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Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is one of the hallmark of biological tools, contemplated 
as a valid and hopeful alternatives to genome editing. Advancements in CRISPR-based technologies have empowered scien-
tists with an editing kit that allows them to employ their knowledge for deleting, replacing and lately “Gene Surgery”, and pro-
vides unique control over genes in broad range of species, and presumably in humans. These fast-growing technologies have 
high strength and flexibility and are becoming an adaptable tool with implementations that are altering organism’s genome 
and easily used for chromatin manipulation. In addition to the popularity of CRISPR in genome engineering and modern 
biology, this major tool authorizes breakthrough discoveries and methodological advancements in science. As scientists are 
developing new types of experiments, some of the applications are raising questions about what CRISPR can enable. The 
results of evidence-based research strongly suggest that CRISPR is becoming a practical tool for genome-engineering and 
to create genetically modified eukaryotes, which is needed to establish guidelines on new regulatory concerns for scientific 
communities.
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Introduction

It has been well documented that phages overcome bacte-
rial resistance by reverting their host genomes. Therefore, 
a large segments of the bacterial DNA is occupied by the 
transplanted encoding genes from different antiviral defense 
systems (Brouns et al. 2008; Lintner et al. 2011; Weekes 
and Yuksel 2004; Wiedenheft and Van-Duijn 2011). Upon 
infection and completion of phages replication, prophages 
destroy the host cell and to avoid this lethal threat, bacteria 
evolve various phage-resistance defense system that obstruct 
almost each phase of phage life cycles. Most bacteria, alter 
their existing receptors on cell membrane to restrict natu-
ral viral attachment using restriction enzymes to destroy 
invaded viral DNA once infects the cell. Bacteria have 
adapted an altruistic suicide strategy to inhibit propagation 
of viral DNA, within their population. Overall, such anti-
viral mechanisms frequently provide enhanced protection 
from the interference of analogous genetic assaults, DNA 

molecules, plasmids, and other conjugative and integrative 
components (or elements) (Cong et al. 2013; Almendros 
et al. 2014; Horvath and Barrangou 2010). A classical model 
of this coevolution is the E. coli restriction-modification 
system as it relates to the counter-attack interactions of the 
bacterial host against T4 bacteriophages (Zhu and Ye 2015; 
Chylinski et al. 2014; Makarova et al. 2011; Deltcheva et al. 
2011; Sapranauskas et al. 2011). This Darwinian interchange 
between majority of prokaryotes in focus on bacteria and 
viruses stimulates an inevitable evolution in expression of 
bacterial phage-resistance system (Hale et al. 2010). These 
unique restriction-modification systems in bacteria are not 
only able to discriminate “self” vs. “non-self” DNA, but also 
act as a primitive innate immune system that confers resist-
ance against invasive DNA. This adaptive microbial immune 
system has a genomic etiology, which has been coined as 
CRISPR, and it delivers acquired immunity against invad-
ing viruses and plasmids in host cells. CRISPR consists of 
between 20 and 49 base pair long and highly conserved short 
DNA repeat sequences which are at least partially palin-
dromic (Rath et al. 2015). These repeats are interspaced by 
stretches of variable sequences of between 24 and 75 base 
pair spacers (Raz and Tannenbaum 2010; Marraffini and 
Sontheimer 2008). The spacer sequences usually originate 
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from (1) fragments of captured foreign DNA; (2) coding 
or non-coding DNA; or (3) DNA derivative of RNA from 
various viruses, phages, transposons or plasmids (Ferguson 
et al. 2011; Golkar 2016) (Fig. 1).

While, CRISPR technology and its revolution seem to 
occur at a truly astonishing pace, this prokaryotic immune 
system is especially flexible for genome engineering, thus 
offering more precise on-target and decreasing off-target edit-
ing rates. Prokaryotes have utilized CRISPR as an adaptive 
immune system against viral attacks and have long like a win-
ning strategy to ensure prokaryotic survival. This system is 
proving to be just as powerful for research studies, outshining 
existing genome editing research applications such as ZFNs 
and TALENs (Bondy-Denomy et al. 2013; Bondy-Denomy 
2018). The development and understanding of the CRISPR/
Cas and bacterial immune system and its application into a 
gene-editing tool are the efforts of several researchers over 
long period of time. This review offers a brief history of each 
significant contribution of the researchers who were involved 
in this discovery and shaped the CRISPR gene editing tech-
nology to its clinical application thus crossing boundaries by 
gene surgery in human embryo (Broad Institute 2018).

Discovery of CRISPR and its function

In 1987, Yoshizumi Ishino discovered the CRISPR 
sequences in E. coli genome (Ishino et al. 1987) and exten-
sive analysis of gene coding for isozyme conversion of 

alkaline phosphatase was reported by him later on in 2018 
(Ishino et al. 2018). However, their function as a defense 
mechanism against phages was not discovered until 2007. 
In 1993, Francisco Mojica from the University of Alicante, 
Spain was the first scientist to elucidate CRISPR locus, and 
he reported the structures of the currently known CRISPR 
sequences in 2000 (Mojica et al. 2000) He further character-
ized some of CRISPR sequences that have homology with 
genome of bacteriophages, and he reported that CRISPR 
is a unique form of bacterial adaptive immune system in 
2005 (Mojica et al. 2005). In 2005 Alexander Bolotin dis-
covered set of Cas genes, that coding for a large function-
ing protein that projected to have nucleus activity, later 
named as Cas9 in CRISPR locus of S. thermophilus. His 
team noticed that all spacers with conserved similarity to 
bacteriophage genes share a unique sequence at one end, 
now known as Protospacer Adjacent Motif (PAM) which is 
necessary for target recognition (Bolotin et al. 2005; Jansen 
et al. 2002). In 2006, Eugene Koonin demonstrated a funda-
mental structure for CRISPR cascades based on insertions 
of homologous sequences to bacteriophage genome in the 
spacer array (Koonin and Makarova 2019; Makarova et al. 
2006). In 2007, Barrangou et al. (2007) demonstrated that 
consistent exposure of targeted bacteria to bacteriophage 
attack may led to resistance; that viral DNA will be inserted 
into bacterial CRISPR interspacing regions; and that if these 
viral DNA are removed from the spacers, targeted bacte-
rial will be sensitive to viral attack and lose resistance. Fur-
thermore, Philippe Horvath performed the first experiment 
with CRISPR systems in S. thermophilus by insertion of new 
sequence of phage DNA into the CRISPR array, and he stud-
ied the immunity of bacteria against the next round of phage 
attack. He demonstrated that Cas9 protein is only required 
for interference, while CRISPR cascade inactivates phage 
attacks (Horvath and Barrangou 2010). In 2008, John van 
der Oost and his colleagues from the University of Wage-
ningen, Netherlands confirmed the presence of CRISPR 
RNAs (crRNAs) spacer sequences in E. coli genome. These 
spacers are originated from viral DNA and are transcribed 
into crRNAs, which directly target the DNA after activation 
of Cas protein (Lander 2016). Marraffini and Sontheimer 
(2008) further confirmed that the concept of target mole-
cule is always DNA not RNA, and that the CRISPR system 
is a unique tool that could be applicable to the eukaryotic 
system. Later, in 2009, Hale and colleagues discovered dif-
ferent types of CRISPR that could exclusively target RNA 
(Hale et al. 2009; Garneau et al. 2010). In 2010, S. Moineau 
introduced Type II of CRISPR systems, which demonstrated 
that in CRISPR-Cas9’ system, the Cas9 protein, in conjunc-
tion with crRNAs, is required to cleavage the target DNA 
in 3 nucleotides upstream of the PAM and in very specific 
positions (Deveau et al. 2010; Jinek et al. 2012). In 2011, 
E. Charpentier and team (Deltcheva et al. 2011) discovered 

Fig. 1  Overview of the CRISPR-Cas9 system. CRISPR loci are found 
in roughly 40% of bacterial genomes and can be transmitted both hor-
izontally and vertically



1371Genes & Genomics (2020) 42:1369–1380 

1 3

CRISPR RNA (tracrRNA) while performing RNA sequenc-
ing on S. pyogenes, which has a Cas9 protein. She presented 
that tracrRNA creates a duplex with CRISPR RNA (crRNA), 
which guides Cas9 to its targets (Abbott 2016). Meanwhile, 
Siksnys and colleagues cloned Type II system of CRISPR-
Cas loci of S. thermophilus and expressed that in E. coli 
the result was the ability of this strain to provide plasmid 
resistance. This experiments proved that CRISPR systems 
are independent functioning sequences (Sapranauskas et al. 
2011). In 2012, Jinek et al. (2012) first in vitro experiment 
showed, CRISPR could be designed for targeted DNA cleav-
age. In 2013, first application of CRISPR based editing in 
human and mouse cell lines was reported by Cong et al. 
(2013) and Mali et al. (2013). Finally, one of the pioneers of 
TALENs, Zhang, could modified CRISPR-Cas9 for genome 
editing in human and mouse cell lines. They used two differ-
ent Cas9 proteins (S. thermophilus and S. pyogenes) and per-
formed cleavage in targeted DNA of these eukaryotic cells. 
Their experiments show it is possible to edit CRISPR-Cas 
system and use it for different targets of the same genome 
(Cong et al. 2013). Before 2018, PubMed had published over 
5000 CRISPR-Cas articles, several of publications focused 
on improvement of tool’s specificity, orthogonality, accu-
racy, applications and multi-plexibility in diverse organisms.

The results of the studies elucidated that extreme diversity 
in CRISPR mechanism, found in 95% of archaeal and 48% 
of bacterial genomes with respect to unique PAM sequences 
and types/subtypes of Cas proteins.

In 2011, Makarova et al. (2011) identified 5 major types 
and 16 subtypes based on shared characteristics, evolu-
tionary and sequence homology. He further classified 
them into two classes based on the structure of the effector 
complex that cleaves the genomic DNA (Makarova et al. 
2011). The CRISPR might be a powerful defense system 
to ensure prokaryotic survival, but it is not invincible. In 
2012 scientists (Cady et al. 2012) reported the first set of 
anti-CRISPR genes in phages attacking Ps. aeruginosa that 
can block CRISPR function, inhibit the activation of Cas 
proteins or prevent the CRISPR-Cas system from binding 
to target DNA (Borges et al. 2017). Currently, CRISPR tool 
advancement has arisen at a surprising pace, with research 
focused towards enhancing on-target and reducing off-target 
editing rates. Biotech companies have empowered research-
ers to improve further the CRISPR technique by providing 
constructed plasmids, and have shared the experiences of 
other scientists, and have created a tremendous access to 
numerous plasmids applicable in many platform applications 
and in a variety of models e.g.; eukaryotes (Human, mouse, 
and rat); Prokaryotes (E. coli, Streptococcus, Streptomyces, 
and others), Drosophila; Plants (monocots and dicots); C. 
elegans; Yeast (S. cerevisiae and S. pombe); Zebrafish, and 
Xenopus (Adli 2018; Wang et al. 2014a, b; Koike-Yusa 
et al. 2014; Pourcel et al. 2005). More than a decade passed 

before scientists discovered the landscape of these spacer 
sequences. Computational analysis of genomic sequences of 
several organisms, including bacteriophages, led research-
ers to notice the importance of CRISPR repeat and spacer 
sequences. Conspicuously, CRISPR had been identified as 
an atypical bacterial DNA repeat element for many years 
before it was reported as the bacterial immune system and 
subsequently introduced as a potent re-programmable gene-
targeting tool kit (Adli 2018; Wang et al. 2014a, b; Koike-
Yusa et al. 2014; Pourcel et al. 2005) (Fig. 2).

The rise of CRISPR as the genome 
engineering application

While the breakthrough in synthetically designed, mega 
nucleases enzymes using ZFNs and TALENs sequentially 
enhanced the gene-editing efficiency, targeting various 
recognition sites in the genomic DNA requires more new 
proteins to be re-designed. The major challenge in further 
engineering new proteins in ZFNs or TALENs is who are 
not applying these techniques as frequently as CRISPR has 
revolutionized the field, and provides a simpler and more 
fixable kit for gene- editing efficiency. However, use of any 
of gene-editing tool depends on the application, type of cell 
lines, and research goal. This discovery, in addition to the 
next generation of sequencing, provides a powerful tool kit 
for scientists to target multiple locus on DNA of the same 
eukaryotes or prokaryotes and genome-wide screening. The 
combination of gRNA targeting can be applied to identify 
important genes which code for a certain phenotype. A sub-
stantial pooled of information is present for gene knockout, 
transcriptional activation or repression in cells (Brophy and 
Voigt 2014; Jusiak et al. 2016). As CRISPR technology is 
developing, many researchers are interested in exploring 

Fig. 2  CRISPR-Cas9 as a precise genome editing tool
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further the implication and functioning of these CRISPR 
sequences. Findings are notably followed by groundbreaking 
literatures published worldwide demonstrating that CRISPR 
could be tailored for various gene alteration in vivo in both 
prokaryotes and mammalians (Brophy and Voigt 2014; 
Rothschild et al. 2015). CRISPR has provided an especially 
practical and accessible tool that could be simply pointed 
to a selected location in the genome by designing a short 
sgRNA sequence. In past few years, utilizing the CRISPR/
Cas9 tool has exceed the basic genome editing and targeting 
DNA. In some of the current approaches CRISPR appli-
cations have been used in chromatin (Adli 2018), and tar-
geted epigenetic regulation, precision of CRISPR to achieve 
large-scale functional screenings by using guided proteins 
with thousands of copies of sgRNA in each targeted cell to 
recognize genes that influence an explicit phenotype in an 
individual (Lino et al. 2018). These approaches need several 
technical and analytical improvements, (Dar et al. 2018) but 
once recognized as standard approaches, they could be pow-
erful tools to monitor the functionality of large numbers of 
genes simultaneously. The specificity and in-depth details 
of these assays are not in scope of this article however in 
2018, Dar et al. (2018) and Adli (2018) have published their 
excellent analysis in wide range of CRISPR screening and 
well documented in their articles.

Examples of the use of the CRISPR‑Cas 
in modern medicine

Regulation of cell behavior is one of the major goals of 
synthetic biology, and to achieve this goal requires efficient 
and precise artificial transcription factors that could target 
the specific sequences. CRISPR system has been used to 
adjust processes in a different prokaryote and eukaryotic 
cells. These regulatory pathways have been established 
using transcriptional regulatory systems based on CRISPR-
Cas9. Considering CRISPR has made the great progress in 
transcriptional regulation, this allows several genes to be 
set simultaneously (Hasty and Montagna 2014; Gerlinger 
et al. 2014). Recently, the development of nuclease-dead Cas 
molecules (dCas9 and dCas12a) as a new comprehensive 
toolbox has offered an additional platform for scientists to 
regulate the genome function and to control cellular behav-
iors without using CRISPR for genome editing (Xu and Qi 
2019). Chronic granulomatous disease is caused by a single 
intronic mutation in the CYBB gene. Flynn et al. (2015), 
have used CRISPR/Cas9D10A, nickase and donor-mediated 
HR in iPS of skin fibroblast for In vitro differentiated mac-
rophage function. Barth syndrome is a result of 1 bp deletion 
on chromosome. Wang et al. (2014a, b) have used iPS of 

skin fibroblast and applied CRISPR/CAS9, PiggyBac and 
donor-mediated HR for In vitro differentiated cardiomyocyte 
and muscle contraction. Similarly, β-Thalassemia is A/G and 
TCTT deletion or C > T mutation in HBB gene, and studies 
have shown that modification of CRISPR/CAS9, PiggyBac, 
and donor-mediated HR using iPS fibroblast could be used 
for In vitro hematopoietic differentiation and Gene expres-
sion (Xu et al. 2015; Xie et al. 2014). In another study on 
Hemophilia A conducted by Park et al., researchers used 
iPS; urine cells of Hemophilia A patients and Cas9 protein, 
gRNA and DNA plasmid were transferred using a micropo-
rator system. The results were demonstrated in vivo differ-
entiated endothelial cells and transplanted into a hemophilia 
mouse for correction of gene inversion 140 kb and 160 kb 
from intron 1–22 (Park et al. 2015). Cystic fibrosis is another 
mutation-based condition on CFTR F508 deletion, CRISPR/
CAS9 and donor-mediated HR, using no iPS cells. Only 
3D intestinal organ culture has shown interesting results for 
In vitro differentiated intestinal organoids (Schwank et al. 
2013; Hastings et al. 2009). In 2019, report has shown prom-
ise in a clinical trial application in patients with Sickle cell 
anemia (Humbert et al. 2019), hematopoietic stem cells of 
patient was targeted for editing. Researchers used CRISPR-
based technique to edit the antigens of CD90 and boost the 
regenerating this cells with normal function in blood.

Application of CRISPR as a tool to treat 
Duchenne Muscular Dystrophy in mice

In 2017 Bengtsson and colleagues used CRISPR genome-
editing tools to treat Duchenne Muscular Dystrophy (DMD) 
in mice (Bengtsson et al. 2017). In Duchenne Muscular Dys-
trophy, defective DMD gene is unable to code for the protein 
dystrophin, and there is no known cure for DMD. Bengtsson 
et al., used CRISPR to remove the defective DMD gene in 
mice, which has allowed the mice to produce major dystro-
phin proteins in the muscles cells. The results of the study 
were promising and considered as the first application of 
CRISPR in the treatment of genetic disease in mice with 
DMD. CRISPR can delete the incorrect exon, therefore the 
duplicator system can generate a smaller amount of dys-
trophin protein as effective as its natural form and sgRNA. 
Modified Cas9 were delivered by using unique viral career; 
adenovirus into mouse muscle cells; and CRISPR system 
was applied to delete the incorrect exon (Long et al. 2014; 
Nelson et al. 2016; Ousterout et al. 2015). In another study, 
the Li et al. (2015) group used iPS fibroblast and CRISPR/
Cas9 for 75484 bp deletion, including exon 44 of Dystro-
phin gene, the results of which were used for in vitro dif-
ferentiated skeletal muscle cells and evaluating the gene 
expression.
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CRISPR system and gene‑editing in cancer

The CRISPR system has inclusive potential for a variety of 
applications in epigenetic cancer therapy, in gene regulation 
of oncogenes in cells, multiscale cancer modeling, proteom-
ics methods for drug discovery and protein–protein interac-
tions (PPI) as therapeutic targets in cancer focused studies 
(Dar et al. 2018; Sachdeva et al. 2015; Martínez et al. 2012), 
or chromosomal rearrangements in cancers that involve a 
single balanced fusion, or in combination with one or more 
fusions that disrupt this balance (Maresch et al. 2016). It 
has been studied in details cancer cells accumulate multiple 
mutations in genes that, can cause development of cancer 
cells, progression and distant metastasis (Shi et al. 2015; 
Weber et al. 2015; Sánchez-Rivera and Jacks 2015; Khan 
et al. 2016). The CRISPR system could possibly cure the 
disorders caused by these generating mutations by switching 
off the respective oncogenes or by switching on the tumor 
suppressor genes in activation or suppression of telomeres as 
another potential application in cancer therapy (Harley 2008; 
Annunziato et al. 2016; Torres-Ruiz and Rodriguez-Perales 
2015; Yoo and Jones 2006; Chiba et al. 2015; Wang et al. 
2017). In a study by oncologist Lu You, the T-cells were 
obtained from the patient’s blood of Non-small cell lung 
cancer and gene PD as a part of immune checkpoint were 
disabled by use of CRISPR. The PD-1 gene naturally serves 
as an “off switch” to prevent T-cells from damaging normal 
cells, however several types of cancer cells seize the pathway 
to escape detection by the immune system and grow aban-
doned. In this prospective trial, the edited PD-1 knockout 
T-cells were transferred back into the patient and were able 
to recognize and evade the Non-small cell lung cancer cell 
(You et al. 2019). The CRISPR/Cas9 advancement is also 
playing an important role in revolutionizing the current he 
diagnostic methods and available treatment for breast cancer 
(Yang et al. 2018). An invasive lobular breast carcinoma is 
taken as an example for this diagnosis and CRISPR/Cas9 
mediated tool is used for modification of somatic cell in 
putative cancer driver genes. For therapeutic approaches, 
the inhibition of breast cancer cell proliferation is accom-
plished by adapting a dominant negative mutation generated 
by the CRISPR/Cas9-targetting of HER 2 (Annunziato et al. 
2016). Another promising application, T-cells of patient is 
extracting and after gene modification using CRIPSR, re-
programmed cells infusing back into the patient to fight 
the Leukemia and Lymphoma cancer cells (Graham et al. 
2018). Multiscale of cancer modelling is another application 
of the CRISPR system, via the stimulation of tumor sup-
pressor genes and the suppression of oncogenes. Tradition-
ally, in murinae cancer modelling, genetic modification of 
transgenes or homologous recombination in embryonic stem 
cells were required (Yao et al. 2015). These models could 

predict one or two mutations in the model and were often 
very expensive methods; (Jin and Li 2016) however, using 
the CRISPR system could generate the same information 
in less than a few weeks and was cost-effective (Nishimasu 
et al. 2014; Driehuis and Clevers 2017). Another applica-
tion of the CRISPR system the use of epigenetic factors of 
some cancers.

Generally, methylation is a major epigenetic factor for 
gene expression and regulation in eukaryotic cells (Driehuis 
and Clevers 2017). CpG islands are typically located in the 
promoter region and during epigenetics events, methylation 
process will lead the repression of gene expression. DNA 
methylation in cells is extremely well regulated by a family 
of enzymes called DNMTs: DNMT1, DNMT2 DNMT3a 
and DNMT3b. If DNMTs are dysfunctional in cancer cells, 
they deactivate the cancer suppressor genes or activate onco-
genes (Moore et al. 2013). The CRISPR system could target 
the desired genes and engineer their functions to generate 
mutations in enzymes associated with epigenetic regulation 
(Adli 2018).

Similarly, the CRISPR system has the potential to change 
the genome of somatic cells. In 2015, Singh et al., induced 
several organized mutations in a mice by using the CRISPR 
system concomitantly. Numerous parameters involved in the 
diverse types of cancers were predicted (Singh et al. 2015). 
Bak et al., used two lentiviruses associated with each other 
to express all the of CRISPR relevant factors in hemat-
opoietic stem and progenitor cells (HSPC). The absence 
of functional mutations produced in these cells may led to 
acute myeloid leukaemia (AML) in mice (Heckl et al. 2014; 
Tothova et al. 2017). However, well-designed experiments 
in mouse of human genetic variants, e.g.; SNPs involved 
by genome-wide association (GWA) findings, have been 
thought-provoking. Currently, however, practically any 
change mirroring human coding variants could be initiated 
in the mice genome. The CRISPR system provided a plat-
form of opportunities for specific genome engineering in 
humanized mice (Birling et al. 2017; Fujihara and Ikawa 
2014). The CRISPR system equips mouse geneticists with 
a powerful, quicker, improved, and cheaper genetic toolbox, 
exclusively capable of testing human disease-related issues 
in mouse research (Wu et al. 2013; Yoshimi et al. 2014).

CRISPR application to develop resistance 
against malaria by editing DNA of mosquito

Scientists have used the CRISPR system to create mos-
quitoes which can transfer resistance to malaria within the 
same species. For this, CRISPR was used to modify the 
DNA by injecting it into female Anopheles mosquitoes, 
which is one of the major parasite carriers in tropical areas 
and most notoriously in the regions of sub-Saharan Africa 
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and Asia. The transmitted DNA is programmed with edited 
antibodies that could attack the malaria parasites (Gantz 
et al. 2015). This technique is still very new and requires 
further analyses and experimental designs before applica-
tion. It is important to validate all the risk factors before 
its extensive use in nature. Once safely tested, it would be 
a great tool in the fight against fatal malaria. This applica-
tion has shown 99.5% promise of in vitro mattings between 
modified and unmodified mosquitoes (Ghorbal et al. 2014; 
Hammond et al. 2016).

Application of CRISPR in the treatment 
of HIV infection

Liang et al. (2016) of McGill University AIDS Center in 
Montreal, Canada applied CRISPR to delete the viral DNA 
that had been integrated into the human host cell by repair 
mechanisms. These studies have shown promises that genet-
ically repaired tissue could be generated to prevent viral 
DNA function. Khalili et al. (2017) of Temple University 
in Philadelphia have used similar approaches by targeting 
multiple sites to reduce any chance for virus escape or the 
emergence of virus resistance to the primary treatment. 
Results of gene-editing CRISPR system to eliminate the 
HIV genome from the eukaryotic cells lines and success 
in the results have provided the potential of and promis-
ing strategies in treating HIV infection (Khalili et al. 2017; 
Ebina et al. 2013; Liao et al. 2015; Hu et al. 2014). Often 
when viral genome is edited, it could lyse the viruses, while 
in the other cases this manipulations could have the reverse 
effect by exacerbation of the viral infection in host cells 
(Lee and Lee 2019). On the contrary, if the viral repaired 
DNA takes an altered form, the CRISPR cannot identify 
and attack the host any more. This system could attack on 
various segments of viral genome and cause further altera-
tion resulting development of higher resistance to available 
treatments (Wang et al. 2016). Alternatively, simultaneous 
the CRISPR-Cas9 system has been used for editing of the 
HIV co-receptors CCR5 and CXCR4 and considered it an 
hypothetically safe and promising approach to achieve treat-
ment by protecting CD4(+) cells from HIV-1 infection (Liu 
et al. 2017; Allen et al. 2018; Kaminski et al. 2016). Par-
ticularly, few of current introduced systems may provide 
the opportunities and alternative potentials in current viral 
gene editing. A profound example of CRISPR application 
in human embryo was done by He et al. (Unpublished). He 
used 16 embryos with CRISPR and implanted 11 edited 
embryos into the wombs of women to attempt to create 
a viable twin pregnancy (Unpublished). He aimed to edit 
the gene to prevent the HIV in unborn twins (Lee 2019; Li 
et al. 2019).

Medical applications of CRISPR 
for personalized use

Another potential application of the CRISPR technology could 
be in personal medical use, e.g.; embryonic stem cells would 
be engineered with the CRISPR system, and then, modified ES 
cells would be re-injected into the patient. For this, prospective 
patients are characterized based on their genotype and pres-
ence or absence of targeted faulty genes. These studies are 
very preliminary and are largely depends on the first testing or 
whether this is safe for the patient. For example, RuvC domain 
recognizes and cleavage the double-stranded DNA that is not 
complementary to gRNA, then active site catalyzes the single-
stranded DNA following general two-ion of HJs (Sundaresan 
et al. 2017). By designing a mutation in the the RuvC Nuclease 
domains of the CRISPR system, scientists are planning to con-
struct a engineered enzyme with lack of endonuclease activity 
and this, will be applied simply to facilitate identifying other 
targeted enzymes (Chen and Doudna 2017). Mutated Cas9 
causes the target protein to lose its endonuclease property but 
reserve its capability to recognize its DNA in a desired targeted 
region to bind to the excising sgRNA sequences. While tech-
nology will be used to enhance the binding of more enzymes 
to Cas9, to bind this complex to the desired target site-Cas9, 
an increase in enzymatic activity will be occurred to eliminate 
the cleaving of the sequence (Safari et al. 2019). Scientists are 
also looking for more clues to whether they might be helping 
patients in need since new Cas9-based tools are still poorly 
explored. In a study conducted on SpCas9, the results of a 
modified Cas9 show that improvement of protein functions 
over domain fusion or splitting, rational scheme, and directed 
evolution is promising. Such protein engineering approaches 
proved to be more dynamic in the manipulation of DNA of 
organisms of the most interest, with safer precision, more 
accurate interaction with stimuli, and reduced or lack of tox-
icity, and more efficient application. In addition to engineered 
Cas9, sgRNA engineering has been developed to improve 
CRISPR application, and both techniques have enhanced the 
tailored Cas9 tool applications. Cas9 could be used for simple 
or multiplex approaches for different genome editing and gene 
therapy. Epigenetic studies have shown reversible property of 
epigenetic correction, comprising DNA methylation, which 
has been now being used in cancer therapy for altering the 
epigenetic field (Shalem et al. 2014). Epigenetic editing at spe-
cific loci is another great approach for gene expression, and 
the CRISPR/Cas9-based approach has been developed for a 
precise DNA methylation, comprised of dCas9 nuclease and 
catalytic domain of the DNMT3A. This tool targets gRNA of 
DNA and consists of CpG methylation segment. Once gRNA 
targets the dCas9-DNMT3A, several adjacent sites will be cre-
ated, which enables methylation to increase in larger amounts 
and results in promoting greater increase of the direct DNA 
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methylation in the sequence region of the target loci IL6ST and 
BACH2, eventually decreasing their expression (Vojta et al. 
2016; Lei et al. 2018; Josipovic et al. 2019) (Fig. 3).

Ethical factors for therapeutic application 
of CRISPR

As CRISPR and gene surgery could be a valuable approach 
in germline editing, these technologies grow more in scope. 
Since changes to germline could be passed on to the next 
generations, using the CRISPR tool has raised several social 
and ethical interests over its application, and these powerful 
tools deserve greater considerations (Walani and Biermann 
2017; Brokowski 2018; Colnaghi et al. 2011). It is a fact 
that seven million children are born with lethal genetic dis-
orders every year (Liu et al. 2015). The promising use of 
CRISPR as a tool for gene editing to treat defective unborn 
children, involving the success and accessibility of diagno-
sis and design, the treatment has generated debates among 
researchers to propose ethical guidelines for approval of 
this approach in preclinical settings (Curtis 2011). A survey 
conducted in 2018 of over 2500 Americans (Montoliu et al. 
2018) showed general knowledge and acceptance of the idea 
for gene surgery in human embryos. While the vast major-
ity of the USA population are not in favor of vaccination, 
blood transfusion, in vitro fertilization and organ transplant 
to save lives, it is difficult to press the issue to support the 
potential application of CRISPR in mankind to treat serious 
diseases. The public’s general knowledge is highly influ-
enced by media, the idea of “barcoded humans, supper sol-
diers, or designer babies” does not represent the extensive 

clinical research in this field and requires clear vision for 
public (Silverman 2018; Jasanoff and Hurlbut 2018). Scien-
tists equipped with this powerful technique should not use 
it as an enhancement tool for different human characteris-
tics. Scientific communities, advocates, and ethicists should 
review ethics diligently, (Jiankui et al. 2018; Brenner 2002) 
based on personal ethics, religious beliefs, cultural values 
and public-health challenges. This requires debating and 
developing exclusive national and international safe guide-
lines for its unique applications in clinical trials (Silverman 
2018; Regalado 2015; Nelson et al. 2016; Brokowski 2018).

Conclusion

Previously, genome manipulation of humans was a theoreti-
cal concept; now, however, with the CRISPR technique we 
are taking noticeable steps to make that dream a reality. The 
evolution of every cutting-edge tools and technologies is 
crucial for scientific advancement. Nobel laureate Sydney 
Brenner is quoted as saying, “Progress in science depends 
on new techniques, new discoveries and new ideas, prob-
ably in that order” (Mollanoori and Teimourian 2018). It’s 
incredible to see how rapidly CRISPR research develop-
ment has progressed, and this fascinating progress in the 
development of diverse range of CRISPR-based approches 
in just 20 years has shown promise in therapeutic applica-
tions, which is exciting for biomedical researchers (Balti-
more et al. 2015). The CRISPR technology makes it prom-
ising to change genomes of nearly every organism under 
any conditions and continues to improve in a very precise, 
programmable platform in science for different biological 

Fig. 3  Timeline of key events in discovery and application of CRISPR system



1376 Genes & Genomics (2020) 42:1369–1380

1 3

and translational applications. It has become more conveni-
ent, cost effective, and well adapted in labs and biotech-
nology companies. CRISPR has increased our knowledge 
of DNA regulation and organization in every living cells 
across diverse species and continues to transform molecu-
lar biology, medicine, and biotechnology (Doench 2018; 
Funk and Hefferon 2018). For scientists in the CRISPR 
field of research, development of this system has led to the 
transformation of genome editing and has provide the great 
opportunities for therapeutic uses. Research labs are finding 
new applications in biomedical the engineering field and 
are exploring more purposes compared with other technol-
ogies. Progress in the development and understanding of 
CRISPR has revolutionized the field of medicine by specify-
ing the demand for this technology in the prevention or the 
treatment of majority of genetic diseases (Hsu et al. 2014). 
CRISPR medical applications are developing and focus on 
treatment of cancer, HIV and other genetic disorders are 
on top list of clinical researchers, e.g. eradicating genetic 
defects in human embryos by using the CRISPR technique 
(Regalado 2015). The major obstacle for therapeutic use of 
CRISPRs in humans would be the correct delivery of edit-
ing reagents for effective gene correction in vivo or in stem 
cells that could be exploited to re-introduced into patients 
(Park 2016). However, in 2015, David Baltimore along with 
other researchers, ethicists and advocates commented that 
germline-engineering raises the risk of unanticipated con-
sequences for future generation since there are limits to our 
current understanding of gene-environment interactions in 
human disease, genetics, and the pathways to other respec-
tive disease (Baltimore et al. 2015). He et al. (Unpublished) 
announced that his lab used the CRISPR technique to create 
genetically modified babies. Despite the ambitions about the 
technology which allows researchers to take such risks to 
make precise modifications to human DNA, (Stein 2018; Li 
et al. 2019; Barton and Rochman 2017) and like any great 
scientific inventions and discoveries, CRISPR approach has 
triggered ethical concerns among scientific communities 
that are not easy justifications. It is a fact that CRISPR is 
an exciting yet challenging area in modern biology with the 
aim of making notable change in the genome of different 
species, and germline engineering could be done exclusively 
on faulty genes that lead to severe diseases while there are 
not may practical therapeutic options available. In parallel 
to the current developments, extensive evidence on risk fac-
tors, and health benefits, improvements during clinical trials 
are required. Despite all its promises, this technique still 
requires crucial steps toward maximizing the system until it 
is considered safe enough to be used on humans.
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