
Taliun et al. BMC Bioinformatics 2014, 15:10
http://www.biomedcentral.com/1471-2105/15/10

METHODOLOGY ARTICLE Open Access

Efficient haplotype block recognition of very
long and dense genetic sequences
Daniel Taliun1,2*, Johann Gamper2 and Cristian Pattaro1

Abstract

Background: The new sequencing technologies enable to scan very long and dense genetic sequences, obtaining
datasets of genetic markers that are an order of magnitude larger than previously available. Such genetic sequences
are characterized by common alleles interspersed with multiple rarer alleles. This situation has renewed the interest
for the identification of haplotypes carrying the rare risk alleles. However, large scale explorations of the
linkage-disequilibrium (LD) pattern to identify haplotype blocks are not easy to perform, because traditional
algorithms have at least �(n2) time and memory complexity.

Results: We derived three incremental optimizations of the widely used haplotype block recognition algorithm
proposed by Gabriel et al. in 2002. Our most efficient solution, called MIG++, has only �(n) memory complexity and,
on a genome-wide scale, it omits >80% of the calculations, which makes it an order of magnitude faster than the
original algorithm. Differently from the existing software, the MIG++ analyzes the LD between SNPs at any distance,
avoiding restrictions on the maximal block length. The haplotype block partition of the entire HapMap II CEPH dataset
was obtained in 457 hours. By replacing the standard likelihood-based D′ variance estimator with an approximated
estimator, the runtime was further improved. While producing a coarser partition, the approximate method allowed
to obtain the full-genome haplotype block partition of the entire 1000 Genomes Project CEPH dataset in 44 hours,
with no restrictions on allele frequency or long-range correlations. These experiments showed that LD-based
haplotype blocks can span more than one million base-pairs in both HapMap II and 1000 Genomes datasets. An
application to the North American Rheumatoid Arthritis Consortium (NARAC) dataset shows how the MIG++ can
support genome-wide haplotype association studies.

Conclusions: The MIG++ enables to perform LD-based haplotype block recognition on genetic sequences of any
length and density. In the new generation sequencing era, this can help identify haplotypes that carry rare variants of
interest. The low computational requirements open the possibility to include the haplotype block structure into
genome-wide association scans, downstream analyses, and visual interfaces for online genome browsers.

Background
Linkage disequilibrium (LD) is the non-random associa-
tion of alleles at different loci and decays with increas-
ing distance between loci [1]. High LD regions reflect
the presence of chromosomal segments (haplotypes) that
are transmitted from parents to offsprings more often
than expected by chance. LD is traditionally assessed by
the normalized D′ coefficient [2]. The r2 coefficient [3]
is currently more commonly used than D′ to identify

*Correspondence: daniel.taliun@eurac.edu
1Center for Biomedicine, European Academy of Bolzano/Bozen (EURAC),
Bozen-Bolzano, Italy
2Free University of Bozen-Bolzano, Bozen-Bolzano, Italy

independent signals in genome-wide association studies
(GWAS). In this regard, the r2 was also considered in hap-
lotype block recognition algorithms [4,5]. Nevertheless,
the D′ should remain the statistics of choice for LD model-
ing because of its more direct biological interpretation. It
reflects the history of recombination, mutation, and selec-
tion events that cause some chromosomal segments to be
less diverse than others and, therefore, influence the hap-
lotype distribution. Moreover, it has been shown that r2

is not significantly more precise, accurate or efficient than
D′ [6]. The D′ and r2 coefficients capture similar infor-
mation but their range of variation can be very different
[6]. The D′ goes from −1 to +1 and is independent of
the allelic frequencies of the two markers involved. When

© 2014 Taliun et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto: daniel.taliun@eurac.edu
http://creativecommons.org/licenses/by/2.0

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 2 of 18
http://www.biomedcentral.com/1471-2105/15/10

D′ = 0, the two markers are independent (perfect equi-
librium), while |D′| = 1 indicates that no more than
three of the four possible haplotypes are being observed
in the sample (complete disequilibrium). In contrast, the
range of r greatly depends on the allele frequencies and
equals −1 or +1 only when the two markers have the
same allele frequency. In such cases, |r| = 1 indicates
that knowing the allele at one marker allows to determine
the allele at the other marker (perfect disequilibrium).
But when the two markers have very different allele fre-
quencies, the interpretation of r2 becomes difficult. This
is especially relevant with the data generated by the new
sequencing technologies, that allow genotyping markers
over a very wide spectrum of allele frequencies. In such
situations, the r2 may fail to identify the correct relation-
ship between nearby variants. In GWAS, this may lead to
a wrong definition of the identified loci.

Although, in the past, haplotype blocks have been
mainly used to identify tag SNPs [7], a variety of other
applications is possible with currently available data.
Recently, analysis of exome-chip data has shown that
within-gene LD-block distribution can be informative
of the gene function and of the possible relationship
between genes and specific groups of phenotypes [8].
Another application is the genome-wide haplotype associ-
ation scan, which was successful in uncovering risk loci for
coronary artery disease [9], Alzheimer’s disease [10] and
breast cancer [11]. So far, genome-wide haplotype associa-
tion scans have been mostly performed based on fixed- or
variable-width sliding window methods, which systemati-
cally miss haplotypes that are longer than some specified
maximal window widths. An efficient genome-wide hap-
lotype block recognition could help overcome such lim-
itations, thus enhancing the biological interpretation of
the results. In the study of rare variants, where collapsing
methods (mostly based on gene boundaries) are becom-
ing increasingly popular [12], the availability of haplotype
blocks at genome-wide level would allow to collapse vari-
ants based on block boundaries, capturing inter-genic
variants, and avoiding the problem to define the gene
boundaries. Additional applications include downstream
analyses of GWAS, such as pathway-based approaches,
where statistics for multiple SNPs are summarized into
gene-specific P-values, which are then employed for
gene ranking [13]. In pathway-based analyses, SNP-
to-gene mapping is typically based on SNP proximity to
the gene boundaries. With this method, when a region
is gene-dense, it may be problematic to assign SNPs to
a single, specific gene. An LD-based assignment would
overcome this limitation and increase the power of down-
stream analyses [14]. In general, ignoring the LD struc-
ture in downstream analyses of GWAS can result in the
misinterpretation of the findings [15]. Popular genome
browsers, such as the Ensembl [16] or UCSC [17], are

suitable for visualizing the LD distribution over regions
of interest. However, they only allow pairwise LD calcu-
lation between markers at <500 kb distance from each
other and do not provide any LD-block partition. With no
predefined block partition, the visual assessment of such
LD patterns might be influenced by investigator’s subjec-
tivity. On the other hand, the 500 kb distance constraint
may limit the investigation of larger strong-LD regions.
With the availability of pre-calculated, threshold-free LD
blocks, we would overcome both these limitations.

There is extensive literature on haplotype block infer-
ence [18-21], including methods based on probabilistic
graphical models [22]. The latter allow an accurate iden-
tification of SNP clusters, even in situations when SNPs
are not necessarily contiguous. However, due to its sim-
plicity, the most commonly used LD-based algorithm
remains the one proposed by Gabriel et al. [23], which
is implemented in Haploview [24]. The Haploview algo-
rithm is widely used in genetic association studies and
it is included in popular software, such as PLINK [25].
However, with a �(n2) time and memory complexity,
where n is the number of SNPs, the algorithm is applica-
ble only to short genomic segments containing no more
than a few thousand SNPs. Unless runtime and memory
usage are artificially reduced by splitting large segments
into smaller chunks, the algorithm cannot be applied to
densely genotyped segments or genome-wide analyses.

In this paper, we describe how we improved efficiency
and scalability of the Haploview algorithm (1) by adopt-
ing an incremental computation of the haplotype blocks
based on iterative chromosome scans and (2) by estimat-
ing D′ confidence intervals (CIs) using the approximate
variance estimator proposed by Zapata et al. [26]. The
incremental computation strategy led to an algorithm,
termed MIG++, that has �(n) memory complexity and
omits more than 80% of the pairwise LD computations,
while obtaining exactly the same final haplotype block
partition as Haploview. In contrast to Haploview, the
new algorithm can consider pairwise LD between SNPs
at any distance. With MIG++, we performed the hap-
lotype block recognition of the entire HapMap phase II
dataset of CEPH haplotypes. By introducing the approxi-
mate variance estimator, the performance of the MIG++
was further improved and allowed us to perform the block
partition of the entire 1000 Genomes Project dataset of
CEPH haplotypes. To show a practical application of the
obtained genome-wide block partition, we finally com-
pared SNP-based and haplotype block-based association
tests in a GWAS context.

Methods
Haplotype block definition
The haplotype block recognition algorithm proposed by
Gabriel et al. [23] is based on |D′| and its 90% CI, with

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 3 of 18
http://www.biomedcentral.com/1471-2105/15/10

CL and CU being the lower and upper bounds of the
CI, respectively. SNP pairs are classified as follows: (1)
in strong LD if CL ≥ 0.7 and CU ≥ 0.98; (2) showing
strong evidence of historical recombination (strong EHR)
if CU < 0.9; (3) non-informative, otherwise. Informative
pairs are those satisfying conditions (1) or (2). A haplotype
block was then defined as follows:

Definition 1. (Haplotype Block). Let C = 〈g1, . . . , gn〉 be
a chromosome of n SNPs, G = 〈gi, . . . , gj〉 a region of adja-
cent SNPs in C, l the number of strong LD SNP pairs in G,
and r the number of strong EHR SNP pairs in G. Then, G is
a haplotype block if

(a) the two outermost SNPs, gi and gj, are in strong LD,
and

(b) there is at least a proportion d of informative pairs
that are in strong LD, i.e.: l/(l + r) ≥ d.

In their original work, Gabriel et al. [23] set d = 0.95
after investigating the fractions of strong LD SNP pairs
in genomic regions of different length and in different
populations.

The Haploview algorithm [24] performs a haplotype
block partition in two steps: (1) all regions satisfying
Definition 1 (a) are collected in a set of candidate hap-
lotype blocks; (2) from this set of candidates, a subset
of non-overlapping regions that satisfy Definition 1 (b)
is selected. In the first step, the entire chromosome is
scanned and, for every SNP pair, the |D′| CI is computed
and stored in an n × n matrix. The matrix is then tra-
versed to identify the pairs that satisfy Definition 1 (a).
These pairs mark regions of different length that are can-
didates to become haplotype blocks. In the second step,
the candidate regions are sorted by decreasing length and
processed starting with the largest one. If a region satis-
fies Definition 1 (b), it is classified as a haplotype block,
and all other overlapping candidate regions are discarded.
Regions not satisfying Definition 1 (b) are skipped. This
process continues with the next largest candidate region,
until the candidate set is completely processed and the list
of haplotype blocks is complete.

The overall complexity of the algorithm is mainly deter-
mined by the first step. More specifically, the �(n2) time
and memory complexity is due to the computation and
maintenance of the n × n CI matrix. For this reason, we
concentrated our improvements on the first step.

Incremental computation of haplotype blocks
The core ideas of our optimizations are to compute haplo-
type blocks incrementally and to omit, as soon as possible,
regions that cannot be extended to larger blocks due to
an insufficient proportion of strong LD SNP pairs. In this

way, we avoid both unnecessary computations and the
storage of an n × n CI matrix. The incremental haplotype
block computation is based on the concepts of a SNP-pair
weight and a region weight described below.

Definition 2. (SNP-pair weight). Let C and d be as
defined in Definition 1. For a given pair of SNPs gi and gj,
the SNP-pair weight, w(i, j), is defined as follows:

w(i, j) =

⎧⎪⎨
⎪⎩

1 − d if gi and gj are in strong LD,
−d if gi and gj show strong EHR,
0 otherwise.

Definition 3. (Region weight). Let G be as defined in
Definition 1. The region weight of G, w̄(i, j), is defined as
the sum of all SNP-pair weights in G:

w̄(i, j) =
j∑

v=i+1

v∑
u=i

w (u, v).

The following theorem defines a haplotype block based
on the region weight.

Theorem 1. Let G be as defined in Definition 1. G is a
haplotype block if w (i, j) = 1 − d and w̄(i, j) ≥ 0.

Proof. From Definition 2, if SNPs gi and gj are in
strong LD, then w (i, j) = 1 − d. Therefore, Definition 1 (a)
is satisfied. G contains S = ∑j

v=i+1
∑v

u=i 1 possi-
ble SNP pairs, of which l are in strong LD, r show
strong EHR, and the remaining ones are non-informative.
From Definitions 2 and 3, it follows that w̄(i, j) =∑j

v=i+1
∑v

u=i w (u, v) = l(1−d)+ r(−d)+ (S − l − r)·0 =
l−d(l+r). If w̄(i, j) ≥ 0, then l−d(l+r) ≥ 0 =⇒ l/(l+r) ≥
d. Therefore, Definition 1 (b) is also satisfied.

Theorem 1 is the basis for the incremental haplotype
block reconstruction, which is the core of our optimiza-
tions. In the following, we present three gradual improve-
ments of the Haploview algorithm: a memory-efficient
implementation based on the Gabriel et al. [23] defini-
tion (MIG); MIG with additional search space pruning
(MIG+); and MIG+ with iterative chromosomal process-
ing (MIG++). Theorem 1 ensures that all three algorithms
produce block partitions that are identical to the original
Haploview results.

The MIG algorithm
For a given chromosomal segment C containing n SNPs,
the maintenance of an n × n matrix containing all the |D′|
CIs can be avoided by storing n region weights in a uni-
dimensional vector Wn×1. In each element of W, W [i], we
store the weight of a chromosomal region that starts at

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 4 of 18
http://www.biomedcentral.com/1471-2105/15/10

SNP gi. When the region is enlarged by including addi-
tional SNPs to the right of gi, the weight W [i] is updated
accordingly. This procedure, illustrated in Figure 1, begins
with setting all the weights to 0. At the initial stage,
the vector W represents all one-SNP regions. Then, the
region starting at SNP g1 is enlarged by including the next
SNP, g2. Therefore, starting from g2, chromosome C is
processed one SNP after the other, from left to right.
For a SNP gj, with j ≥ 2, all SNP pair weights w(i, j),
i = j − 1, . . . , 1, are computed and added up as s =
w(j − 1, j) + · · · + w (i, j).

s and W [i] are updated for every computed weight
w(i, j). Before the update, s = w(j − 1, j) + · · · + w(i − 1, j)
and W [i] contains the region weight w̄(i, j − 1), which was
already computed for the previous SNP gj−1. Then, s is
incremented by w(i, j) and W [i] is incremented by the new
value of s. W [i] now represents the region weight w̄(i, j),
i.e., w̄(i, j) = w̄(i, j − 1) + w(j − 1, j) + · · · + w(i, j). When-
ever w(i, j) = 1 − d and w̄(i, j) ≥ 0, Theorem 1 is satisfied
and the region 〈gi, . . . , gj〉 is added to the set of candidate
haplotype blocks. This procedure is repeated with the next
SNP, gj+1. An example of the first three computational
steps is given in Figure 2. The pseudocode is provided in
Algorithm A.1 (Additional file 1).

MIG reduces the memory complexity from �(n2) to
�(n). Moreover, instead of identifying candidate regions
that satisfy only Definition 1 (a) (as in Haploview), MIG
checks immediately both conditions (a) and (b). This
yields a smaller set of candidate blocks, and therefore indi-
rectly speeds up also the second step of the Haploview
algorithm.

The MIG+ algorithm
While MIG drastically reduces the memory requirements
by avoiding the maintenance of the CI matrix, it still
computes weights for all SNP pairs, totaling n(n − 1)/2

computations as in Haploview. To omit unnecessary com-
putations, we apply a search space pruning to the MIG
algorithm to identify regions that cannot be further
extended to form a haplotype block. The pseudocode is
shown in Algorithm A.2 (Additional file 1).

Instead of computing weights for all pairs of SNPs,
only weights w(j − 1, j), . . . , w(b, j) are computed, where
b = min({i | 1 ≤ i < j ∧ w̄max(i, j) ≥ 0}) and
w̄max(i, j) = max{w̄(i, k) | j < k ≤ n}. The function
w̄max(i, j) is an upper bound for the weight of all regions
〈gi, . . . , gj, . . . , gk〉 that start at gi and end after gj, i.e., those
extending beyond the region 〈gi, . . . , gj〉. If w̄max(i, j) < 0
for some i, none of the regions 〈gi, . . . , gk〉 can satisfy
Definition 1 (b). The smallest i, that can be a poten-
tial starting point of a region with a positive weight, can
therefore be set as breakpoint b. Regions starting left of
b and stopping right of j receive negative weights and are
discarded (Figure 3, left panel).

The upper bound, w̄max(i, j), is estimated assuming that
all unprocessed SNPs to the right of gj are in strong LD
with each other and with all SNPs in the region 〈gi, . . . , gj〉.
Then, w̄(i, k) ≤ w̄(i, j) + (1 − d) · S, where w̄(i, j) is already
computed and S = ((j−i+1)+(k−i))(k−j)/2 is the num-
ber of unprocessed SNP pairs. Since S is largest for the
longest region 〈gi, . . . , gn〉, we have max{w̄(i, k) | k > j} ≤
w̄(i, j) + (1 − d) · ((j − i + 1) + (n − i))(n − j)/2, and the
estimated upper bound w̄max(i, j) is defined as follows:

w̄max(i, j) = w̄(i, j)+(1−d)·((j−i+1)+(n−i))(n−j)/2.

The MIG+ algorithm performs at most λn(n − 1)/2
computations, where λ, 1 − d ≤ λ ≤ 1, depends on
the data. The worst case of λ = 1 occurs only in the
unlikely situation when a few very large blocks span an
entire chromosome.

Figure 1 Processing a chromosome with the MIG algorithm. A chromosome is processed from left to right, and gj is the current SNP. Values in
W [i] correspond to the region weights w̄(i, j) of 〈gi , . . . , gj〉. s accumulates SNP-pair weights w(j − 1, j), . . . , w(i, j).

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 5 of 18
http://www.biomedcentral.com/1471-2105/15/10

Figure 2 The first three computational steps of the MIG algorithm. The vector W and the variable s are initialized to 0. The processing starts at
g2 with the analysis of the region 〈g1, g2〉. The SNP-pair weight w(1, 2) is computed and added to s. Then, the region weight w̄(1, 2) is incrementally
computed as W[1] +s and stored in W[1] (by replacing the old value). Next, SNP g3 is processed. After initializing s = 0, weight w(2, 3) is computed
and stored in s. w̄(2, 3) is incrementally determined as W[2] +s, and stored in W[2]. Then, weight w(1, 3) is computed, and
w̄(1, 3) = w̄(1, 2) + w(2, 3) + w(1, 3) = W[1] +s. The next SNP to the right, g4, is processed in a similar way.

The MIG++ algorithm
A limitation of the MIG+ algorithm is its blindness about
the unprocessed area to the right of the current SNP
gj. Assuming strong LD for all SNP pairs in this area
results in a conservative upper bound, w̄max(i, j), for the
region weights. An additional optimization step allows to
obtain a more precise estimate of w̄max(i, j) and further
prunes unnecessary computations. The pseudocode of the
modified algorithm, MIG++, is given in Algorithm A.3
(Additional file 1).

The improved algorithm is an iterative procedure that,
at each iteration, scans the chromosome from left to right
and computes the weights only for a limited number of
SNP pairs. For a SNP gj, the SNP pairs considered in
an iteration are restricted to a window of size win: only
the weights w(j−1, j), . . . , w(t, j) are computed, where t =
max({b, j−win}) and 1 ≤ win ≤ n (Figure 3, right panel).
At each new iteration, the window size is increased by
a number of SNPs equal to win. Therefore, the number
of computed SNP-pair weights increases proportionally.

Figure 3 Processing a chromosome with MIG+ and MIG++. w̄max(i, j) is computed taking into account the SNP-pair weights computed at the
previous stages (colored in gray). MIG+ : since w̄max(i, j) < 0 for any region that starts before the SNP gb and ends after the SNP gj , then the SNP-pair
weights within the hatched area are omitted from computation. MIG++ : the SNP-pair weights within the hatched area are omitted from
computation if w̄max(i, j) < 0 for any region that starts before the SNP gt and ends after the SNP gj , or gt is out of the window win (in the latter case
the omitted SNP-pair weights may be used in the next iteration).

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 6 of 18
http://www.biomedcentral.com/1471-2105/15/10

This allows a more precise estimation of the upper bounds
for the region weights with every new iteration.

By considering all SNP-pair weights computed in all
previous iterations for the estimation of the upper bound,
w̄max(i, j), the algorithm requires linear time for each
individual SNP pair to sum up all weights inside the cor-
responding region. We use a computationally cheaper
constant-time solution, though it may lead to a less accu-
rate estimation. Since w̄(i, k) ≤ w̄(i, j) + w̄(1, k) − w̄(1, j),
we have max{w̄(i, k) | k > j} ≤ w̄(i, j) + max{w̄(1, k) |
k > j} − w̄(1, j). An upper bound w̄max(i, j) can then be
computed as follows:

w̄max(i, j) = w̄(i, j) + max{w̄(1, k) | k > j} − w̄(1, j).

max{w̄(1, k) | k > j} is computed in linear time after every
scan of the chromosome, whereas w̄(1, j) is computed
in constant time. Thus, the computation of the upper
bound w̄max(i, j) for each individual SNP pair requires
only constant time.

When win = n, MIG++ is identical to MIG+. When
win = 1, the number of iterations becomes too large, in-
troducing a significant computational burden. We pro-
pose to set win = 	(n − 1)(1 − d)/2
, that corresponds to
1 − d percent of all SNP pairs, which is the minimal frac-
tion of SNP pairs that must be considered before one can
be sure that an n-SNP segment is not a haplotype block.

The MIG++ performs at most λn(n − 1)/2 computa-
tions, where λ, 1 − d ≤ λ ≤ 1, depends on the data.
However, the value of λ obtained with the MIG++ algo-
rithm is expected to be always smaller than that from the
MIG+ algorithm, because of the more precise estimation
of w̄max(i, j).

Alternative methods to estimate the D′ CI
A critical step of the Gabriel et al. [23] approach is
the estimation of the D′ CI. In a genome-wide context,
this calculation can be repeated hundreds of millions of
times. In Haploview, the CIs are obtained by means of
the likelihood-based procedure proposed by Wall and
Pritchard [27], which requires from 100 to 1,000 itera-
tions. This method can be replaced with a computation-
ally cheaper solution, based on an approximated estimator
of the D′ variance, as proposed by Zapata et al. [26].
This solution would make the whole block recognition
algorithm significantly faster.

The wall and pritchard (WP) method
The true allele frequencies of each SNP are assumed to
be equal to the observed allele frequencies. The like-
lihood of the data in the four-fold table obtained by
crossing any SNP pair, conditional to the |D′| value, can
be expressed as l = P(data||D′|). l is evaluated at each
value of |D′| = 0.001 × p, with p = 0, 1, . . . , 1000. CL
is defined as the largest value of |D′| such that

∑p−1
i=0 l(i)/

∑1000
i=0 l(i) ≤ α, where α is the significance

level. Similarly, CU is defined as the smallest value of |D′|
such that

∑1000
i=p+1 l(i)/

∑1000
i=0 l(i) ≤ α.

The approximate variance (AV) method
Consider two SNPs, u and v, with alleles {u1, u2} and
{v1, v2}, respectively. Let nuivj and fuivj denote, respectively,
the absolute and relative frequencies of the four possi-
ble haplotypes, uivj(i, j ∈ {1, 2}), with fui and fvj being
the marginal frequencies of the two SNPs. In total, N =∑

nuivj haplotypes are observed. Zapata et al. [26] showed
that the variance of D′ can be approximated as follows:

V (D′) ≈
((

1 − |D′|) × (
N · V (D) − |D′|Dmax

× (fu1 f1 + fu2 f2 − 2|D|))

+ |D′|f3(1 − f3)
)

/
(
N · D2

max
)

,

where D′ = D/Dmax; D = fu1v1 − fu1 fv1 ; Dmax is
min{ fu1(1 − fv1), (1 − fu1)fv1} when D > 0 or min
{ fu1 fv1 , (1− fu1)(1− fv1)} when D < 0; f1 is fv1 when D′ > 0
or fv2 when D′ < 0; f2 is fv2 when D′ > 0 or fv1 when
D′ < 0; f3 is fu1v1 , fu1v2 , fu2v1 , and fu2v2 when Dmax is fu1 fv1 ,
fu1 fv2 , fu2 fv1 , and fu2 fv2 , respectively; and

V (D) ≈ (
fu1 fu2 fv1 fv2 + D (fu2 − fu1)(fv2 − fv1) − D2) /N .

When D′ = ±1, then V (D′) = 0. The 1 − α CI of D′
is equal to D′ ± Zα/2

√
V (D′), where Zα/2 is the 1 − α/2

percentile of the standard normal distribution.

Experimental evaluation
The experimental evaluation was based on the phased
CEPH genotypes included in the HapMap phase II
(HapMapII) [28] and the 1000 Genomes Project phase 1
release 3 (1000G) [29] databases. The HapMapII dataset
included 2,543,857 SNPs from 120 haplotypes (60 indi-
viduals) and the 1000G dataset included 10,858,788 SNPs
from 170 haplotypes (85 individuals).

To compare the new algorithms to the standard
Haploview, in terms of runtime and memory usage, the
ideal solution would have been that of randomly sampling
regions with different characteristics from the HapMapII
or 1000G datasets. However, the Haploview algorithm was
so computationally expensive that it prohibited to con-
sider a sufficiently large number of random regions and,
therefore, to obtain a representative sample of all pos-
sible scenarios over the whole genome. For this reason,
we selected the regions such that the most extreme sce-
narios, in terms of median SNP minor allele frequency
(MAF) and median inter-SNP distance, were covered. To
identify such representative regions, we performed the
systematic scan of all SNPs in the genome using a slid-
ing window of 1,000 SNPs, after removing chromosomal
centromeres and the HLA region. For each sliding region,

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 7 of 18
http://www.biomedcentral.com/1471-2105/15/10

the median MAF and inter-SNP distance were recorded
(Additional file 1, Figure A.1). All regions were then rep-
resented in a two-dimensional Euclidean space, where the
normalized inter-SNP distance was plotted against the
normalized median MAF (Additional file 1, Figure A.2).
A total of nine regions were chosen for the experiments:
the eight regions located on the outermost boundaries of
the Euclidean space and the region closest to the center of
the space. These regions represent scenarios with extreme
and moderate median MAF and median inter-SNP dis-
tance. The procedure was repeated using larger sliding
windows of 5,000 to 30,000 SNPs. If not stated otherwise,
in the experimental results we report median values over
the nine regions for every different window size.

The block partitions obtained with the WP and AV
methods for D′ CI estimation were compared in terms
of total number of blocks, median number of SNPs per
block, proportion of SNPs clustered into blocks, and
median within block haplotype diversity. Haplotype diver-
sity [19,20] is defined as the ratio between the number of
common haplotypes and the total number of haplotypes
within a block. Common haplotypes are those occurring
more than once. The haplotype diversity index ranges
from 0 (complete diversity) to 1 (no diversity).

The three MIG algorithms were implemented in C++.
To guarantee a fair comparison, the original Java imple-
mentation of the Haploview algorithm was rewritten in
C++, too. By default, Haploview considers only SNP pairs
within a maximal distance of 500Kbp. We removed this
constraint because it could affect the block partitions of
very wide regions. For the WP method, we set the number
of likelihood estimation points to 1,000 (100 in the orig-
inal Haploview implementation). We didn’t consider the
population specific two-, three-, and four-marker rules,
proposed by Gabriel et al. [23] when very short regions
are processed, because they have no impact on the com-
putational efficiency of the algorithms. All experiments
were run on a machine with an Opteron 8356 Quad Core
(2.3GHz) CPU.

Genome-wide association study of rheumatoid arthritis
We applied our haplotype block partitioning algorithm
to the genome-wide association study of the North
American Rheumatoid Arthritis Consortium (NARAC)
dataset. Data consisted of 868 cases and 1,194 controls.
The samples were genotyped at 544,917 autosomal and
sex chromosome SNPs. Quality check was performed
with PLINK 1.07 [25]: we excluded 5,422 SNPs with a
call rate of <90%, 11,327 SNPs with a minor allele fre-
quency of <0.001, and 898 SNPs because of significant
deviation from Hardy-Weinberg equilibrium in controls
(p-value ≤ 10−6). No samples were excluded because of
low call rate (<90%); 2 cases and 5 controls were removed
because of sex mismatch; 1 case and 8 controls were

additionally excluded after population stratification test
based on principal component analysis performed with
EIGENSOFT 5.0.1 [30]. After the quality control, 514,539
autosomal SNPs and 2,046 samples were available for
analyses.

Haplotypes were phased using SHAPEIT version 2 [31].
To achieve good accuracy, we set 400 conditioning states
per SNP. Recombination rates were taken from HapMap
phase II build 36 and effective population size was set
to 11,418 (as suggested for CEU populations). The esti-
mated haplotypes were submitted to MIG++ and pro-
cessed with the WP and AV methods. We obtained 98,979
WP blocks, covering 445,832 SNPs, with 68,707 single-
ton SNPs outside of any block. The AV method iden-
tified 97,816 blocks, covering 446,170 SNPs, and 68,369
singleton SNPs.

The genome-wide association scan was based on a logis-
tic regression model adjusted for sex and the top 10
eigenvectors obtained from EIGENSOFT 5.0.1 [30]. The
association between disease status and individual SNPs or
haplotype blocks was tested with a likelihood ratio test
using PLINK 1.0.7 [25] with the logistic-genotypic and
omnibus options, respectively. Within each block, hap-
lotypes with frequency of <0.01 were collapsed together
to preserve power. Singleton SNPs outside blocks were
treated as in the SNP-based analysis, therefore produc-
ing analogous results. Genomic control (GC) correction
was applied to both SNP- and block-based GWAS results.
Bonferroni-corrected significance thresholds were set to
2.98 × 10−7 for analysis based on the WP block parti-
tion (i.e. 0.05 divided by the sum of 98,979 WP blocks and
68,707 singleton SNPs), 3.01 × 10−7 for the analysis based
on the AV method (i.e. 0.05 divided by 97,816 AV blocks
plus 68,369 singleton SNPs), and 9.17 × 10−8 (i.e. 0.05 /
514,539) for the individual SNP analysis.

Results
Runtime and memory with the WP method
Figure 4 shows runtime and memory performance of
Haploview and the three MIG algorithms based on the
WP method, when applied to the 1000G dataset. Since
both Haploview and MIG perform n(n−1)/2 computa-
tions, it was expected to see identical runtime: both of
them took 80 hours to process regions of 30,000 SNPs.
However, MIG used three orders of magnitude less mem-
ory than Haploview (3 MB vs. 7 GB). The runtime was
significantly reduced with MIG+ (27 hours) and even
further with MIG++ (14 hours). The runtime difference
between algorithms increased with the region size (num-
ber of SNPs). Memory usage was identical for MIG and
MIG+, whereas MIG++ required slightly more memory
to store the computational status between iterative region
scans. Similar results were obtained on the HapMapII
dataset (results not shown).

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 8 of 18
http://www.biomedcentral.com/1471-2105/15/10

Figure 4 Performance of the algorithms with the WP method, when applied to the 1000G dataset. MIG+ and MIG++ show substantially
better runtime than MIG and Haploview. All versions of the MIG algorithm significantly outperforms Haploview in memory usage and, therefore, are
able to handle densely genotyped and genome-wide data.

The MIG++ omitted more unnecessary computations
than MIG+, which is reflected by the smaller λ coeffi-
cient in both HapMapII and 1000G datasets (Figure 5).
The λ values decreased with increasing number of SNPs
in the region. When increasing the region size, after a
rapid decline for small regions, λ reached stable values
with both MIG+ and MIG++ algorithms and in both
datasets. This behavior relates to the LD decay with dis-
tance. In regions of 30,000 SNPs in the 1000G dataset,
the MIG++ algorithm was able to omit ∼80% of the cal-
culations (λ∼0.20), while MIG+ could omit ∼60% of the
calculations (λ∼0.40). An example of the reduction of
the number of calculations is given in Figure 6, where
MIG+ and MIG++ are compared to Haploview, which is
represented by the entire triangle.

Runtime and memory with the AV method
When we introduced the AV method to estimate the D′
CI, we observed a drastic reduction of the computational
time of the MIG algorithm. With the AV approach, the
median runtime needed to analyze sequences of 10,000
SNPs in the 1000G dataset was of 2 minutes. The same
analysis took a median of 8.7 hours with the WP method
(Figure 7, left panel). Proportional time reduction was
observed for MIG+ and MIG++. Similar results were
obtained in the HapMapII dataset (results not shown).

We observed that the introduction of the AV method
caused a slight increase of the λ coefficient (Figure 8). This
is because, with the AV method, more SNP pairs are classi-
fied to be in strong LD. This causes an increase of the num-
ber of possible configurations to be checked and results
in a larger set of candidate haplotype blocks. With the AV
method, the MIG algorithms identified tens of millions of
candidate haplotype blocks (Additional file 1, Figure A.3).
The number of candidate blocks was even larger when the
AV method was applied directly to Haploview, where can-
didate blocks need to satisfy only Definition 1 (a). This
significantly larger number of candidate blocks explains
the increase in runtime of Haploview when using the AV
method: for regions of 5,000 SNPs in the 1000G dataset,
the median runtime was of 451 hours with the AV against
the 2 hours with the WP method (Figure 7, right panel).

Block Partitions with the WP and AV Methods
The characteristics of the different block partitions
obtained with the WP and AV methods are summarized
in Figure 9. The AV method produced a smaller num-
ber of blocks than the WP method (top panels). The
median number of blocks per region increased along with
the number of SNPs, and it increased faster for the WP
compared to the AV method. Considering the median
number of SNPs per block, the AV method produced

Figure 5 Values of the λ coefficient for MIG+ and MIG+ with the WP method. MIG+ omits more SNP-pair weight computations than MIG+ ,
which is reflected by the smaller λ coefficient.

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 9 of 18
http://www.biomedcentral.com/1471-2105/15/10

Figure 6 LD heatmap of region chr20:31,767,872-33,700,401, which contains 1,000 polymorphic SNPs in the HapMapII dataset. The area
under the dashed line corresponds to all possible SNP pairs. The computed SNP-pair weights are indicated in red, with higher red intensity
corresponding to higher |D′| values. The non-colored area corresponds to the SNP pairs omitted from computations. The solid line indicates the
final haplotype block partition. It can be observed that, while the final block partition is identical for the two algorithms, more computations have
been omitted by MIG+ than MIG+ .

larger blocks than the WP method (middle panels). For
very short regions (e.g., 1,000 SNPs) both methods gen-
erally induced larger blocks. This is because such small
regions might be completely covered by a single or very
few haplotype blocks. The median number of SNPs per
block decreased along with the increase of the length of
the region considered. Overall, the AV method assigned a
higher percentage of SNPs to blocks compared to the WP
method, which left more singleton SNPs outside of any
block (bottom panels). In the analysis of the HapMapII
dataset, 98.4% of the SNPs were clustered within blocks
with the AV method and 90.5% with the WP method. In
the analysis of the 1000G dataset, the percentages were of
99.7 and 86.8, respectively.

We observed that 100% of the blocks identified by the
WP method were overlapping blocks identified by the
AV method. More specifically, 80% to 90% of the blocks
based on the WP method were completely included within
blocks based on the AV method (Figure 10). The remain-
ing 10% to 20% of WP blocks whose borders were cross-
ing borders of AV blocks, could be entirely attributed
to the selection mechanism in the step (2) of the algo-
rithm, when larger candidate blocks are prioritized over

the shorter ones. In fact, when, instead of looking at the
final block partition, we focused on the intermediate set
of candidate blocks before the final pruning, we observed
that 100% of the candidates from the WP method were
entirely included within the candidate blocks from the AV
method.

Consistently with the findings of larger AV blocks, we
observed a generally higher haplotype diversity in the
partitions obtained with the AV method compared to
the WP method (Figure 11). For instance, when consid-
ering regions of 30,000 SNPs in the 1000G dataset, we
observed median within-block haplotype diversity indices
of 0.876 and 0.982 with the AV and WP methods, respec-
tively. Slightly higher diversity indices were observed in
the HapMapII dataset: 0.975 and 0.992 for the AV and
WP methods, respectively. The within-block diversity was
more variable in short than in long regions because, as
observed above, when regions are too small, then it might
be difficult to identify more than one block.

Whole genome haplotype block recognition
The linear memory complexity and the significant reduc-
tion of the number of computations allowed us to run

Figure 7 Impact of the WP and AV methods on runtime, when applied to the 1000G dataset. The AV method had negative impact on
Haploview runtime: the processing was significantly slower compared to the WP method. However, when combined with MIG, the AV method
reduced the computational time from hours to seconds, compared to the WP method.

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 10 of 18
http://www.biomedcentral.com/1471-2105/15/10

Figure 8 Values of the λ coefficient for MIG+: comparison between WP and AV methods. When using the AV method, more SNP-pair weights
were computed and, therefore, the λ coefficient was greater compared to that from the WP method. However, for its higher the runtime efficiency,
the AV method still allowed to significantly decrease the computational time compared to the WP method.

MIG++ on a genome-wide scale. We could run MIG++
on the full HapMapII dataset using both the WP and
AV methods for D′ CI derivation. Using the more effi-
cient AV method, we were also able to run a genome-wide
haplotype block partition of the complete 1000G dataset.
The runtime for the two datasets is shown in Figure 12.
For HapMapII, the maximal runtime was of 1 hour when

using the AV method and of 457 hours when using the
WP method. In both cases, the maximal runtime was
observed for chromosome 2, which contained 220,833
SNPs. The median λ value across all chromosomes was
0.129 (min = 0.125, max = 0.133) for the AV method and
0.103 (min = 0.099, max = 0.110) for the WP method.
For the 1000G dataset, the maximal runtime using the

Figure 9 Haplotype block characteristics of WP and AV methods. Top panels show the number of haplotype blocks per region, middle panels
show the median number of SNPs per block, and bottom panels show the overall percentage of SNPs in haplotype blocks.

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 11 of 18
http://www.biomedcentral.com/1471-2105/15/10

Figure 10 Number of blocks detected with the WP method that are completely inside blocks detected with the AV method. Independently
of the region size, from 80% to 90% of haplotype blocks detected with the WP method were completely inside haplotype blocks detected with the
AV method.

AV method was of 44 hours on chromosome 2, which
contained 913,923 SNPs. The median λ value across all
chromosomes was 0.216 (min = 0.206, max = 0.224). The
maximal memory usage was very low and didn’t exceed
151 MB and 3.6 GB for the HapMapII and 1000G datasets,
respectively.

Figure 13 shows the number of haplotype blocks per
chromosome. In the HapMapII dataset, the largest num-
ber of blocks occurred in chromosome 2: 14,164 blocks
with the WP method and 7,482 blocks with the AV
method. The number of blocks detected with the WP
method was always exceeding the number of blocks
detected with the AV method. For some chromosomes,
the partitions obtained by the WP method contained
almost twice as many blocks as the partitions obtained by
the AV method. When using the AV method, we detected
a very similar number of blocks in the HapMapII and
1000G datasets. Across all chromosomes, 100% of the
blocks detected with the WP method were overlapping
blocks detected with the AV method. The median per-
centage of the WP blocks completely covered by the AV
blocks was 0.797 (min = 0.773, max = 0.813).

The characteristics of the whole-genome block parti-
tions obtained with the AV and WP methods are sum-
marized in Table 1. The results were similar to the
experiments on smaller regions. In the HapMapII dataset,
fewer and larger blocks were detected with the AV method
than with the WP method. With the AV method, a
higher percentage of SNPs was assigned to blocks and
the within-block haplotype diversity index was slightly
smaller. However, the haplotype diversity was close to
one for both methods, indicating that in both cases
the number of possible haplotypes should be very lim-
ited. When applying the AV-based MIG++ algorithm to
the 1000G dataset, we observed a higher percentage of
SNPs in blocks and a slightly smaller diversity index,
which is explained by the higher number of SNPs per
block.

For both HapMapII and 1000G datasets, the largest
blocks were located over the chromosomal centro-
meres and spanned tens of millions of base-pairs (bp)
(Additional file 1, Figure A.4). Some of these very large
blocks were characterized by very low and irregular SNP
density. After filtering out these exceptionally large blocks,

Figure 11 Within-block haplotype diversity with WP and AV methods. AV method-based haplotype blocks showed higher haplotype diversity
compared to WP method-based haplotype blocks. For regions with more than 10,000 SNPs, the median haplotype diversity within blocks was low
(>0.8).

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 12 of 18
http://www.biomedcentral.com/1471-2105/15/10

Figure 12 Runtime of the MIG++ algorithm on whole-genome data.

the largest block identified by the WP-based MIG++
algorithm in the HapMapII dataset was located in chro-
mosome 1, it was 1,017,844 bp long and included 398
SNPs. When using the AV method, the largest block was
located in chromosome 12, it was 1,190,412 bp long and
included 335 SNPs. In the 1000G dataset, the largest block
detected by the AV-based MIG++ was located in chro-
mosome 1, it was 1,361,781 bp long and included 2,896
SNPs.

Genome-wide association study of rheumatoid arthritis
After the GWAS, we observed a genomic inflation factor
λ of 1.015 for the SNP-based analysis, 1.082 for the AV
block-based analysis, and 1.077 for the WP block-based
analysis. After GC correction, in the SNP-based analy-
sis, 116 SNPs were genome-wide significant. Of them,
106 were located inside 25 AV blocks and 110 inside 27
WP blocks. From the AV and WP block-based analyses,
we observed 29 and 33 genome-wide significant blocks,
respectively. Twenty-three of such blocks were the same
between the two methods. The results from the SNP-
and block-based analyses are compared in Table 2. The

first part of the table shows the 20 genome-wide signif-
icant loci detected by both SNP- and block-based anal-
yses. In most cases, the AV and WP methods brought
to identical results. One exception was the 4th locus,
where two adjacent AV blocks including 6 and 14 SNPs,
respectively, corresponded to two adjacent WP blocks of
7 and 13 SNPs, respectively. That is, one SNP shifted
from one block to another. In terms of significance,
results were practically unchanged. A second exception
was locus 13, were a block was detected only with the
WP but not with the AV method. The last two excep-
tions were loci number 15 and 19. In both cases, an AV
block was split into two WP blocks. The second part
of Table 2 shows a number of loci that wouldn’t have
been detected with a SNP-based GWAS, but were uncov-
ered by at least one of the two block partition methods.
The AV and WP methods produced similar results. We
didn’t observe any clear advantage of one method com-
pared to the other. The last section of the table shows
that there was a small number of loci uncovered only
by the SNP-based analysis. For these loci, the p-values
from the block-based analyses were often close to the

Figure 13 Number of haplotype blocks in the HapMapII and 1000G datasets when the D′ CIs are estimated with the WP and AV methods.

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 13 of 18
http://www.biomedcentral.com/1471-2105/15/10

Table 1 Characteristics of the whole-genome haplotype block partitions obtained with the WP and AV methods

WP AV

Median Min Max Median Min Max

HapMapII

No. of SNPs per Block 6 5 7 12 7 14

% of SNPs in Blocks 89.6 85.8 91.4 98.5 97.2 98.8

Diversity in Block 0.992 0.992 0.992 0.975 0.975 0.983

1000G

No. of SNPs per Block – – – 25 13 34

% of SNPs in Blocks – – – 99.4 99.1 99.6

Diversity in Block – – – 0.944 0.929 0.971

significance level, with the exception of the last two
loci.

Discussion
We propose an algorithm for haplotype block partition-
ing, termed MIG++, which represents a scalable imple-
mentation of the Haploview algorithm and produces
the same results in a much shorter time and using a
substantially smaller amount of main memory. MIG++
can process large DNA regions using only a handful of
megabytes of main memory. In such situations, Haploview
would require gigabytes. In terms of runtime, the MIG++
is several times faster than Haploview. We also demon-
strated that more than 80% of calculations were not nec-
essary for the purpose of block recognition and could be
omitted, thus achieving a higher efficiency. The improved
performance of the algorithm makes it possible to process
very large chromosomal segments. When the approxi-
mated variance estimator, proposed by Zapata et al. [26],
is used to estimate the D′ CI, the MIG++ can be applied
genome-wide and process high density datasets, such as
the 1000G, in a very short time.

With its very small memory requirements, the MIG++
can process any number of SNPs. This allowed us to avoid
Haploview’s restrictions on the maximal haplotype block
length (the default limitation is 500Kbp) and to consider
the LD between SNPs at any distance. Our whole-genome
experiments showed that the haplotype blocks, based on
the Gabriel et al. [23] definition, can span more than
500Kbp and can extend over several millions of base pairs.
This empirical result suggests that limiting the maximal
block length may alter the block partition. The alteration
can be substantial because the algorithm prioritizes the
largest blocks. The smallest blocks are retained only when
they do not overlap with the largest ones. For this rea-
son, to constrain the block length within pre-specified
limits may induce a cascade of effects and may affect the
final partition of very large segments. This is relevant, for

example, when assessing the LD pattern of loci selected
from GWAS, with the aim of identifying genes related
to the lead SNP. In such cases, different partitions could
imply different genes to be selected for follow-up.

With the MIG++ algorithm, we were able to run a hap-
lotype block recognition of the entire HapMapII dataset.
However, it still required an unacceptably long time to
apply the algorithm to larger and denser genomes, such
as the 1000G dataset. This limitation is due to the use of
the Wall and Pritchard [27] method, which models the
|D′| likelihood and derives the |D′| CIs using an iterative
procedure. In contrast, if the D′ variance is estimated
with the approximated formula suggested by Zapata et
al. [26], it is possible to derive the D′ CI with a single
mathematical calculation. Thanks to this computationally
less demanding solution, we could perform a complete
block recognition of the HapMapII dataset in 1 hour
and to process the entire 1000G dataset in 44 hours.
To the best of our knowledge, this is the first time that
such a marker-dense genome has been partitioned with
a threshold-free approach. Previously, block partition of
the whole genome could only be achieved by dividing
chromosomes into small chunks or by restricting com-
putations using sliding window approaches. Such choices
may introduce artificial breaks to the real haplotype
structure.

It is important to note that the block partition obtained
with an algorithm based on the AV method is not fully
equivalent to a partition obtained based on the WP
method. For large sample sizes and for common variants,
the estimated variance of the D′ statistic is going to be sim-
ilar, whichever method is used. However, when crossing a
common with a rare SNP, it often happens that one of the
four possible haplotypes is not present in the sample. In
such situations, it is very likely that the D′ CI shrinks to 1
because the approximated variance is zero. In this way, the
SNP pair is systematically classified as a strong LD pair. As
a result, SNPs with rare alleles are easily grouped together

Taliun
etal.BM

C
Bioinform

atics
2014,15:10

Page
14

of18
http

://w
w

w
.b

iom
edcentral.com

/1471-2105/15/10

Table 2 Results from the rheumatoid arthritis GWAS: comparison between AV and WP haplotype blocks and single-SNP analyses

Block Top SNP

Locus Partition method Chr:start-end # sign. SNPs # SNPs P-value Name P-value

Genome-wide significant blocks that include genome-wide significant SNPs

1 AV & WP 6:32,055,439-32,182,782 2 15 2.71 × 10−12 rs2239689 1.55 × 10−8

2 AV & WP 6:32,204,222-32,259,421 1 14 1.32 × 10−16 rs3134943 5.41 × 10−8

3 AV & WP 6:32,317,005-32,319,063 2 3 1.25 × 10−8 rs412657 2.17 × 10−10

4 AV 6:32,323,166-32,328,663 4 6 1.99 × 10−15 rs9267992 1.14 × 10−11

AV 6:32,331,236-32,390,832 4 14 2.34 × 10−33 rs6910071 1.92 × 10−32

WP 6:32,323,166-32,331,236 5 7 1.32 × 10−17 rs3130320 7.50 × 10−17

WP 6:32,332,366-32,390,832 3 13 1.38 × 10−33 rs6910071 1.92 × 10−32

5 AV & WP 6:32,397,296-32,445,664 13 24 3.00 × 10−24 rs547077 2.60 × 10−18

6 AV & WP 6:32,454,772-32,471,794 7 9 4.88 × 10−27 rs3817973 5.48 × 10−26

7 AV & WP 6:32,474,399-32,476,065 1 3 2.00 × 10−23 rs3817963 8.55 × 10−23

8 AV & WP 6:32,477,466-32,481,676 1 3 7.75 × 10−21 rs3806156 9.43 × 10−14

9 AV & WP 6:32,483,951-32,491,086 5 8 7.93 × 10−38 rs3763312 7.00 × 10−34

10 AV & WP 6:32,491,201-32,509,057 6 8 5.10 × 10−41 rs2395163 6.14 × 10−37

11 AV & WP 6:32,509,195-32,514,320 6 8 1.80 × 10−37 rs2395175 1.83 × 10−39

12 AV & WP 6:32,519,501-32,521,295 3 3 1.79 × 10−27 rs7192 2.64 × 10−26

13 WP 6:32,522,251-32,535,767 2 2 1.10 × 10−28 rs9268832 4.07 × 10−25

14 AV & WP 6:32,541,145-32,713,862 7 12 2.23 × 10−47 rs660895 2.60 × 10−45

15 AV 6:32,760,295-32,766,057 2 5 4.99 × 10−26 rs9275184 1.49 × 10−18

WP 6:32,735,692-32,762,692 3 4 8.33 × 10−35 rs9275184 1.49 × 10−18

WP 6:32,763,196-32,766,057 1 3 3.33 × 10−23 rs7774434 5.43 × 10−10

16 AV & WP 6:32,766,602-32,785,130 26 37 1.71 × 10−40 rs9275224 1.31 × 10−37

17 AV & WP 6:32,786,977-32,790,115 6 10 9.32 × 10−50 rs9275595 1.97 × 10−28

18 AV & WP 6:32,792,235-32,827,644 2 23 2.94 × 10−19 rs3916765 2.72 × 10−9

19 AV 6:32.912,776-32,912,887 1 2 1.46 × 10−8 rs3819721 5.74 × 10−9

WP 6:32,912,392-32,912,776 1 2 9.89 × 10−10 rs3819721 5.74 × 10−9

WP 6:32,912,887-32,912,912 0 2 7.18 × 10−11 rs241425 7.53 × 10−4

20 AV & WP 9:81,662,684-81,666,969 1 2 2.72 × 10−8 rs7854383 3.23 × 10−8

Taliun
etal.BM

C
Bioinform

atics
2014,15:10

Page
15

of18
http

://w
w

w
.b

iom
edcentral.com

/1471-2105/15/10
Table 2 Results from the rheumatoid arthritis GWAS: comparison between AV and WP haplotype blocks and single-SNP analyses (Continued)

Block Top SNP

Locus Partition method Chr:start-end # sign. SNPs # SNPs P-value Name P-value

Genome-wide significant blocks with no corresponding genome-wide significant SNPs

21 AV & WP 2:219,728,763-219,836,597 0 17 1.57 × 10−7 rs1052483 2.02 × 10−4

22 AV 6:31,723,146-31,726,740 0 3 3.17 × 10−7 rs3130050 5.27 × 10−5

WP 6:31,723,146-31,726,740 0 3 2.98 × 10−7 rs3130050 5.27 × 10−5

23 AV & WP 6:31,728,499-31,777,475 0 10 4.11 × 10−8 rs2280800 1.28 × 10−4

24 AV 6:31,910,520-31,953,964 0 10 8.66 × 10−8 rs9267658 1.22 × 10−5

WP 6:31,885,925-31,945,256 0 8 1.08 × 10−5 rs2075800 3.58 × 10−5

WP 6:31,946,420-31,953,964 0 5 1.73 × 10−6 rs9267658 1.22 × 10−5

25 AV 6:31,958,311-31,959,213 0 2 6.00 × 10−1 rs652888 1.48 × 10−2

AV 6:31,968,316-32,026,839 0 10 1.53 × 10−5 rs1042663 7.47 × 10−7

WP 6:31,959,213-32,026,839 0 11 4.59 × 10−8 rs1042663 7.47 × 10−7

26 AV & WP 6:32,027,809-32,038,441 0 5 1.43 × 10−9 rs437179 2.20 × 10−5

27 AV & WP 6:32,262,976-32,263,559 0 2 8.89 × 10−9 rs204994 1.83 × 10−4

28 AV & WP 6:32,296,361-32,298,006 0 4 1.47 × 10−10 rs3132946 1.51 × 10−7

29 AV & WP 6:32,300,538-32,303,337 0 5 6.87 × 10−10 rs499691 5.62 × 10−4

30 AV 6:32,870,369-32,889,502 0 12 4.33 × 10−10 rs7767167 2.61 × 10−4

WP 6:32,871,088-32,889,502 0 11 3.77 × 10−10 rs7767167 2.61 × 10−4

31 AV 6:32,912,776-32,912,887 1 2 1.46 × 10−8 rs3819721 5.74 × 10−9

WP 6:32,912,392-32,912,776 1 2 9.89 × 10−10 rs3819721 5.74 × 10−9

WP 6:32,912,887-32,912,912 0 2 7.18 × 10−11 rs241425 7.53 × 10−4

32 AV & WP 6:33,012,959-33,069,082 0 21 8.10 × 10−8 rs3135034 5.13 × 10−5

Genome-wide significant SNPs with no corresponding genome-wide significant blocks

33 AV & WP 1:18,189,820-18,200,270 1 8 1.81 × 10−5 rs16861613 5.08 × 10−8

34 AV & WP 6:32,307,122-32,313,088 2 5 2.04 × 10−6 rs9267873 3.98 × 10−8

35 AV 10:112,614,407-112,822,215 1 23 5.73 × 10−7 rs3750619 8.29 × 10−10

WP 10:112,614,407-112,749,598 0 18 3.37 × 10−7 rs3750619 8.29 × 10−10

WP 10:112,754,584-112,822,215 0 5 1.89 × 10−1 rs10787298 1.10 × 10−1

36 AV & WP 17:34,570,514-34,575,487 1 5 1.40 × 10−1 rs593772 5.50 × 10−9

37 AV & WP 17:63,271,780-63,418,511 1 8 3.26 × 10−1 rs7502707 2.02 × 10−8

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 16 of 18
http://www.biomedcentral.com/1471-2105/15/10

into very large blocks, boosting the region coverage and
the median number of SNPs per block. The WP method
is less sensitive to extreme D′ values, and the resulting
blocks are generally shorter. However, we observed that
most (80%) of the haplotype blocks obtained with the WP
method were contained within the larger blocks obtained
with the AV method. That is, the use of the AV method
produced a coarser partition, where AV blocks entirely
contained one or more WP blocks. For this reason, the AV
blocks showed a higher haplotype diversity, in the terms
described by Patil et al. [19] and Zhang et al. [20], than the
WP blocks.

To provide an application of a whole-genome haplo-
type block partition, we analyzed the data from the North
American Rheumatoid Arthritis Consortium (NARAC)
dataset using both block partitions: the one obtained with
the standard WP method and the one obtained with the
AV approach. As observed in previous studies [32,33], the
GWAS results were dominated by the HLA locus on chro-
mosome 6. However, other loci were identified in other
chromosomes. For what concerns the two block parti-
tion methods, the results were very similar, suggesting
that the AV approach might be a convenient way to run
a fast recognition of the haplotype blocks. However, we
recognize that ours was an empirical application based
on half a million genotyped SNPs. Results might be dif-
ferent in a larger context, such as that of a GWAS based
on the 1000 Genomes dataset, where the number of AV
blocks is expected to be much smaller than the num-
ber of WP blocks, and the AV blocks are expected to be
much larger than the WP ones. Our empirical analysis of
the NARAC data also confirmed previous observations
that SNP- and block-based analyses are complementary to
each other [32,34]. In fact, in our analysis some loci were
identified only by the single-SNP analysis, other loci were
identified only by the haplotype-block analysis, and others
by both methods. Thus, genome-wide haplotype associa-
tion scans are not in competition with standard GWAS.
Genome-wide haplotype association scans should be con-
sidered as complementary tools that may help to identify

loci that could be overlooked by methods based on single-
SNP analysis. We also observed that haplotype blocks
may simplify gene annotation. While only one gene, the
HLA-DRA [35], which was reported by previous GWASs,
was directly implied by a genome-wide significant SNP,
four additional previously reported genes were implied by
genome-wide significant blocks: the APOM, HLA-DQA1,
HLA-DRB1, and HLA-DQA2 genes [35].

Conclusions
We have provided an efficient and scalable haplotype
block recognition algorithm, termed MIG++, which
improves the well-known Haploview algorithm by reduc-
ing memory complexity from quadratic to linear and
by omitting approximately 80% of unnecessary compu-
tations. The improved algorithm was able to efficiently
process dense genomic segments of any size. When
applied to individual-level data, where genotypes are
available, the MIG++ efficiency can be exploited to set
up haplotype-based (genome-wide) association scans that
could account for the correct underlying haplotype dis-
tribution. This seems to be especially relevant when rarer
variants are involved. If ran on summary results from
GWAS, the MIG++ could help identify biologically plau-
sible scenarios for SNP-set analysis and it could support
a more correct annotation of genes surrounding vari-
ants of interest. From a population-genetic point of view,
the method could facilitate the comparison of human
genomes across different ethnicities, helping to highlight
structural differences. Finally, the algorithm opens up the
possibility to integrate genome-wide LD-based haplotype
block structure into visual assessment tools, thus improv-
ing the interpretation of already available, but incomplete,
LD heatmaps (Figure 14).

The MIG algorithms are available in the LDExplorer
R package at www.eurac.edu/LDExplorer together with
usage instructions and examples. Further improvements
will include application of parallel computation tech-
niques to MIG++ in order to further speed up the pro-
cessing while keeping memory requirements low.

Figure 14 Visualization of the LD-based haplotype block structure of a chromosome region using the UCSC genome browser [17]. Top
panel: the pairwise LD values in chr20:31,767,872-33,700,401 calculated by the UCSC genome browser using Haploview for SNPs within 250 kb.
Bottom panel: LD-based haplotype blocks obtained with MIG++ using LD between SNPs at any distance.

www.eurac.edu/LDExplorer

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 17 of 18
http://www.biomedcentral.com/1471-2105/15/10

Additional file

Additional file 1: Appendix. Includes pseudocode for the MIG algorithms,
illustrations of chromosomal regions sampling procedure, and figures
illustrating various haplotype block properties.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DT developed the MIG algorithms, implemented all algorithms in C++,
designed and performed all experiments, and drafted the manuscript. JG
supervised the project and revised the manuscript. CP supervised the project,
planned the experiments, and revised the manuscript. The authors read and
approved the manuscript.

Acknowledgements
The Genetic Analysis Workshop was funded by NIH grant R01 GM031575. Our
work was based on data that was gathered with the support of grants from
the National Institutes of Health (NO1-AR-2-2263 and RO1-AR-44422), and the
National Arthritis Foundation.
We are grateful to Christian Fuchsberger (University of Michigan), James F.
Gusella (Massachusetts General Hospital), Richard H. Myers (Boston University
School of Medicine), Francisco Domingues (European Academy of
Bozen/Bolzano), Christian X. Weichenberger (European Academy of
Bozen/Bolzano), and Cosetta Minelli (Imperial College London) for their
valuable comments and helpful discussion.

Received: 9 July 2013 Accepted: 18 December 2013
Published: 14 January 2014

References
1. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T,

Kouyoumjian R, Farhadian SF, Ward R, Lander ES: Linkage disequilibrium
in the human genome. Nature 2001, 411(6834):199–204.

2. Lewontin RC: The interaction of selection and linkage. I. general
considerations; heterotic models. Genetics 1964, 49:49–67.

3. Hill W, Robertson A: Linkage disequilibrium in finite populations.
Theo Appl Genet 1968, 38(6):226–231.

4. Gu S, Pakstis AJ, Kidd KK: HAPLOT: a graphical comparison of
haplotype blocks, tagSNP sets and SNP variation for multiple
populations. Bioinformatics 2005, 21(20):3938–3939.

5. Pattaro C, Ruczinski I, Fallin D, Parmigiani G: Haplotype block
partitioning as a tool for dimensionality reduction in SNP
association studies. BMC Genomics 2008, 9:405.

6. Zapata C: On the uses and applications of the most commonly used
measures of linkage disequilibrium from the comparative analysis
of their statistical properties. Hum Hered 2011, 71(3):186–195.

7. Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, Sun F: HapBlock: haplotype
block partitioning and tag SNP selection software using a set of
dynamic programming algorithms. Bioinformatics 2005, 21:131–134.

8. Gibson J, Tapper W, Ennis S, Collins A: Exome-based linkage
disequilibrium maps of individual genes: functional clustering and
relationship to disease. Hum Genet 2013, 132(2):233–243.

9. Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS,
Groszhennig A, Linsel-Nitschke P, Perret C, DeSuremain M, Meitinger T,
Wright BJ, Preuss M, Balmforth AJ, Ball SG, Meisinger C, Germain C, Evans
A, Arveiler D, Luc G, Ruidavets JB, Morrison C, van der Harst P, Schreiber S,
Neureuther K, Schafer A, Bugert P, El Mokhtari NE, Schrezenmeir J, Stark K,
et al.: Genome-wide haplotype association study identifies the,
SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery
disease. Nat Genet 2009, 41(3):283–285.

10. Lambert JC, Grenier-Boley B, Harold D, Zelenika D, Chouraki V, Kamatani Y,
Sleegers K, Ikram MA, Hiltunen M, Reitz C, Mateo I, Feulner T, Bullido M,
Galimberti D, Concari L, Alvarez V, Sims R, Gerrish A, Chapman J, Deniz-
Naranjo C, Solfrizzi V, Sorbi S, Arosio B, Spalletta G, Siciliano G, Epelbaum J,
Hannequin D, Dartigues JF, Tzourio C, Berr C, et al.: Genome-wide
haplotype association study identifies the, FRMD4A gene as a risk
locus for Alzheimer’s disease. Mol Psychiatry 2013, 18(4):461–470.

11. Song C, Chen GK, Millikan RC, Ambrosone CB, John EM, Bernstein L,
Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF,
Deming SL, Rodriguez-Gil JL, Chanock SJ, Wan P, Sheng X, Pooler LC,
Van Den Berg DJ, Le Marchand L, Kolonel LN, Henderson BE, Haiman CA,
Stram DO: A Genome-wide scan for breast cancer risk haplotypes
among African American women. PLoS ONE 2013, 8(2):e57298.

12. Dering C, Hemmelmann C, Pugh E, Ziegler A: Statistical analysis of rare
sequence variants: an overview of collapsing methods. Genet
Epidemiol 2011, 35(S1):S12–S17.

13. Wang K, Li M, Bucan M: Pathway-based approaches for analysis of
genomewide association studies. Am J Hum Genet 2007,
81(6):1278–1283.

14. Petersen A, Alvarez C, DeClaire S, Tintle NL: Assessing methods for
assigning SNPs to genes in gene-based tests of association using
common variants. PLoS ONE 2013, 8(5):e62161.

15. Christoforou A, Dondrup M, Mattingsdal M, Mattheisen M, Giddaluru S,
Nöthen MM, Rietschel M, Cichon S, Djurovic S, Andreassen OA, Jonassen I,
Steen VM, Puntervoll P, Hellard SL: Linkage-disequilibrium-based
binning affects the interpretation of GWASs. Am J Hum Genet 2012,
90(4):727–733.

16. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D,
Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon
L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M,
Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R,
Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al.: Ensembl 2013.
Nucl Acids Res 2013, 41(D1):D48–D55.

17. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D: The human genome browser at UCSC. Genome Res 2002,
12(6):996–1006.

18. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES: High-resolution
haplotype structure in the human genome. Nat Genet 2001,
29(2):229–232.

19. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR,
Lee DH, Marjoribanks C, McDonough DP, Nguyen BTN, Norris MC,
Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO,
Vyas KR, Frazer KA, Fodor SPA, Cox DR: Blocks of limited haplotype
diversity revealed by high-resolution scanning of human
chromosome 21. Science 2001, 294(5547):1719–1723.

20. Zhang K, Deng M, Chen T, Waterman MS, Sun F: A dynamic
programming algorithm for haplotype block partitioning. Proc Natl
Acad Sci USA 2002, 99(11):7335–7339.

21. Anderson EC, Novembre J: Finding haplotype block boundaries by
using the minimum-description-length principle. Am J Human Genet
2003, 73(2):336–354.

22. Mourad R, Sinoquet C, Leray P: Probabilistic graphical models for
genetic association studies. Brief Bioinformatics 2012, 13:20–33.

23. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,
Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C,
Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The
structure of haplotype blocks in the human genome. Science 2002,
296(5576):2225–2229.

24. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization
of LD and haplotype maps. Bioinformatics 2005, 21(2):263–265.

25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D,
Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for
whole-genome association and population-based linkage analyses.
Am J Human Genet 2007, 81(3):559–575.

26. Zapata C, Alvarez G, Carollo C: Approximate variance of the
standardized measure of gametic disequilibrium D’. Am J Hum Genet
1997, 61(3):771–774.

27. Wall JD, Pritchard JK: Assessing the performance of the haplotype
block model of linkage disequilibrium. Am J Hum Genet 2003,
73(3):502–515.

28. The International HapMap Consortium: The international HapMap
project. Nature 2003, 426(6968):789–796.

29. The 1000 Genomes Project Consortium: A map of human genome
variation from population-scale sequencing. Nature 2010,
467(7319):1061–1073.

30. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D:
Principal components analysis corrects for stratification in
genome-wide association studies. Nat Genet 2006, 38:904–909.

http://www.biomedcentral.com/content/supplementary/1471-2105-15-10-S1.pdf

Taliun et al. BMC Bioinformatics 2014, 15:10 Page 18 of 18
http://www.biomedcentral.com/1471-2105/15/10

31. Delaneau O, Marchini J, Zagury JF: A linear complexity phasing method
for thousands of genomes. Nature Methods 2011, 9(2):179–181.

32. Shim H, Chun H, Engelman C, Payseur B: Genome-wide association
studies using single-nucleotide polymorphisms versus haplotypes:
an empirical comparison with data from the North American
Rheumatoid Arthritis consortium. BMC Proceedings 2009,
3(Suppl 7):S35.

33. Park J, Namkung J, Jhun M, Park T: Genome-wide analysis of haplotype
interaction for the data from the North American Rheumatoid
Arthritis Consortium. BMC Proceedings 2009, 3(Suppl 7):S34.

34. Lorenz AJ, Hamblin MT, Jannink JL: Performance of single nucleotide
Polymorphisms versus Haplotypes for genome-wide association
analysis in Barley. PLoS ONE 2010, 5(11):e14079.

35. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK,
Manolio TA: A catalog of published genome-wide association
studies. www.genome.gov/gwastudies. [Accessed December 7,2013]

doi:10.1186/1471-2105-15-10
Cite this article as: Taliun et al.: Efficient haplotype block recognition of very
long and dense genetic sequences. BMC Bioinformatics 2014 15:10.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

www.genome.gov/gwastudies

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Haplotype block definition
	Incremental computation of haplotype blocks
	The MIG algorithm
	The MIG+ algorithm
	The MIG++ algorithm

	Alternative methods to estimate the D CI
	The wall and pritchard (WP) method
	The approximate variance (AV) method

	Experimental evaluation
	Genome-wide association study of rheumatoid arthritis

	Results
	Runtime and memory with the WP method
	Runtime and memory with the AV method
	Block Partitions with the WP and AV Methods
	Whole genome haplotype block recognition
	Genome-wide association study of rheumatoid arthritis

	Discussion
	Conclusions
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

