothesized that these genes 
associated with metabolism contribute to ovarian cancer 
progression.

Figure 3: Network modules identified in ovarian cancer subtype 1. (A) Modules are closely connected which may reflect 
oncogenic processes. A total of 8 modules were identified, the largest of which are shown. (B) The observed modularity of the ovarian 
cancer subtype 1 network (0.326) compared with 1000 randomly rewired networks (average 0.018, standard deviation 0.01). (C) Linker 
genes, which are not altered in ovarian subtype 1, but statistically enriched for connections to ovarian cancer subtype1 altered genes.
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The module with the second largest density of 
internal connections is NDRG1. Figure 6 shows that 
NDRG1 is directly connected to DLST, suggesting that 
the NDRG1 module is also involved in metabolism. As 
previously discussed, the alteration of cellular metabolism 
is an important feature in cancer. Hypoxia has an effect 

on tumor metabolism [30]. Hypoxia is an inducer of the 
NDRG1 gene that can interact with the oxygen sensory 
pathway (Figure 4). Therefore, the NDRG1 and DLST 
modules may combine to regulate the metabolic pathway. 
In the NDRG1 module, PSMD2 is overexpressed in 
many cancer cells [31], whereas PABPC1, EIF4G1, 

Figure 4: Schematic diagram of the hypoxia regulation and their consequence. Tumor metabolism is controlled by intrinsic 
genetic mutation (MYC) and hypoxia. The tumor gene, MYC, can regulate the expression of NDRG1 that potentially improve the likelihood 
of metastasis.

Figure 5: Network analysis identifies additional altered modules for ovarian cancer subtype 1. Each module (Module 
(A): SMARCA4 module; Module (B): POLR2H module; Module (C): LY6H module) is annotated with chromosome location, statistical 
significance between copy number and mRNA expression, and genomic status across ovarian cancer subtype one samples. A represents 
gene expression correlates with copy number, as determined by ANOVA analysis across 157 ovarian cancer cases with copy number and 
expression data. B  represents percentage of ovarian cancer cases in which gene is altered.
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EIF3H, EIF3E, and EIF3K are RNA translational control 
members. As a response to tumor stress (e.g., hypoxia), 
mRNAs encoding proteins are selectively translated 
because translational control is vital for cancer growth and 
progression [32].

Identification of additional modules and 
candidate drivers for ovarian cancer subtype 2 
network

We identified several known pathways when 
searching for the altered networks in HIN (Human 
Interaction Network) by using NetBox. For example, 
the RB1 module contains genes RB1, MYC, ACTL6A, 
PARP10, and CCNE1 (Figure 7B). Ovarian cancer 
usually escapes from cell cycle regulation through genetic 
alterations to the RB pathway [33]. RB1 is a significantly 
genetic alteration gene, and the RB pathway is regulated 
in 67% of ovarian cancer cases [2]. The RB1 gene is only 
existed in the module of ovarian cancer subtype 2, and 
the main difference between the two subtypes is found 
in the RB pathway. In particular, subtype 2 (with the 
RB pathway) has a shorter survival rate than subtype 1. 
Survival analysis among anaplastic astrocytoma cancer 
samples reveals that dysregulation of the RB signaling 
pathway negatively correlates with survival [34]. Previous 
studies have shown the case that cancers with genetic 
alterations in the RB pathway often have worse overall 
survival than those without such alterations [35]. Our 
results were in line with these previous reports [34, 35],  
suggesting that the two subtype survival differences 
can be explained by the worse survival of RB pathway 
subtypes. Aside from RB1, PARP10, MYC, ACTL6A, and 
CCNE1 are also included in this module. PARP10 is a 
MYC-interacting protein that plays a tumor-suppressive 
role [36]. MYC is a key regulator of cell growth and 
division, deregulation of MYC result in uncontrolled cell 
proliferation and tumor progression [37].

Another PIK3CA module includes five genes 
(Figure 7A), namely, PTK2, ANGPT1, PIK3CA, SDC2, 
and MAPK11. The CPSF1 module (Figure 7C) also 
includes five genes: NFKBIB, POLR2H, HNRNPL, 
POLR2K, and CPSF1. NFKBIB plays a critical role in 
regulating NF-κB signaling pathway, which involved in 
key cellular processes, including cell proliferation, cell 
survival, inflammatory and immune responses [38]. The 
PRSS23 module (Figure 7D) includes RECQL4, PRSS23, 
MAPK8IP2, and FXR1, and the correlation between gene 
expression and copy number has no statistical significance 
in the module. The MAPK12 module (Figure 7E) includes 
four genes, namely, SNTB1, MAPK12, DLG2, and FZD4, 
among which only MAPK12 and DLG2 are associated 
with kinase activity. The two other modules found are 
presented in Supplementary Table S2.

Identification of miRNAs that target RB1

Using the MiRTarbase database [39], we only 
considered three pieces of evidence with strongly evidence 
and found 11 miRNAs (miR-132, miR-221, miR-335, 
miR-192, miR-106a, miR-106b, miR-519a, miR-215, 
miR-212, miR-26b, miR-26a) that target RB1. We then 
performed a differential miRNA analysis. Although both 
of the upregulated and downregulated miRNAs deserve an 
in-depth investigation, here we focused on the upregulated 
miRNAs that tend to reduce RB1 expression. P-value 
< 0.01 and fold change > 1.2 were defined as upregulated 
miRNA, and miR-132 (P-value: 2.6 × 10−7, fold change: 
1.2), miR-221(P-value: 4 × 10−4, fold change: 1.3), and 
miR-212(P-value: 1.3 × 10−7, fold change: 1.2) were 
obtained.

Both miR-132 and miR-212 are located on 
chromosome 17p13, which were predicted to target the 
tumor suppressor RB1 and reduce its levels. miR-132/-
212 is reportedly overexpressed in pancreatic cancer [40], 
but the cause of miR-132/-212 upregulation in ovarian 

Figure 6: Network modules identified in ovarian cancer subtype 2. (A) Modules are closely connected which may reflect 
oncogenic processes. A total of 14 modules were identified, the largest of which are shown. (B) The observed modularity of the ovarian 
cancer subtype 2 network (0.608) compared with 1000 randomly rewired networks (average 0.367, standard deviation 0.041). (C) Linker 
genes, which are not altered in ovarian subtype two, but are statistically enriched for connections to ovarian cancer subtype 2 altered genes.



Oncotarget4304www.impactjournals.com/oncotarget

cancer subtype remains unknown. We proposed that miR-
132/-212 targets RB1 and promotes tumor proliferation. 
Several studies have indicated that high expression 
levels of miR-221 in tumor tissues are associated with 
overall survival in hepatocellular carcinoma, T-cell 
acute lymphoid leukemia, thyroid papillary carcinoma, 
pancreatic adenocarcinoma, and GBM [41, 42]. Hong 
et al. [43] reported that high serum miR-221 expression 
in human epithelial ovarian cancer correlates with 
short overall survival. Therefore, miR-221 may play an 
important role in the progression of malignancies. The 
molecular mechanism that links miR-221 overexpression 
to short overall survival is not well understood. In 
addition, a one-to-one correspondence between miRNAs 
and their target genes does not exist. Therefore, identifying 
the miRNAs that are important for regulating RB1 remains 
a crucial aspect of future investigations.

Pathways associated with ovarian cancer 
subtype-specific network

We conducted pathway analysis for each ovarian 
cancer subtype using an ontology-based pathway database 
[44] in DAVID [45] to associate ovarian cancer subtype-
specific networks with known pathways (Supplementary 
Table S3). We filtered out GO terms with an adjusted 
P > 0.05. Angiogenesis and p53 pathway were enriched 
in two ovarian cancer subtypes, although at different 
levels of significance. It is notably that angiogenesis is 

a hallmark of cancer [46]. In addition, the ovarian cancer 
subtype 1 were markedly enriched with genes in the Ras 
Pathway, and subtypes 2 was enriched with genes in 
VEGF signaling pathway and B cell activation. Previous 
study has revealed that the enhanced expression of VEGF 
are correlated with patient survival and tumor metastasis 
[47].These results suggest that targeting the VEGF 
pathway or simultaneously targeting the VEGF and B cell 
activation pathway seem like rational choices for ovarian 
cancer subtype 2 patients, which have a shorter survival 
time compared with ovarian cancer subtype 1 patients.

DISCUSSION

Previous studies usually stimulated one data 
type to identify ovarian cancer subtypes, whereas we 
systematically identified two subtypes in ovarian cancer 
by integrating mRNA and miRNA data. Compared to other 
three ovarian cancer subtypes (log-rank test, P = 0.043) 
identified by Yuan et al. [8], our identified two subtypes 
have a significant overall survival difference (log-rank 
test, P = 0.0128) between the two subtypes.

After discovering two ovarian cancer subtypes, we 
used a subtype-based core module inference strategy to 
decipher subtype genomic alterations. Instead, existing 
studies often focus on network analysis in cancer cohorts 
without considering cancer subtypes. These methods inclined 
to identify networks common in many neoplasm samples 
and ignore the heterogeneity among cancer subtypes.

Figure 7: Network analysis identifies five additional altered modules for ovarian cancer subtype 2. Each module (Module 
(A) PIK3CA module; Module (B) RB1 module; Module (C) CPSF1 module; Module (D) PRSS23 module; Module (E) MAPK12 module) 
is annotated with chromosome location, statistical significance between copy number and mRNA expression, and genomic status across 
ovarian cancer subtype one samples. A represents gene expression correlates with copy number, as determined by ANOVA analysis across 
222 ovarian cancer cases with copy number and expression data. B  represents the percentage of ovarian cancer cases in which gene is 
altered.
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We explored the CNA (copy number alternation) 
among the two subtypes in ovarian cancer and identified 
core modules that provide a consistent and integrated 
picture of two subtypes and link genomic alternations to 
biological processes. Our analysis reveals that genomic 
alterations in the metabolism and NDRGD1 pathway 
were common in the two subtypes, consistent with its 
critical role in the initiation of each subtype. However, 
the cohesion of core module networks drives distinct 
molecular phenotypes in the two ovarian cancer subtypes. 
Activation of both NDRGD1 and DLST modules may 
promote the metabolic signaling pathway. For subtype 2,  
genomic alterations in the RB signaling pathway may 
activate the pathway continually and disrupt cell cycle and 
proliferation [48]. Moreover, the RB pathway has a strong 
association with poor survival in many cancers, including 
GBM [35] and ovarian cancer [49]. Therefore, alternations 
in the RB signaling pathway may prompt subtype 2 to 
suffer a poor clinical outcome (Table 1). On the contrary, 
no RB1 signaling pathway may help subtype 1 result in a 
favorable clinical outcome.

Our findings not only present a comprehensive 
understanding of ovarian cancer but also provide 
guidance orientation on possible personalized therapeutic 
approaches for different subtypes. Targeting the metabolic 
pathway or simultaneously targeting the RB signaling 
pathway is a rational choice for efficient cancer therapy. 
However, clinical trials on targeting metabolic pathway 
and RB pathway therapies for ovarian cancer patients 
have reached inconsistent conclusions [26, 50]. Therefore, 
clinical trials should consider the cancer subtypes of 
patients because subtype 2 (with activated RB signaling 
pathway) may be more sensitive to anti-RB therapy than 
subtype 1.

In summary, our study elucidated the molecular 
mechanisms underlying ovarian cancer subtypes and 
helped identify candidate driver genes by using an 
automated network method. Heterogeneity is a common 
phenomenon in cancer, and our results implied that 
heterogeneity also exists in the two subtypes. In the 
future, individualized treatment should not be confined 
to the therapeutic strategies for ovarian subtype-specific 
therapy; rather, patient-specific driver gene predictions 
and therapy should be the focus of medical development. 
Potential driver modules may serve as determining factors 
for cancer progression and survival time. Further studies 
are required to explore this hypothesis.

MATERIALS AND METHODS

Data acquisition and processing

We downloaded gene expression (Agilent G4502A) 
data, miRNA (Agilent 8 × 15 K human miRNA-specific 
microarray platforms) data, survival data, and clinical 
data from the Synapse website (http://www.synapse.
org, accession number syn1710282). DNA copy number 
data were obtained from the TCGA (https://tcga-data.
nci.nih.gov/tcga/), which was analyzed by GISTIC2.0 
[51]. Only the homozygous deletions and amplifications 
were considered as copy number alternations (CNAs). 
We generated a binary matrix of genetic alteration, in 
which score 1 represents the ith gene in the jth sample 
with a genetic alteration, and score 0 represents otherwise. 
Some samples contained several genetic alteration genes, 
whereas other samples contained numerous genetic 
alteration genes. To assign a higher weight to this genomic 
alteration, we considered column-wise normalization, 
which mainly contains two steps. First, we performed row-
wise summarization for each matrix; second, we converted 
each matrix into a vector. For each subtype, n denotes the 
total number of genes in each group and m denotes the 
number of each subtype sample. The score of gene i in 
genetic alteration matrix C is defined as

C
x
xi

ij

iji
j

m
=

=
= ∑∑

1
1

.   (1)

where Xij corresponds to gene i in sample j in the 
binary matrices. All Ci for each gene were given equal 
weight. The probability for gene i (pi

0) was computed as

ρi
i

ii

n
c
c

0

1

=
=∑

.   (2)

On the basis of the genetic alteration matrix with 17,814 
genes and 157 samples for subtype 1 and 17,814 genes and 
222 samples for subtype 2, we calculated gene i pi

0( )  in 
subtypes 1 and 2. Gene scores greater than or equal to 
2 × 10−4 were considered. After filtration, 458 and 666 
altered genes were selected for subtypes 1 and 2, 
respectively. Then these altered genes were imported into 
NetBox and used for module detection. 

Table 1: Distinct core modules driving two ovarian cancer subtypes biology and clinical outcome
Main module 5yr-survival rate

Metabolism NDRG1 RB1 ZHX1 Stage I–IV Stage III–IV
Subtype 1 √ √ × √ 16.7% 15.4%
Subtype 2 √ √ √ √ 12.7% 11.7%
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Subtype identification

We applied the SNF [9] algorithm for a joint analysis 
of gene mRNA expression (12,042 genes) and miRNA 
expression (534 miRNAs) on a subset of 379 ovarian 
cancers. The main procedure of the subtype identification 
contains two parts.

Similarity network fusion

We constructed a graph G = (V, E) that represents 
a patient similarity network for each of the two available 
datasets. The vertices V correspond to the patients, whereas 
the edges E are weighted by the similarity between the 
patients. A weight matrix W represents all edges, with 
W(i, j) indicating the similarity between patients i and j. 
The weight matrix W was defined as:

W i j
X Xj j

i j

( , ) exp
,

,

= −






ρ

µε

2

,  (3)

where μ is a hyperparameter that can be empirically 
set, ρ(xi, xj) is the Euclidean distance between i and j, and 
εi, j is the means to eliminate the scaling problem. Here, 
we defined εi, j as

ε
ρ ρ ρ

i j
i i j j i jmean x N mean x N x x

,

, , ,
,=

( )( ) + ( )( ) + ( )
3
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where mean (ρ(Xi, Ni) is the average value of the distance 
between xi and its neighbors.

After defining a weight matrix, a normalized weight 
matrix P was acquired as follows:
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The normalization is free of the scale of self-
similarity in the diagonal entries and avoids numerical 
instability.

To measure the local affinity of a node i to all its 
neighbors Ni, k-nearest neighbors method was used:
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S only retained the k-nearest neighbors for each 
patient and filtered out low-similarity edges.

The similarity matrices P(v) and S(v) were calculated 
from the dataset v. SNF iterated each dataset’s similarity 
matrix and was defined as

P S
P

m
S v mi v
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( ) ( )
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≠ ( )=
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1
1 2

Τ
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This procedure updates the matrices P each time, 
meanwhile, it generates m parallel interchanging diffusion 
procession in m networks. If vertices i and j are similar in 
all of the data types, then their similarity will be improved 
through diffusion and vice versa.

Spectral clustering (ovarian cancer subtyping)

To identify C cluster samples (each cluster represents 
a subtype), we defined a label indicator vector yi. If patient  
i belongs to the kth subtype, we define the yi (k) = 0; 
otherwise, yi (k) = 1. Thus a partition matrix Y = (y1

T, y2
T,…

yn
T ) delineates a clustering scheme.

We clustered the patient samples in the fused 
similarity matrix L+ = I–D−1/2 WD−1/2 by using spectral 
clustering. The normalized Laplacian matrix was with the 
final similarity matrix P, and the network degree matrix 
D was with the scaled partition matrix Q = Y(YTY)−1/2. 
The spectral clustering plans to minimize the objective 
function were as follows:

minQ R n cTrace (QTL+Q)s.t.QTQ = I∈ ×  (8)

Identification of core modules in ovarian cancer 
subtypes

The construction of subtype-specific network 
modules in NetBox [6] allows us to explore the functional 
relevance of genes in a defined network. NetBox was 
used to explore the subtype-specific modules in a defined 
literature curated human interaction network. Once the 
altered gene in each of subtypes which altered by copy 
number alternation were inputted into Netbox, module 
detection is automatically. (NetBox was used to explore 
the subtype-specific modules in a defined literature 
curated human interaction network.) Genes in the detected 
modules have a potential to be driver genes. 458 and 666 
altered genes were imported into NetBox, respectively. 
Using the global null model and local null module in 
NetBox, the level of connectivity seen within the subtype-
specific modules were assessed. 

NetBox identifies the intermediate genes (linker 
genes) for the connection of input genes through 
subnetwork extraction. Before running NetBox, we set 
the neighbor nodes of degree to 2, allowing the linker 
gene to connect two altered genes within the network. To 
identify significant linker genes in statistics, we adjusted 
the p-value using Benjamini–Hochberg [52] and set the 
threshold at 0.035 for subtype 1 and 0.0125 for subtype 2.  
We ran 1000 iterations to evaluate the level of global 
network connectivity in the ovarian cancer subtypes. We 
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randomly selected the same number of altered genes in 
each iteration and connected them via the original shortest 
path threshold and p-value cut-off parameters.

Network visualization and module analysis

Networks were visualized in Cytoscape [53], and 
modules were visualized across the two subtypes in 
ovarian cancer. The correlation coefficient between CNA 
and mRNA expression was calculated via analysis of 
variance in R version 2.7.2.

Statistical analysis

Statistical calculation was performed in R version 
2.7.2. To analyze the survival of patients, log rank p-values 
were computed using the R package “survival.” The 
Wilcoxon–Wilcox test was used to analyze the miRNAs 
between the two subtypes.

GO analysis

We performed the functional analysis on DAVID 
[45] online service to evaluate the function of each driver 
gene set in subtypes.
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