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ABSTRACT

As the cost of sequencing drops rapidly, the amount
of ‘omics data increases exponentially, making data
visualization and interpretation––‘tertiary‘ analysis
a bottleneck. Specialized analytical tools requiring
technical expertise are available. However, consoli-
dated and multi-faceted tools that are easy to use for
life scientists is highly needed and currently lacking.
Here we present Omics Playground, a user-friendly
and interactive self-service bioinformatics platform
for the in-depth analysis, visualization and interpre-
tation of transcriptomics and proteomics data. It pro-
vides a large number of different tools in which spe-
cial attention has been paid to single cell data. With
Omics Playground, life scientists can easily perform
complex data analysis and visualization without cod-
ing, and significantly reduce the time to discovery.

INTRODUCTION

The current progress in sequencing technologies is leading
to an exponential increase in the amount of high through-
put data generated. In particular gene expression data, in
the shape of microarrays and RNA-seq, are now abundant.
As technologies have become affordable, the bottleneck is
not anymore the availability of the data but the analysis of
it.

The current landscape of bioinformatics tools consist of a
plethora of free software packages and stand-alone web ser-
vices that provide a specific bioinformatic analysis. Bioin-
formaticians would juggle their data between websites and
create custom scripts to glue the packages together, but be-
cause this required some programming skills, it was not the
realm of the biologists. However, in recent years, the de-
velopment of easy-to-use self-service bioinformatics (SSB)
platforms, targeted at biologists with no previous bioinfor-

matics experience, have made such processes increasingly
more accessible.

As big omics data continues to grow and more bioinfor-
matic analysis is needed, the demand for easy-to-use SSB
platforms will expand. To this end, we have developed the
Omics Playground, a self-service bioinformatics platform
for the visualization, analysis and exploration of big omics
data.

Currently available platforms. Self-service bioinformatics
(SSB) platforms are typically those that (i) target biologists
with no or little bioinformatics skills as users, (ii) provide
an integrated solution for end-to-end analysis and (iii) have
a high degree of interactivity and visualization. A number
of SSB platforms have been developed over the years to
address the analysis of not only RNA-seq data, but also
other type of omics data, such as DNA-seq, CHIP-seq and
proteomics data (Table 1). Among the free SSB platforms,
DEBrowser (1) and Biojupies (2) are good examples of in-
tegrated platforms for RNA-seq data analysis, and, in the
case of BioJupies, provides the possibility to access and
analyze previously published data sets through the GEO
(3). The WIlsON platform (4) is an example of a versatile
platform, which is agnostic in the type of data supporting
multiple types of omics data including genomic, transcrip-
tomic, metabolomic and proteomic data (Table 1). Among
the commercial platforms, Genialis (genialis.com) and Ros-
alind (onramp.bio/rosalind) support various types of omics
data, while AIR (transcriptomics.sequentiabiotech.com) is
solely focused on RNA-seq data. A particular case is repre-
sented by Paintomics3 (5), which not only supports various
types of omics data but also, uniquely among the platforms
in the list, integrates multi-omics data from the same exper-
iment in a graphical display of KEGG pathways.

Self-service platforms can also be characterized based on
three levels of analysis: (i) mapping and quantification (pri-
mary analysis), (ii) statistical testing (secondary analysis)
and (iii) data visualization and interpretation (tertiary anal-
ysis). In contrast to the typically linear workflow of first and
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Table 1. The feature comparison of Omics Playground with available platforms in the literature. The ‘�’ symbol represents the availability of the feature

second level analysis, tertiary analysis needs a high level of
interactivity. Commercial platforms, such as Genialis, Ros-
alind and AIR, tend to offer pre-defined pipelines for pri-
mary and secondary analysis, while open source platforms,
such as DEBrowser, DEapp (6) and ASAP (7) focus more
on customizable secondary and tertiary analysis. Conse-
quently, most of the commercial platforms in Table 1 readily
accept raw FASTQ files as input and automate downstream
count matrix preparation. Open source platforms, on the
other hand, often require a flat text file containing a count
matrix of the features being analysed, which needs to be pro-
duced separately. The WIlsON platform requires a specific
input file format called CLARION. An exception is repre-
sented here by Biojupies and Network Analyst (8), which
can accept raw sequence files (in the FASTQ format) as in-
put and produce count matrices based on them (although
via a Galaxy platform in the case of Network Analyst). Fi-
nally, platforms devoted exclusively to visualization, such as
Paintomics3, focus on tertiary analysis only.

Along with data sets getting larger (i.e. more samples),
the number of possible contrasts grows quadratically with
respect to the number of conditions. Support for multiple
contrasts is not a common feature, with most platforms ei-
ther focusing on single pairwise comparisons. Network An-
alyst stands out in the list by offering a more thorough com-
parison analysis, extending to nested comparisons, as well
as supporting time series (which can also be visualized in
Paintomics3).

Other distinguishing features of SSB platforms are the
number of supported species, the number of available ex-
pression analysis algorithms, and the number of gene data
sets for enrichment score analysis supported by each plat-
form. Platforms that focus on fewer, popular species (usu-
ally mouse and human) and for which more gene data sets
are available, tend to also offer more gene enrichment anal-

ysis options. Biojupies and DEBrowser are good examples
of this strategy and include multiple pathway databases, the
GTEx database (9), as well as comparing expression pro-
files against those of perturbagens through the Connectivity
Map (CMap) database (10). Platforms that support more
species, such as AIR, Rosalind, Paintomics3 or ASAP, tend
to focus on fewer pathways (usually the KEGG pathways
and GO terms).

With the advent of single cell sequencing, support for sin-
gle cell RNA-seq data sets is also becoming an increasingly
desirable feature for SSB platforms. These are explicitly sup-
ported only by ASAP at the moment among the platforms
considered (Table 1).

The Omics Playground. The Omics Playground platform
offers a unique combination of features that distinguishes
it from the other SSB platforms currently available (Sup-
plementary Figure S1). We believe that data preprocessing
(primary analysis) and statistical testing (secondary analy-
sis) are now well established, and the most challenging task
is currently data interpretation (tertiary analysis) that of-
ten takes the longest time but where actual insights can be
gained. Therefore, the Omics Playground focuses strongly
on tertiary analysis while providing good support for sec-
ondary analysis.

The Omics Playground currently handles gene expression
microarray, RNA-seq and LC-MS/MS proteomics data,
and supports two species, human and mouse. The Omics
Playground has been in particular devised to also support
single cell RNA-seq data (like the ASAP platform), as well
as traditional gene expression experiments.

The platform combines the differential expression anal-
ysis with up to seven different algorithms, including the
popular limma (11), edgeR (12) and DEseq2 (13) packages.
The enrichment of more than 50 000 gene sets from vari-
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ous databases is computed using multiple methods includ-
ing Fisher’s exact test, ssGSEA, GSVA, Spearman correla-
tion, camera and fry (14–18). Omics Playground offers the
second largest number of gene set databases within the plat-
forms in Table 1, with only BioJupies offering more. Mul-
tiple statistical methods are combined using meta-analysis,
providing a list of highly reliable hits identified across algo-
rithms. A similar feature is provided only by the commercial
AIR platform among the ones presented in the table.

Furthermore, Omics Playground offers a graphical dis-
play of individual gene expression profiles on KEGG path-
ways images, a feature that is only present in Paintomics3.
Like ShinyNGS (github.com/pinin4fjords/shinyngs), the
platform also displays gene sets barcode plots (Table 1).
Similarly to BioJupies, a drug connectivity map (CMap)
provides a visual tool for comparing expression profiles
to find potentially relevant similar and opposing signa-
ture across more than 5000 perturbagens from the L1000
database. The platform also has a special module for im-
mune cell profiling and, uniquely among all the other plat-
forms, modules performing both biomarker selection and
survival analysis.

MATERIALS AND METHODS

Implementation

The current version of our platform (1.0) is implemented in
R (19) using the Shiny web application framework (20). The
overview of the platform is shown in Figure 1 and consists
of two main components. The first component addresses the
data importing and precomputation tasks offline, while the
second component hosts an interface framework that sup-
ports real-time visualization and interaction with users. The
following sections describe the features of each component.

Data import and precomputation

The data import and precomputation involves preparing
the input data through filtering, normalizing and precom-
puting statistics for some analyses and importing it into
the platform. The data cleaning and precomputation is per-
formed offline to support real-time interaction by minimiz-
ing user interface latency (Supp. Doc. Chapters 3 and 4).

Data import. Users can import their transcriptomics or
proteomics data to the platform by either uploading the
data through the interface or preparing an input object us-
ing scripts. For uploading, the platform requires the counts,
samples information, genes information and contrasts ta-
bles in CSV format. Users can provide their own counts or
download the relevant data from repositories such as GEO
(3), and arrange other files accordingly. On the other hand,
an input object can be prepared using scripts from different
types and formats of data, including FASTQ, where users
can implement their preferred alignment or quantification
methods (21–23). With scripts it is also possible to do more
detailed data cleaning, filtering, normalization and prepro-
cessing. The platform contains necessary example scripts
for an input object preparation.

Filtering. The data preprocessing includes some filtering
criteria, such as filtering of genes based on variance, the ex-
pression across the samples, and the number of missing val-
ues. Similarly, samples can also be filtered based on the read
quality, total abundance, unrelated phenotype, or an outlier
criterion.

Normalization. The raw counts are converted into counts
per million (CPM) and log2. Depending on the data set, a
quantile normalization can be applied. Known batches in
the data can be corrected with limma (11) or ComBat (24).
Other unknown batch effects and unwanted variation can
be further removed using surrogate variable analysis in the
sva package (25).

Offline computation. Statistics for the differentially ex-
pressed genes (DEG) and gene set enrichment (GSE) anal-
yses are precomputed to accelerate the visualization on the
interface.

Omics Playground interface

The interface of the platform is subdivided into basic and
expert modes. Basic mode includes fundamental analysis
modules such as data view, clustering, differential expres-
sion, gene set enrichment, intersection and functional anal-
yses, while expert mode includes additional modules such
as signature, biomarker and single-cell profiling. Users can
choose the interface mode according to their level of ex-
pertise. The main purpose of having two different modes
is to provide a customizable experience suited to each users
background.

The platform contains nine main functional modules. Af-
ter selecting and loading the data from the home page, users
can proceed with any analysis on desire. There is no specific
order between the analysis modules that users should fol-
low, as most of the statistics are precomputed offline in the
previous steps. A brief description and functionality of each
module is provided below.

Home. The platform starts running from the home panel.
Basically, this module contains general information about
all available data sets. For each data set, this tab reports
a brief description as well as the total number of samples,
genes, gene sets (or pathways), the corresponding pheno-
types and the collection date. Users can choose the inter-
face mode, select and load the public data of their interest,
or upload their own data and start the analysis from here
(Supp. Doc. Chapter 6).

Data view. For the selected data set, the data view
module provides a descriptive statistical analysis at a gene
level with visualizations (Supp. Doc. Chapter 7). For a gene
specified by the user, the plot section displays figures re-
lated to the expression level of the gene, correlation with
other genes, and average expression ranking within the data
set. It also correlates the gene with other gene expressions in
data sets such as ImmProt (26) and HPA (27), and plots the
cumulative correlation. Furthermore, tissue expression for
a selected gene is displayed using the GTEx database. For
further information from the literature, hyperlinks are pro-
vided to link the selected gene to databases like OMIM (28),
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Figure 1. An overview of the Omics Playground. The platform consists of data cleaning and preprocessing and a user interface. Data preprocessing is
handled offline to enable real-time visualization and interaction on the interface.

KEGG (29), and GO (30). In the visual analysis, users can
filter out some samples or collapse the samples by pheno-
type class. It is also possible to visualize the information on
a raw count level (CPM) instead of a log2 level (logCPM).

The total number of counts (abundance) per sample and
their distribution among the samples are displayed in the
counts section. For each sample, the user can also see
the percentage of counts for major gene types, such as CD
molecules, kinases or RNA-binding motifs.

Further correlation analysis across, the samples can be
performed under thegene table section, where genes are

ordered in the table according to the correlations with the
selected gene. The gene-wise average expression of samples
per phenotype classes is also presented in the table. More
detailed information about the samples is reported in the
sample table.

Clustering. The clustering module performs a holistic
clustering analysis of the samples (Supp. Doc. Chapter 8).
The main output of this feature is 2-fold: (i) It generates a
heatmap of samples and (ii) It also provides a PCA/tSNE
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plot of samples obtained by principal components analysis
or t-distributed stochastic embedding algorithms (31,32).

The heatmap analysis can be performed on a gene level
expression or gene set level expression in which, for each
gene set (or pathway), an average expression is computed
from the gene expression data using summary methods such
as GSVA and ssGSEA (15). During the heatmap genera-
tion, users have various option that they can select, such as
splitting the samples by a phenotype class provided in the
data (e.g. tissue, cell type or gender). In addition, users have
to specify the top N = 50, 500 features to be used in the
heatmap for hierarchical clustering. The criteria to select
the top features are: (i) sd - features with the highest stan-
dard deviation across all the samples, (ii) specific features
that are overexpressed in each phenotype class compared
to the rest, (iii) pca––principal components computed by
the irlba package (31). The top features in the heatmap
are then divided into five clusters based on their expres-
sion profiles. For each cluster, the platform provides a func-
tional annotation under the annotate cluster section
using more than 42 published reference databases, including
but not limited to well-known databases such as MSigDB,
KEGG and GO (29,30,33).

PCA and t-SNE plots can be found in the PCA/tSNE tab,
which shows the relationship between samples in 2D as well
as in 3D space for visual analytics. Users can customize the
PCA/tSNE plot using a phenotype class provided in the
data.

Differential expression analysis. The expression module
contains a differentially expressed genes (DEG) analysis
between contrasts (e.g. tumor versus control) (Supp. Doc.
Chapter 9). The analysis begins with the selection of a con-
trast. There are further options to filter out some genes by
functional families, logarithmic fold change (logFC) and
false discovery rate (FDR).

DEG analysis is performed using four commonly ac-
cepted methods, namely: t-test (standard, Welch), limma
(no trend, trend, voom), edgeR (QLF, LRT), and DESeq2
(Wald, LRT) (11–13). For each selected contrast, the results
of these methods are combined and reported under the ta-
ble section, where meta.q for a gene represents the highest
q value among the methods and the number of starts in-
dicates how many methods have significant q values (q <
0.05). Users can sort genes by logFC, meta.q, or average
expression in an interactive table. By clicking on a gene,
it is possible to see which gene sets include that gene, and
check the status of the differential expression in other com-
parisons from the plots section. The section can also dis-
play volcano and MA plots. Furthermore, for the top 10
DEGs within the selected comparison, average expression
plots across the samples are displayed in the top genes
section.

Another important feature of this module is the simul-
taneous visualization of volcano plots for all comparisons
under the volcano (all) section.

Gene set enrichment analysis. This module visualizes a dif-
ferential expression analysis at a gene set level (Supp. Doc.
Chapter 10). Expression analysis for each gene set (or path-
way) is computed from gene expression data using summary

methods such as GSVA and ssGSEA (15). The platform has
more than 50 000 gene sets and pathways in total, which
are divided into 30 gene set collections such as Hallmark,
MSigDB, KEGG and GO (29,30,34).

Users specify which contrast they want to visually ana-
lyze using a particular gene set collection. To ensure sta-
tistical reliability, the platform performs GSE analyses us-
ing seven different methods, including Spearman rank cor-
relation, GSVA, ssGSEA, Fisher’s exact test, GSEA, cam-
era and fry (14–18). The results are combined and gene sets
can be optionally filtered by logFC and FDR thresholds be-
fore being visualized in an interactive and sortable table un-
der the enrichment table menu. For each gene set, a
meta.q value and stars qualifier are calculated as described
previously and volcano plots of its genes and barplots of ex-
pressions per phenotype class are displayed (under plots).
Additionally, the list of genes in that gene set are visualized
in a separate table and for every gene it is possible to see the
barplot of expressions per phenotype class and a scatter plot
of gene to gene set expressions. Individual gene sets expres-
sion profiles can be visualized against all available contrasts
(compare tab). Under the volcano (all) tab, volcano
plots for all contrasts are displayed.

Functional analysis. This module provides higher level
functional and visual analysis of the contrast space using
the KEGG and GO graph structures (Supp. Doc. Chap-
ter 11). Given the profile of a particular contrast, it also
searches for the closest drug profiles from the L1000 drug
expression database (10).

Within the KEGG graph section, each pathway is scored
for the selected contrast profile and reported in an interac-
tive table. The scoring is performed by considering the total
number of genes in the pathway (n), the number of genes in
the pathway supported by the contrast profile (k), the ra-
tio of k/n, and the ratio of |upregulated or downregulated
genes|/k. Additionally, the table contains the list of the up-
regulated and downregulated genes for each pathway and a
q value from the Fisher’s test for the overlap. Pathway maps
can be summoned from the interactive table, with individ-
ual genes colored according to their differential expression
(upregulation: red; downregulation: blue). Another impor-
tant feature is an activation-heatmap including the compar-
ison of activation levels of pathways (or pathway keywords)
across multiple contrast profiles.

All the features described under the KEGG graph tab,
such as scoring the gene sets and drawing an activation-
heatmap, can be performed for the GO database under the
GO graph tab. Instead of pathway maps, an annotated
graph structure provided by the GO database is plotted for
every selected gene set.

The drug connectivity map (Drug C-Map) section cor-
relates the selected contrast profile with more than 5000
known drug profiles from the L1000 database (10), and
shows the top 10 similar and opposite profiles by running
the GSEA algorithm (17) on the contrast-drug profile cor-
relation space. It also provides an activation-heatmap for
drugs across multiple contrast profiles. Users can perform
the contrast-drug profile correlation analysis in mono (sin-
gle drug) or combo (combination of two drugs) mode.
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Intersection analysis. The intersection analysis module en-
ables users to compare multiple contrasts by intersecting the
genes of profiles. Its main goal is to identify contrasts show-
ing similar profiles (Supp. Doc. Chapter 12).

For the selected contrasts, the platform provides volcano
plots and pairwise correlation plots between the profiles
under the pairs tab. Simultaneously, it plots a Venn di-
agram with the number of intersecting genes between the
profiles in the venn diagram section. The list of inter-
secting genes with further details is also reported in an in-
teractive table, where users can select and remove a par-
ticular contrast from the intersection analysis. In addition,
it is possible to check a scatter plot of two profiles as
well as the correlation-heatmap of multiple profiles under
the two-pairs and correlation tabs, respectively. The
connectivity graph tab constructs a network, in which
nodes represent contrasts and edges are obtained from the
pairwise-correlation of corresponding profiles.

Signature analysis. In this module, users can test gene sig-
natures by calculating an enrichment score. They can use
a sample list provided on the platform or upload their own
gene list. Instead of a short list, a profile can also be selected,
which is a complete gene list derived from one of the con-
trasts in the analysis (Supp. Doc. Chapter 13).

After uploading a gene list, the markers section pro-
duces a t-SNE plot of samples for each gene, colored by
expression levels (upregulation: red; downregulation: blue).
The enrichment tab performs the enrichment analysis of
the gene list against all contrasts by running the GSEA
algorithm (17) and plots enrichment outputs. The sig-
nature c-map section associates the provided signature
list or contrast profile with similar profiles of other experi-
ments, obtained from ten published data sets. Finally, under
the overlap/similarity tab, users can compare their
gene list with all the gene sets and pathways in the platform
through statistics such as the total number of genes in the
gene set (K), the number of intersecting genes between the
list and the gene set (k), the overlapping ratio of k/K, as well
as the p and q values by the Fisher’s test for the overlap test.

Biomarker analysis. This module performs the biomarker
selection that can be used for classification or prediction
purposes (Supp. Doc. Chapter 14). To better understand
which genes, mutations, or gene sets influence the final phe-
notype the most, Playground calculates a variable impor-
tance score for each feature using state-of-the-art machine
learning algorithms, including LASSO (35), elastic nets
(36), random forests (37), and extreme gradient boosting
(38), and provides the top 50 features according to cumula-
tive ranking by the algorithms. By combining several meth-
ods, the platform aims to select the best possible biomark-
ers. The phenotype of interest can be multiple categories
(classes) or patient survival data. Instead of choosing a phe-
notype, users can also specify a particular contrast from the
analysis and perform biomarker selection.

The platform also provides a heatmap of samples based
on identified top features. In addition, it generates a clas-
sification tree or survival tree using top features and pro-
vides expression boxplots by phenotype classes for features
present in the tree.

Cell profiling. The cell profiling module is used to infer
cell types in a sample using prediction methods and refer-
ence data sets from the literature. Currently, we have imple-
mented a total of eight methods and nine reference data sets
to predict immune cell types (four data sets), tissue types
(two data sets), cell lines (two data sets) and cancer cell types
(one data set). Although this feature is very suitable for a
single-cell sequencing data, it provides useful information
about the proportion of different cell types in samples ob-
tained by the bulk sequencing method (Supp. Doc. Chapter
15).

For each gene pair combination, the platform can gener-
ate a cytometry-like plot of samples under the cytoplot
tab. The aim of this feature is to observe the distribution of
samples in relation to the selected gene pairs. For instance,
when applied to single-cell sequencing data from immuno-
logical cells, it can mimic flow cytometry analysis and dis-
tinguish T helper cells from other T cells by selecting the
CD4 and CD8 gene combination.

The markers section provides potential marker genes,
that is the 36 genes with the highest standard deviation
within the expression data across the samples. For every
gene, it produces a t-SNE plot of samples, with samples col-
ored in red when the gene is overexpressed in correspond-
ing samples. Users can also restrict the marker analysis by
selecting a particular functional group. There are in total
89 such functional groups, including chemokines, transcrip-
tion factors, genes involved in immune checkpoint inhibi-
tion, and so on.

It is also possible to perform a gene copy number vari-
ation (CNV) analysis under the CNV tab. The copy num-
ber is estimated from gene expression data by computing
a moving average of the relative gene expression along the
chromosomes. A heatmap of samples versus chromosomes
is generated, where samples can be annotated further with
a phenotype class provided in the data.

RESULTS

To illustrate the use cases of the Omics Playground, we re-
analyzed some publics data sets. For single-cell RNA-seq
data, we downloaded the melanoma data set GSE72056 of
(39). Our platform recapitulates well the original findings
of the paper. The t-SNE clustering (Figure 2A) separates
the different cell types. Figure 2B and C show the volcano
plot, MA plot and most differentially expressed genes be-
tween malignant and non-malignant cells. The CNV map
(Figure 2D) confirms the major chromosomal copy num-
ber variations found in the malignant cells. Figure 2E shows
high enrichment of a immune checkpoint signature, partic-
ularly concentrated in the T cells. The biomarker heatmap
(Figure 2F) highlights the marker genes for each cell type.
Each gene cluster is furthermore automatically annotated
with the most correlated gene sets (Figure 2G).

To elucidate the mechanism of action of a new drug,
or for the intention of drug repurposing, it is often use-
ful to find other drugs that have similar or opposing sig-
natures compared to some given fold change profile. As
an example, using data from GSE114716 (40), Figure 2F
shows the top ranked drugs with most similar or most op-
posing signatures to Ipilimumab, a novel monoclonal an-
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Figure 2. Analysis and visualization using the Omics Playground of public data sets: melanoma scRNA-seq GSE72056 (A–H) and Ipilimumab GSE114716
(H). (A) t-SNE clustering with cell type annotation. (B) Volcano and MA plot for the malignant versus non-malignant contrast. (C) Corresponding
differentially expressed genes. (D) Inferred copy number for sample Cy80. (E) Enrichment distribution for an immune checkpoint signature showing high
enrichment in T and B cells. (F–G) Biomarker heatmap and corresponding enrichment for non-malignant cells. (H) Drug enrichment profiles for most
similar and opposing drugs compared to Ipilimumab treatment.

tibody targeting CTLA-4 used in tumor therapy to stim-
ulate the immune system. The complete list contains sev-
eral compounds that stimulate the immune system, such as
alpha-tocopherol (41), but also highlights compounds that
are not commonly associated with the modulation of im-
mune responses, such as strophanthidin, an intropic drug
that has recently been shown to display pro-inflammatory
activities (43).

Figure 3A shows the volcano plots corresponding to
eight different statistical tests comparing time-dependent
activation of T cells at 48 h versus 12 h (42). We see that both
standard t-test and the Welch t-test show much less power to
detect significant genes compared to the other methods. The
result from edgeR-QLF is close to those of the two limma
based methods, while edgeR-LRT is very similar to the re-
sults of DESeq2-Wald. Figure 3B shows a microarray gene
expression data set, GSE10846 (44), of diffuse large B-cell
lymphoma (DLBCL). Figure 3C and D show the variable
importance plot and a survival tree on the overall survival
of the DLBCL patients, respectively.

With larger data sets, often the number of contrasts in-
creases and complicates the overall analysis. For example,
the proteomics data set of (26) comprises 26 populations
of seven major immune cell types, measured during resting
and activated states. There are more than 300 possible com-

parisons to make. To gain a better overview, the gene set
activation matrix (Figure 3E) helps to visualize the similar-
ities between multiple contrasts on a functional level. Alter-
natively, similarities can be visualized as a contrast corre-
lation heatmap (Figure 3F). For the same data set, Figure
3G shows a computed partition tree that classifies the major
cell types.

DISCUSSION

The Omics Playground is a platform that can currently vi-
sualise results from transcriptomic and proteomic data sets,
with support for single-cell RNA-seq data. It is based on
the R-shiny architecture, providing a modular structure that
can be easily updated and expanded. The platform can visu-
alize both standard and more sophisticated omics analysis
results, thus providing a highly versatile platform for both
novice and more advanced users. We demonstrated its range
of uses by re-analyzing previously published data sets of
various origins in order to reproduce the main findings and
show additional information that can be evinced through
the platform.

Future plans for the platform include adding support for
other omics data types (such as miRNA and Chip-seq), as
well as integration of various omics data sets akin to what
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Figure 3. Analysis and visualization of public data sets using the Omics Playground. (A) Volcano plots corresponding to eight different statistical methods
comparing time-dependent expression of T cell activation at 48h vs. 12h (42). (B–D) Hierarchical cluster heatmap, variable importance plot and survival
tree for the diffuse large B-cell lymphoma data set GSE10846. (E–G) Gene Ontology activation matrix, contrast heatmap and classification tree for the
immune cell data set of (26).

currently offered by Paintomics3. Support for time series
data set analysis is also planned. Finally, we would like to
offer support for isoform specific analysis, which is currently
still a rather uncommon feature among omics platforms.
While the biological relevance of protein isoforms is still
controversial (45–47), there is increasing interest in measur-
ing expression differences at the isoform level, as well as fol-
lowing isoform switching in time-series studies, and various
tools are available for that purpose (48–51) that can be in-
tegrated within the Omics Playground platform.

The Omics Playground empowers the average life science
user with an easy-to-use integrated software environment
for self-service analytics of big omics data. The platform
also provides a unique combination of tools for more so-
phisticated analysis normally only available to experienced
bioinformaticians. To cope with the ever-growing amount
of omics data, it is important to make self-service omics an-
alytics available to non-specialists.

DATA AVAILABILITY

The source code of the Omics Playground is available on
GitHub at https://github.com/bigomics/omicsplayground,
free for academic purposes. Users also can download
the docker image of the platform on Docker hub
at https://hub.docker.com/r/bigomics/omicsplayground or
find the online documentation on Read-the-docs at https:
//omicsplayground.readthedocs.io.

GLOSSARY

Signature: a list of selected genes (e.g. by significance or fold
change); Condition: a specific phenotype group (e.g. tumor
or control); Contrast: a comparison between two conditions
(e.g. tumor versus control); Profile: a vector of fold changes
corresponding to a certain comparison; Hierarchical clus-
tering: a method that groups similar samples into groups;
q value: an FDR-adjusted P value; Biomarker: a biologi-
cal feature (gene, mutation or gene set) that characterizes a
specific physiological or pathological process.
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Supplementary Data are available at NARGAB Online.
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